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Abstract may produce noticeable geometric artifacts known as met-

rication errors. For example, 2D grid graphs with a simple
Geodesic active contours and graph cuts are two stan- 4-neighborhood system impose “Manhattan distance” (L1)
dard image segmentation techniques. We introduce a newmetric on the underlying image space. This may create vi-
segmentation method combining some of their benefits. Ouisual artifacts as L1 is not invariant to image rotations and
main intuition is that any cut on a graph embedded in some does not treat different directions in the image equally.
continuous space can be interpreted as a contour (in 2D) In this paper we introduce a notion olit metricon
or a surface (in 3D). We show how to build a grid graph graphs. In fact, cut metrics are (informally speaking) ‘‘dua
and set its edge weights so that the cost of cuts is arbitrar- to well known path-based metrics on graphs. We study ge-
ily close to the length (area) of the corresponding contours ometric properties of cut metrics in case of regular grids.
(surfaces) for any anisotropic Riemannian metric. Using powerful Crofton-style formulas from integral geom-
There are two interesting consequences of this techni-etry we solve the following open problem: how to construct
cal result. First, graph cut algorithms can be used to find a graph where cut metric approximates any given Rieman-
globally minimum geodesic contours (minimal surfaces in nian metric with arbitrary precision. Previously, it wag no
3D) under arbitrary Riemannian metric for a given set of even clear if such a construction was possible.
boundary conditions. Second, we show how to minimize Our results allow to combine ideas from differential ge-
metrication artifacts in existing graph-cut based methods ometry and combinatorial optimization. In particular, we
in vision. Theoretically speaking, our work provides an in- propose aeocutsalgorithm for image segmentation. Simi-
teresting link between several branches of mathematics -lar to the geodesic active contours technique, we formulate
differential geometry, integral geometry, and combingtbr  the problem as finding geodesics (in 2D) or minimal sur-
optimization. The main technical problem is solved using faces (in 3D). Unlike the level-set method, we use graph
Cauchy-Crofton formula from integral geometry. cuts to computglobalgeodesics for a given set of boundary
conditions. Potentially, this could reduce sensitivityirtd
tialization. Anisotropic metrics present no additionahco
1. Introduction putational cost for our algorithm. Similar to level-set met
ods, geocuts method is “topologically” free.
The structure of the paper is as follows. Related material

Our work unifies two standard image segmentation teCh'from differential geometry, integral geometry, and conabin

niques: geodesic active contours and graph cuts. Eadlorial optimization is reviewed in Section 2. The concept of

of these_ app_roaches has its own benefits and drawbacksCut metrics is discussed in Section 2.4. In Sections 3 and 4
Geodesic active contours [6, 29] are based on a continuous

: . L . we show how to build graphs whose cut metric approximate
formulation (computing geodesics in Riemannian spaces), . : . . : .
.. . : /’any given continuous Riemannian metric. Geocut algorithm
and produce minimal geometric artifacts. Standard vari-

. . : . and experimental results are presented in Section 5.
ational techniques for computing geodesic contours (e.g.
the level set method) generate local minima of the energy
which may be sensitive to initialization. Highly desirable 2. Related work and background
anisotropic formulations tend to be slower due to increased
computational burden. 2.1. Differential geometry and active contours
One attractive feature of the graph cut approach is that
it can find a global minimum of the energy (e.g. [13, 28, Active contours is an interesting application of Differ-
15, 2]). On the other hand, discrete topology of graphs ential Geometry [5] in computer vision. Since the intro-
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duction of "snakes” [16], active contour models have been  Cohen et. al. [8] developed an algorithm for computing
widely used for image segmentation. Original snakes rep-minimal geodesics.e. the global minimum of the same en-

resented contour models as a parametric map@ifg = ergy. Their approach is based on minimal paths and shares
(z(v),y(v)) forv € [0, 1]. The energy of the model is some similarities with the Dijkstra shortest-path aldarit
L Connections between level-set methods and Dijkstra’'s-algo
E(C) _ / a|Cv(v)|2 + 6|va(v>|2 _ |VI(C(’U))|dU rithm are well known (e.g. see [25])
0

whereC, andC,, are the first and second derivativegof ~ 2-2- Integral geometry and Crofton formulas

with respect to contour parameterandl : R? — Rt is

a given image in which we want to detect the object bound-  The name of Integral Geometry was introduced by

aries. Such energies can be minimized via gradient descenBlaschke in [1]. The basic ideas have their origin in the

leading to a sequence of moving (“active”) contours. De- theory of Geometric Probabilities. In fact, by using con-

tails for parametric active contours can be found in [14].  CePpts of probability M. W. Crofton was the first to obtain
A noticeable development was the introduction of an im- Some remarkable integral formulas of a purely geometrical

plicit representation for active contours as level-setarof character. These formulas can be considered as one of the

auxiliary function [25, 21]. Unlike most of the snake based Starting points of Integral Geometry.

