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Abstract

Vision-based motion capturing of hand articulation
is-a challenging task, since the hand presents a mo-
tion of high degrees of freedom. Model-based approaches
could be taken to approach this problem by searching
in a high dimensional hand state space, and match-
ing projections of a hand model and image observa-
tions. However, it is highly inefficient due to the curse
of dimensionality. Fortunately, natural hand articula-
tion is highly constrained, which largely reduces the di-
mensionality of hand state space. This paper presents
a model-based method to capture hand articulation by
learning hand natural constraints. Qur study shows
that natural hand articulation lies in a lower dimen-
stonal configurations space characterized by a union of
linear manifolds spanned by a set of basis configura-
tions. By integrating hand motion constraints, an ef-
ficient articulated motion-capturing algorithm is pro-
posed based on sequential Monte Carlo techniques. Our
experiments show that this algorithm is robust and ac-
curate for tracking natural hand movements. This al-
gorithm 1s easy to extend to other articulated motion
capturing tasks.

1 Introduction

The use of hand gestures has become an important
part of human computer interaction in recent years
[11]. Gesture commands could be captured and rec-
ognized by computers, and computers could synthesize
hand sign language as an output. Glove-based devices
have been cmployed to capturc human hand motion
by dircctly mcasuring the joint angles and spatial po-
sitions of hands with scnsors attached. Generally, such
devices are expensive and cumbersome. On the other
hand, vision-based technique has become a promising
alternative to capturce human hand motion, duc to the
cost-cfficient and non-invasive visual sensory inputs. It
serves as the motivating forces for rescarch in vision-
bascd capturing of hand articulation.

Capturing hand articulation is a challenging task,
since the hand presents a motion of high degrees of free-

0-7695-1143-0/01 $10.00 © 2001 IEEE

426

dom. If hand articulation is represented by its joint an-
gles, the dimensionality for estimation and tracking of
hand states would make this task prohibitive. Another
difficulty comes from self-occlusions of different fingers,
which brings uncertainty for the occluded parts.

Two general approaches have been explored to cap-
ture hand articulation. One of them is the model-based
approach, which takes advantage of 3D hand models.
Hand states could be recovered by matching the pro-
jected 3D model and observed image features, so that
the problem becomes a search problem in a high di-
mensional space. Different image observations have
been studied. Fingertips [7, 15, 16] could be used
to construct the correspondences between the model
and the images. However, the robustness and accuracy
largely depends on the performance of fingertip detec-
tion. Line features were employed in [12, 14] to en-
hance the robustness. An exact hand shape model was
built by splines in [6], and hand state recovery could
be achieved by minimizing the difference between the
silhouettes. A method of combining edge and silhou-
ette observations was reported recently for human body
tracking [2].

The other alternative is the appearance-based ap-
proach, which estimates hand states from images di-
rectly after learning the mapping from the image fea-
ture space to the hand configuration space. In [17],
static hand posture recognition is achieved by map-
ping image feature space to a discrete space of hand
configurations. The mapping is highly nonlinear due
to the variation in the hand appearances under dif-
ferent view angles. An appcarance-based method was
also reported in [13] to recover body postures. How-
ever, appearance-based approach generally involves a
quite difficult learning problem, and it is not trivial to
collect large sets of training data.

Fortunately, human motion is often highly con-
strained. In the case of the hand, the movements of
different joints are not independent. Although the de-
grees of freedom (DoF), D, for the hand is large, the



actual hand configuration spacc could be a small con-
straincd subspace in the statc spacc RP. The con-
straints could dramatically reduce the scarch space in
capturing hand articulation. Although some simple
and closed form constraints have been found in bio-
metrics and applied to hand motion analysis [7, 6, 16],
more investigations on the representations and utiliza-
tions of the constraints need to be conducted.

In this paper, we propose an cffective method to
-apturce hand articulation by intcgrating constraints of
natural hand motion. Our study of natural hand mo-
tion shows that the hand configuration space could be
approximated by a lower dimensional space and charac-
terized by a sct of basis configurations. To make usc of
such constraints, an importance sampling based Monte
Carlo tracking algorithm is proposed to track hand ar-
ticulation. Section 2 describes a 3D hand model used
in our study. Our study of natural constraints of hand
motion is presented in Section 3. Section 4 and Seetion
5 present the importance sampling technique and our
tracking algorithm respectively. Experimental results
arc shown in Scction 6 and we conclude the paper in
Scction 7.

2 Hand Model

The human hand is highly articulated due to the fact
that cach finger can be treated as a kinematical chain
with palm as its basc reference frame. Basically, cach
finger has four DoFs, two for the MCP joint and onc
for cach of the PIP and DIP joint, as shown in Figure
1(a). The thumb can be approximately modeled by
four DoFs. In this scnse, hand articulation could be
represented by its joint angles § € © € R?°.

(a) (b)

Figure 1: Hand Model: (a) Kinematical chain of one
finger, (b) Cardboard hand model.

When viewed from the direction orthogonal to the
palm, the hand could be modeled by a cardboard model,
in which cach finger could be represented by a set of
three connected planar patches. The length and width
of cach patch should be adapted to individual people.
The cardboard model is shown in Figure 1(b). Al-
though it is a simplification of the real hand, it offers
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a good approximation for motion capturing under this
specific view direction.

3 Study of Hand Constraints

It is a formidable task to analyze hand articulation
in its joint angle spacc © C R?9. Fortunatcly, natural
hand articulation is also highly constrained. One type
of constraints, usually referred to as static constraints
in previous work, arc the limits of the range of finger
motions as a result of hand anatomy, such as 00 <
Orrcp < 90°. These constraints limit hand articulation
within a boundary in R?°, but without reducing the
dimensionality.

Another type of constraints describes the corrcla-
tions among different joints, and thus reduces the di-
mensionality of hand articulation. For example, the
motions of the DIP joint and PI joint arc gener-
ally not independent and they could be described as
Oprp = % Oprp from the study of biomechanics. Al-
though this constraint could be intentionally made in-
valid, it is a good approximation of natural finger mo-
tion. Unfortunately, not all of such constraints could
be quantified in closed forms. These problems motivate
us to model the constraints using other alternatives.

Instead of using the joint angle space © C R, we
cmploy hand configuration space = to represent natu-
ral hand articulations. We arc particularly intcrested
in the dimensionality of the configuration space = and
the behaviors of hand articulation in 2. To investi-
gate such problems, we propose a learning approach to
model hand motion constraints in = using a large sct
of hand motion data collected using CyberGlove. We
have colleeted a set of more than 30,000 joint angle
measurements {6,k = 1,..., N} by performing vari-
ous natural finger motions. The corrclations of differ-
ent joints arc assumed to be well represented by such a
data sct. The Principal Componcents Analysis (PCA)
technique is employed to project the joint angle space
to the configuration space by climinating the redun-
dancy, i.c.,

X =PT.(0 -8 (1)

where P is constructed by the cigenvectors correspond-
ing to large cigenvalucs of the covariance matrix of the
data sct, and 6y = 7{—, 2,21:1 61 is the mean of the data
sct. The result shows that we can project the original
joint angle space into a 7-dimensional subspace while
maintain 95% of information. Thus, X € = C R”.
Since the natural hand articulation only covers a
subset of R7, we define 28 basis configurations B =
{by....,bar : Vby € =, M = 28} to characterize the
configuration spacc =. These basis configurations could
be identified by clustering the data in = or sclecting in-
tuitively. Some of them arc shown in Figure 2(a). Sur-



prisingly, after examining the data in =, we found that
natural hand articulation lies largely in the linear man-
ifolds spanned by any two basis configurations. For cx-
ample, if the hand moves from a basis configuration b;
to another basis b;, the intermediate hand configura-
tion lies approximately on the linear manifold spanned
by b; and b;, i.e.,
X e Cij = sb; + (1 - S)bj (2)
Consequently, hand articulation could be character-
ized in the configuration space by:

== U[:ij, where Li; = span(b;, bj)
LN

(3)

A lower dimensional illustration is shown in Figure

2(b).

(b) linear manifolds in the configuration space

Figure 2: Hand articulation in the configuration space,
which is characterized by a set of basis configurations and
linear manifolds.

We noticed that [3] proposed a PCA-based approach
to characterize the hand shape deformation, in which
hand space deformation lies in the space spanncd by a
set of cigen shapes. Our representation is different from
theirs since our representation characterizes hand artic-
ulation in more details. Besides describing a subspace,
our represcntation actually describes the structure of
the articulation subset in the configuration space by a
union of linear manifolds. Also, our rcpresentation of
hand articulation is view-independent, since it is de-
rived from the joint angle space.