methods, this allows topological changes of the curve. Below we review one classical Cauchy-Crofton formula
Another important step was the "geodesic active con- that is crucial for the theory of graph cut geometry devel-

tour” model [6, 29]. The two terms in the energy corre- oped in this paper. This formula relates a length of a curve

sponding to internal and external forces were combined intoin /* t0 @ measure of a set of lines intersecting it. We will
a single term. Their curve evolution is a result of minimiz- introduce basic terminology and discuss some facts that are

ing the functional important for the consequent development of the material in
o this paper. More details about Crofton formula and Integral
Cle Geometry in general can be found in [24, 5].
E(C) = A 9(IVI(C(s))]) ds Consider a straight liné(p, ¢) in the planeR? deter-
) » . mined by itsnormal parameterg and¢ as shown on Fig-
where parameter is specifically chosen as the (Euclidean) .o 1 First, we will describe a reasonable way of assigning

arc length on the contoufC|e is the Euclidean length of 5 eaqure to a given subset of straight lines. Consider a set
contour, andy is a strictly decreasing function converging L£=1{(p¢):p=>0, ¢ € [0,2r]} describing all straight
to zero at infinity. It was shown that in many cases this lines L (see Figﬁre 2) and Lebesgue measure on this set

method behaves better than its ancestors. defined by its densityll « dp - d¢. Lebesgue measure
The formulation of [6, 29] can be viewed as a problem of ¢ - < bset of straight line& C £ is given by the inte-

finding local geodesi_cs'n a space with Riemannian m_etric gral [, d£. Note that any rigid motiogM on the planeRk?

computed from the image. Note that the (non-Euclidean) yansiorms a subset of lingk into another subset™™. In

length of a contour in a given Riemannian space is fact [24, 5], Lebesgue measure is the only measuré thrat
is invariant under rigid motions so théit, dZ = [, . dL.

ICle
IClr = / \/TE - D(C(s)) - 75 ds The following Cauchy-Crofton formula establishes a
0

connection between Euclidean leng ¢ of a curveC' in
where a positive definite matri(-) specifies the local Rie- ~ R* and a measure of a set of lines intersecting it.
mannian metric at a given point/pixel in the image ands

a unit tangent vector to the contour. In fact, the contour en- /nc dC = 2|C|e (1)
ergy E(C) above is equal tdC|% in case of an isotropic
Riemannian metric Functionn..(L) specifies a number of times any given line
. L intersect” (see Figure 2). In fact, Cauchy-Crofton for-
D() = diag(g(|VI()])). (see Figure 2) Y

mula (1) holds for any rectifiable curve f1]If contourC
Like in most of the previous approaches, the algorithm is convex then (1) reduces ch dL = |Cle whereL¢ is
in [6, 29] searches for some local minimum which is close a subset of lines intersectirfg. That is, length of a convex
to the initial guess. Numerical optimization is performed contour equals Lebesgue measure of the set of lines inter-
via level-sets. The same approach can be used for 3D segsecting it. This is one of the most simple and elegant exam-
mentation viaminimal surfacegsee [7] for details). Fur-  ples of a Crofton-style formula in Integral Geometry.
ther generalizations of geodesic active contours and some IMoreover, (1) can be used to generalize the concept of letgth

?niSOtmpiC metrics are discussed in [17]-_ Regiqnal PFOPET continuum of points [11]. It is important that the integral(L) be in the
ties of geodesic active contours are considered in [22]. Lebesgue sense rather than in the Riemann sense.
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Figure 1. Normal parameters of a straight line
Lin R% The parameters p>0and 0 < ¢ < 27
are the polar coordinates of the foot of the
perpendicular from the origin onto the line.
Points (x,y) on L satisfy xzcos¢ + ysing = p.

2TT

(b) Lines as points itf.

Figure 2. Any line L on R? in (a) has a unique
pair of normal parameters  (p, ¢). Thatis, lines
L can be represented as points of the set
L=A{(p,¢):p>0, ¢ € [0,2r]} shown in (b).
Note that any given contour (' in (a) defines
a function n. on L that specifies a number of
intersections with  C. Different shades in (b)
represent subsets of lines L where n.(L) =0,
ne(L) =2, and n.(L) = 4.
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(a) Image with seeds.