4 Importance Sampling

A dynamic system could be formulated in a prob-
abilistic framework, and sampling techniques could be
used to approximate probabilistic infercnces.
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4.1 Factored Sampling

In statistics, sampling techniques are widely uscd to
approximate a complex probability density. A set of
weighted random samples {s, 7™M} j =1,..., N is
properly weighted with respect to the distribution f if
for any integrable function A,

Ellc\;l h(s®))7(® 3
Z;CV:I (k)

In this sense, the distribution p is approximated by a
set of discrete random samples, s(¥) with each having
probability proportional to its weight (k)

The tracking problem of a dynamic system could
be formulated in a probabilistic framework by repre-
senting tracking as a process of conditional probabil-
ity density propagation. Denote the target state and
observation at time t as X; and Z; respectively, and
X, ={X1,....,Xe}, Z, = {Z,,...,Z,}. The tracking
problem is formulated as:

P(Xts1lZey1) X (L1 X1 )p(Xe1|Z,)  (4)

Generally, closed-form solutions of dynamic systems
arc intractable. Monte Carlo methods offer a way to
approximate the inference and characterize the evolu-
tion ‘of the dynamic systems. Sequential Monte Carlo
mcthods for dynamic systems arc studied in the arca
of statistics [8, 9].

To represent the posteriori p(X¢|Z, ), a sct of random

lim
N—o0

E;(h(X))

samples {Xi"),n =1,...,N} could be drawn from a
prior p(X;|Z,_,). and weighted by their measurements,

ic., mi" = p(Z|X, = X{™), such that the posteriori
p(X:]Z,) is represented by a sct of weighted random
samples {sﬁ"),w,f")}. This sampling scheme is called
factored sampling in statistics. It could be shown that
such a sample sct is properly weighted. This sample
sct will evolve to a new sample sct at time ¢ + 1 and
the new sample sct {sii)l, wt(i)l represents the posteri-
ori p(X¢41|Z,,,) at time ¢ + 1. This is the sequential
Montce Carlo method employed in CONDENSATION al-
gorithm [4].

CONDENSATION achieved quite robust tracking re-
sults. The robustness of Monte Carlo tracking is duc
to the maintaining of a pool of hypothescs. Since cach
hypothesis needs to be measured and associated with a -
likelihood value, the computational cost mainly comes
from the image measurement processes. Generally, the
more the samples, the more the chances to obtain accu-
rate tracking results but the slower the tracking speed.
Conscquently, the number of samples becomes an im-
portant factor in Monte Carlo based tracking, since it
determines the tracking accuracy and speed. Unfor-
tunately, when the dimensionality of the state space



increases, the number of samples increases exponen-
tially.

This phenomenon has been noticed and different
methods have been taken to approach this problem by
reducing the number of hypotheses. A semi-parametric
approach was taken in (1]. It retains only the modes (or
peaks) of the probability density and models the local
neighborhood surrounding each mode with a Gaussian
distribution. Different sampling techniques were also
investigated to reduce the number of samples, such as
partitioned sampling scheme [10] and annealed particle
filtering scheme [2]. (5] emphasized on color-segmented
regions by importance sampling.

4.2 Importance Sampling

In practice, it might be difficult to draw random
samples from the distribution f(X). Samples could
be drawn from another distribution g(X), but their
weights should be properly adjusted. This is the basic
idea of the technique importance sampling. When sam-
ples s are drawn from g(X), but weights are com-
pensated as

f (3( )) #(n)
g(s™) "
It can be proved that the sample set {s(™, 7(M} is still

properly weighted with respect to f(X). This is illus-
trated in Figure 3.

=

f(X)

v @O
Figure 3: Importance sampling.