(d) Segmentation results.

Background Background
@ terminal @ terminal
cu‘l_
= <
Object Object
terminal terminal
(b) Graph. (c) Cut.

Figure 3. A simple 2D segmentation exam-
ple for a 3 x 3 image. Boundary conditions
are given by object seeds O = {v} and back-
ground seeds B = {p} provided by the user.
The cost of each edge is reflected by the
edge’s thickness. Minimum cost cut is at-
tracted to cheap edges.

2.3. Graph cut methods in vision

Graph cuts have been used for many early vision prob-
lems like stereo [23, 4, 18], segmentation [28, 26, 27, 2],
image restoration [13, 4], texture synthesis [19], and many
others. Below we briefly overview garph-based segmenta-
tion method in [2], which works as a foundation for our
geocuts technique in Section 5.1. Also, we introduce some
necessary terminology from combinatorial optimization.

An undirected graply = (V, &) is defined as a set of
nodes (verticed’) and a set of undirected edge®) that
connect these nodes. An example of a graph is shown in
Figure 3(b). Each edge € £ in the graph is assigned a
nonnegative weight (costy.. There are also two special
nodes called terminals. A cut is a subset of edges &
such that the terminals become separated on the induced
graphg(C) = (V,E\C). Each cut has a cost which is
defined as the sum of the costs of the edges that it severs

|C] = Z We.

ecC

A globally minimum cut on a graph with two terminals can
be computed efficiently in low-order polynomial time via
standard max-flow or push-relable algorithms from combi-
natorial optimization (e.g. [9]).
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Graph cut formalism is well suited for segmentation

of images. In fact, it is completely appropriate for N-
dimensional volumes. The nodes of the graph can represent
pixels (or voxels) and the edges can represent any neigh-

borhood relationship between the pixels. A cut partitions
the nodes in the graph. As illustrated in Figure 3 (c-d), this
partitioning corresponds to a segmentation of an undeglyin
image or volume. A minimum cost cut generates a segmen-

(a) 4 n-system (b) 8 n-system  (c) 128 n-system

tation that is optimal in terms of properties that are buiioi Figure 4. Distance maps for path metrics on
the edge weights. grid-graphs with different size neighborhood
systems. In each case, weights of edges
2.4."“Cut metrics” vs. “path metrics” are equal to their Euclidean length. The
contours represent nodes equidistant from a
Below we introduce a new concept ofcat metricon given center.

graphs. For better motivation, we will first discuss a relate
notion of apath metricwhich is more standard for graphs.
Consider a weighted gragh = (V, E). “Length” can
be naturally defined for any pathyg C E connecting two
nodesA, B € V as the sum of edge weights along the path

as a closed contours (i#?) or as a closed surfaces (itr*).
“Length”, or “area” in N-D, can be naturally defined for any
cutC C V as

pasl= > we Clg = > we )

ecC
ecpaB

_ which is simply the standard definition of cut cost from
The distance, or the shortest path, between any two nodegompinatorial optimization. Due to geometric interpreta-

can be computed via Dijkstra algqrithm (e.g. see [9]). Such tion of |C|g as the “length” or “area” of the correspond-
distances correspond tpath metri€ on the graph. ing contour or surfacé’, we can talk about metric proper-
Path metrics are relevantin many computer vision appli- ties of cuts on graphs. We will use the tecut metrié in
cations (e.g. [12, 8]) based on Dijkstra-style optimizatio e context of geometric properties of graph cuts (as hyper-
A choicelof the neighporhood system (graph tppolog_y) and surfaces) implied by the definition 2.
edge weights determine a graph's path metric. This may  similarly to path metric, all properties of cut metric on
significantly affect the quality of results. In fact, theesiaf a graph are determined by the graph’s neighborhood sys-
the neighborhood system is important. For example, con-tem and by edge weights. In fact, larger neighborhood sys-
sider path metric distance magsr simple 2D grid-graphs  tems allow both cut and path metrics to approximate con-
with 4, 8, and 128 neighborhood systems in Figure 4. The tinyous metrics. In the example of Figure 4 path metric
quality of segmentation results of Dijkstra based methods 55 roximates continuous Euclidean distances when weights
can suffer from “blockiness” (like in Figures 8(b)(e)) inseR  of edges are equal to their Euclidean length. In fact, cut met
of “Manhattan” style metric in Figure 4(a). The path met- i on a 2D grid-graph can obtain the same distance maps as
rics in (b) and (c) are much closer to the Euclidean metric. Figure 4 but the corresponding edge weights are differ-
In general, the segmentation results will be smoother if Di- gt Equation (4) in Section 3 shows that weights of edges