To employ the importance sampling technique in
dynamic systems, we need to let f,(Xﬁ")) = p(X
Xﬁ”)lgt_l), where f;(-) is the tracking prior, i.e., a
prediction density. So, when we want to approximate
the posterior p(X:|Z), we could draw random samples
from another distribution g,(X¢), instead of the prior
density f¢(X;). But the sample weights should be com-
pensated as

(n)
m _ [XY) _ yl(n)
Ty - (Xgn))p(zllxt - Xt ) (5)
To evaluate f;(X;), we have:
FXM) = p<xt =X{"|Z,))
= Zﬂt(k)lp =X{"[Xe1 = X,
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5 Our Approach

This scection presents a motion-capturing algorithm
based on importance sampling technique. The learned
natural hand motion is taken as the altcrnative track-
ing prior when using importance sampling technique.
Both edge and silhouette are cmployed as image obser-
vation to measurc cach hypothesis.
5.1 Hypotheses Generating

One important part of scquential Monte Carlo track-

ing is to generate samples {Xt:pﬂ't(i)l at time ¢ + 1

from the samples {XS") ,m{™} at time t. Instead of di-
rectly sampling from the prior p(X:411Z;), we propose
a method to sample hand articulation manifolds, based
on importance sampling technique.

Each hand configuration X should be cither around
a basis state by, k =1,..., M, or on the manifold £,
where @ # j,i,j = 1,..., M. Supposc at time framc ¢,
the hand configuration is X;. We find the projection
X, of X, onto the nearcst manifold Ly, e,

L3 arg Ullin D(Xy, Lij)
X = Proj(Xt,Z',;‘j)
(X¢ = bi)T(b; — by)
(b, — by (P
Accordingly,
(X: — b)) (b; — by)
8¢ = 1-
fi(b; — bi)ll

Then, random samples are drawn from the manifold
L;; according to the density p;j, i.c.,

(n)

St+1 =N(st,a) (6)

X = sSi’lb +(1 - s{)b; (7)

Then, perform random walk on igﬂ to obtain hypoth-
osis Xgi)l, i.c.,

XM~ NEX L Sa4) (8)

So, we -could write the importance function as:
ger1(XiT)) = P31 sop(X{T X)) So,
n) 2
(n) (8401 — t)
gt+1(xt+l) ~ \2}1/2 Cxp{i 20,2
- “(Xt+1 Xg:-)l)z 1(X£i)1 Ei)l)}

If the previous hand configuration is one of the basis
configurations, say X; = by, it is reasonable to assume
that it takes any one of the manifolds of {Ly;,j =



1,...,M} with the same probability. Consequently,
random samples are drawn from a mixture density pg:

(n)
St+1 ™

1 M
Pk = M ZNkj(O,O)
j=1
Suppose at time ¢, the tracking posteriori p(X;|Z,)
is approximated by a set of weighted random samples
or hypotheses {(Xin), ™ n=1,..., N}.
In dynamic system, the prior is p(X;+1|Z,), we have

feri(XP) = p(Xewr = Xgﬂ 1Z,)
N
= Y P p(Xesr = X, X, = X{V)
k=1
Let ‘ . .
p(X{hIXEY) ~ N(AX(D, )

Instead of sampling directly from the prior p(X;41|Z,),
samples s{™ could be drawn from another source
9t(X¢41), and the weight of each sample is:

(n) _ ft+1(X£1)1)
gt+l(x£:-)1)

t+1 = p(ZH-llXH-l = Xgi)ﬂ 9)

Figure 4: Generating Hypotheses: (a) X\™ # b;, (b)
XM = b,.

5.2 Observation Model

We employ both edge and silhouette observations
to measure the likelihood of hypotheses, i.e., p(Z:|Xs).
Self-occlusion is handled by constructing an occlusion
map for the hand model. Since hand is modeled by a
cardboard model, it is expected to observe two edges
for each planar patch. The cardboard model is sam-
pled at a set of K points on the laterals of the patches.
For each such sample, edge detection is performed on
the points along the normal of this sample. When we
assume that M edge points {zm,,m = 1,..., M} are ob-
served, and the clutter is a Poisson process with density
A, then,

M

Pr(zlTe) x 1+ \/—2—7:—; > exp-

N m=1

(z.,n - Ik)z
202
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(b)

Figure 5: Shape measurements.

We also consider the silhouette measurements, by cal-
culating the difference between the areas of the image
Ay and the projected cardboard model Ay, i.e.,

(A1 = Am)?

a _—
p* x exp 502

Thus, the likelihood could be written as:

K
p(Z|X) o p [ ot
k=1

(10)

5.3 Algorithm Summery

Since natural finger motion could be represented by
a set of manifolds in a lower dimensional configuration
space, our motion-capturing algorithm takes into ac-
count of such motion constraints by importance sam-
pling technique. The motion capturing algorithm is
summarized in Figure 6.

6 Experiments

In our experiments, we assume the hand has very
little global motion. Only translations in a small range
are allowed. Consequentially, the hand motion is rep-
resented by (d;, X:), where d; is global 2D translation
and X; is hand articulation.

We have compared three different methods for both
joint angle space R? and the configurations space
Z C R". The first is a random search algorithm, which
generates articulation hypotheses based on previous es-
timate according to a fixed Gaussian distribution with-
out considering any constraints in the joint angle space,
ic., 6 ~ N(B;,Tp). The second method is CON-
DENSATION. The third one is our proposed method
based on learned hand constraints using importance
sampling.

Some experimental results are shown in Figure 6.
Figure 6(a) shows the results of random search in R?.
We treat each dimension independently with standard
deviation of 5°, and produce 5,000 hypotheses at each
frame. However, it hardly succeeded due to the high
dimensionality. When we perform random search in



(e) Our approach with 100 samples. Based on the natural motion model, it can track hand articulations in a long sequence.

Figure 7: Comparison of different methods. The projections of the hand model are drawn on the images. When the fingers
bend and their backsides appear, the corresponding pieces are drawn in red, otherwise in green.

the reduced space R7 and again with 5,000 hypotheses,
the tracking is lost after several frames. The results are
shown in Figure 6(b). Figure 6(c) shows some frames
of the CONDENSATION in R?9, in which 5,000 samples
are used. The results show that it is still difficult to
handle such a high dimensionality. When performing
CONDENSATION in the reduced space R7, the algorithm
can track up to 200 frames using 3,000 samples, which
is shown in Figure 6(d). Finally, in our proposed algo-
rithm, we use 100 samples, and the algorithm is able to
track hand articulations all the time, which is shown
in Figure 6(e) .

We noticed that our proposed algorithm is efficient,
since it is able to perform successful tracking with
smaller number of samples compared to CONDENSA-
TION. The reason behind it is that the hand articula-
tion manifolds provide a good prior for tracking, which
largely reduces the search complexity.

1The demo sequences of our algorithm could be obtained from
http://www.ifp.uiuc.edu/ yingwu
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7 Conclusions

Vision-based capturing of hand articulation is a
challenging problem, due to the high degrees of free-
dom of finger motions. Fortunately, finger movements
are also highly constrained, which could be used to
ease the high dimensionality problem. In this paper,
instead of using the joint angle space, we represented
hand articulations in a lower dimensional configura-
tion space, in which hand articulations could be char-
acterized by a set of linear manifolds constructed from
28 basis configurations. Such a representation gives a
good approximation of hand articulations. Taking ad-
vantage of such a representation of hand articulation,
we proposed a sequential Monte Carlo tracking algo-
rithm based on importance sampling technique. The
articulation manifolds provide another source of prior
to tracking. Our experiments show that this proposed
algorithm could perform successful tracking in long se-
quences efficiently.

Our current capturing algorithm is view-dependent,
and the hand model and the method of testing hy-


http://nrv.ifp.uiuc.edu/-yingvu

Monte Carlo Tracking: Probability density propagat-
ing from {(X{™, 7™} to {(ng_)l,wffﬂ)}, based on
importance sampling.

forn=1:N
// Step(1): Selecting a manifold
if XM Lbk=1,...,M
L;; = argmin, ; D™, L),

’ M) _ b (b —b.
s =1 XT-b)T(bsoby),

J i
else

randomly pick L7

sﬁ") =0;

// Step(2): Random sampling from g.(-)
sty ~ N(sg™,0);

xii)l = Sg—,il—)lbi +(1- 3&1)1)1”"%

// Step(3): Drifting and diffusing
X{) ~ N(AX (), 5);

// Step(4): Observing
A = p(Zesr [ Kaer = X));

// step(5): Correcting the weights
calculate f(Xgi)l);
calculate g(Xii)l);

m _ X))

ML = e T
1T gy e

Lend

Figure 6: Pscudo code of the sequential Monte Carlo
based tracking algorithm.

pothesis arc valid only for the view orthogonal to the
palm. Some of the hand global motions, such as ro-
tation and scaling, arc not considered in our current
cxperiments.  Besides the incrcase of dimensionality,
hand global motions would bring about a large amount
of sclf-occlusion. Better methods for testing hypothescs
and capturing algorithms including global hand motion
will be investigated in our future work.
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