jkstra based method use larger neighborhood system.  shoyld be inversely proportional to their Euclidean length
In this paper we introduceut metricson graphs which,

in some sense, are complimentary or “dualptth metrics . . .
The major advantage of cut-based methods (see Section 2.3?' Euclidean Cut Metric on 2D grids
over Dijkstra based segmentation techniques is that theey ar

not limited to contours (1D paths) and can find globally op-  In this section we show how to build a 2D grid graph
timal (minimal) hyper-surfaces in N-D cases. This signifi- Whose cut metric approximates Euclidean metric. In prac-
cantly broadens the scope of useful applications. tice we are much more interested in approximating Rieman-

The main intuition comes from an observation that a cut nian metrics. In this section we use Euclidean metric as a

on a grid-graplg = (V, E) embedded inR" can be seen  Simple example to introduce all the key ideas. In Section 4
we generalize them to Riemannian case.

2Despite popularity of the Dijkstra algorithm in computeresce, the

actual term “path metric” is not very common. However, it §d explic- 4There should be no confusion with a tewut semi-metricused in
itly in the theory of Finite Metric Spaces [10, 20] that, inrfieular, studies [10, 20] for a very specific inter-node distances assign@eaging on one
embeddability of graphs in normed spaces. specific fixed cut. We use the word “cut” generically. @ut metricon a

Spersonal communications with Marie-Pierre Jolly. graph does not depend on one fixed cut.
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Ag whered is the cell-size of the grid andy| is the (Euclidean)
ettty ttrme s e length of vector;,. Each family of edge lines is character-
DR - SERE .a\e e, . . :&'%:\(P« ized by the inter-line distancAp; and by its angular ori-
° o ._I_. oo o o ._IZ.Q. o o o ._I_. o lo entationg,. We will also use angular differences between
.%. 2 A o the nearest families of edge lindspy = ¢3 — 1, Ape =
Tienliloiiiiilditin o Ao =T b

So far we discussed only topological structure of the
grid. Another important aspect of any graph are edge
weights. We will use the following notation. If we set equal
Figure 5. Examples of neighborhoods in 2D. weights for all edges in the same family of lines, that is
for all edges with orientation,, then we usev;, to denote
these common weight. For example, this will be the case
when we want to approximate Euclidean or any other spa-
tially homogeneous metri®(-) = const. Inamore general
; Ap, case we will usev, (p) for a weight of a (directed) edge that

LA ~ % originates at nodg and has orientatioa.

&~
I // ExXAMPLE 1 As a simple illustration we would like to show
- 7

(a) 4 n-system (b) 8 n-system (c) 16 n-system

that cut metric on a regular 2D grid implicitly assigns cer-
tain “length” to curves. For simplicity, consider a segment
(a) 8-neighborhood 2D grid (b) One family of lines ~ Of a straight linea shown in Figure 6 (b). This segment can
be considered as a part of some cut that severs edges on the
grid. We can compute the cost of severed edges as follows.
Figure 6. A regular grid. For a k' family of edge lines on the grid we can easily
count the number of intersections wittas

3.1. Regular 2D Grids lal - [sing| |a x eg]
|a|k = Apr, = 52

In this section we discuss the structure and basic termi-
nology for 2D grid graphs. We assume that all nodes are Summing over all families of edge-lines we get from (2)
embedded in?? in a regular grid-like fashion with cells of
sized. We also assume that all nodes have topologically 1 &
identical neighborhood systems. Some examples of possi- lalg = 55 2wk lax ek (3)
ble neighborhood systems are shown in Figure 5. The ex- k=1

ample in Figure 6 (a) shows a regular grid when all nodes assuming constant edge weightg within the same family.
have identical 8-neighborhood systems as in Figure 5 (b). This equation holds for a vectarwith an arbitrary orien-
Neighborhood systems of a regular ggdcan be de-  tation. Thus, we can use (3) to visualize 2D distance maps.
scribed by a sefVg = {er : 1 < k < ng} of dis- In particular, this equation gives distance maps identical
tinct (undirected) vectors. For example, grids with an 8 those in Figure 4 if edge weights, are appropriately cho-
neighborhood system is described by a set of four vectorssen to approximate Euclidean metric (see formula 4).
Ng = {e1,ea,e3,e4} shown in Figure 5 (b). We will as-
sume that vectors;, are enumerated in the increasing order 3.2. Graph cuts and Cauchy-Crofton formula
of their angular orientatio; so thatd = ¢ < ¢2 <
. < ¢ng < m. For convenience, we assume thatis In this section we will use integral geometry to estab-
the shortest length vector connecting two grid nodes in the js a necessary technical link between the concepts of (dis
given directionyy,. crete) cut metric on a grid (in combinatorial optimization)
As shown in Figure 6 (b), each vectere Ng gener- g (continuous) Euclidean metric & (in differential ge-
ates a family oledge-lineson the corresponding grid. Itis  ometry). Consider a contod in the same 2D space where
easy to check that the distance between the nearest lines igrig graphg is embedded (as in Figure 6(a)). Contalir
a family generated by;. is gives a binary partitioning of graph modes and therefore
52 corresponds to a cut an Then we can consider the length
|C|g of the contour imposed by the graph’s cut metric (2).
Below we derive edge weights @h so that the cut based
SWe do not differentiate betweenand—e length|C|g is close to the Euclidean lengt&’|c. We will
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also discuss our convergence result as the topolgand
the grid size get finer and finer.
First, we will assume that graph’s topology is fixed.

vol.|

4. Riemannian Metrics in 2D and in 3D

The results in the previous section generalize to non-

According to Cauchy-Crofton formula (1) we can represent gclidean metric spaces. In this section we show how to set

the Euclidean length of’ as an integral over the set of all
straight linesL(p, ¢) in L

1 1 ™ +OO

nedl = - ne(p,¢) dp do
2 2 0 —00
where radiug is allowed to be negative while angjes re-
stricted to the intervgD, 7]. Remember, function. speci-
fies how many times liné (p, ¢) intersects contouf’. By
choosing an appropriate partitioning of the [§etr] x R we
can approximate the integral above by its partial sum

|Cle

ng

ICle % >
=1

%

%

ng 2. A
= Y k) - 0" Adk
k=1 2 fex]

where indexi enumerates lines in thig” family of edge-
lines,n.(i, k) counts intersections of lindn thek* family
with contourC, andn.(k) = >_, n.(i, k) is the total num-
ber of intersections of’ with the kt" family of edge-lines.

If we choose constant edge weights within each family
of edge lines as

5% Ady

9. |ek| (4)

Wk

then we have

ng

Z ne(k) - wg

k=1
The approximation error on the left hand side is due to

~
~

~
~

|Cle IClg

the difference between an integral and its partial sum. As

we make partitioning finer this error of approximation con-

edge weights on a grid so that its cut metric approximates a
given continuous Riemannian metric. We follow the same
basic steps as in Section 3.2 for a simpler case of Euclidean
metric. Due to space limitations we skip the proofs.

First we consider a 2D Riemannian space with a constant
metric D(-) = const. We use the following Crofton-style
formula for Riemannian lengtl€’|z of contourC

/ det D
2(ul - D -up)3/?

whereu, is the unit vector in the direction of the link.
This formula holds for any continuously differentiable reg
ular curveC in R? and can be derived as an exercise in
Integral Geometry [24].

Following the same approach as in the previous section,
we obtain an expression for edge weights for a 2D grid

nedl = 2|Clr

_ 52 - |ek|2-A¢k -det D
 2-(ef - D eg)??

Wk

(5)

in case of a constant Riemannian metfi{:) = const.
Note that equation (5) reduces to (4) if we plug in the iden-
tity matrix D = I corresponding to Euclidean metric.

Now we consider a more general 2D Riemannian space
where metric (tensorp(p) continuously varies over points
p in space. In this case we need to construct a directed
graph. The expression for weights is very similar to (5)

_ 0% lex|*- A¢y - det D(p)
~ 2-(e) - D(p) - e)??

wi(p) (6)

verges to zero. In our case partitioning size is determined The difference is that edge weights now depend not only on

by the grid size and bysup,, |A¢y|.

edge’s orientatio but also on node/pixel where this (di-

The approximation on the right hand side is due to the rected) edge originates. Note also that two opposite edges
fact that the number of intersections between the contouroriginating in the same node/pixeand having orientations
and an edge-line might be different from the actual number ?« andm + ¢, are assigned the same weight(p).

of edges along this line that are severed by the cut corre-

Finally, we state our results for a regular 3D grid graphs

sponding to the contour. Examples of this phenomenon carémbedded in a 3D Riemannian space with medig).

be found in Figure 6(a) in places where some contour wig-

gles are comparable with the size of edfggs$. This source
of error converges to zero &s,| gets smaller. We can prove
the following convergence theorem (the proof is omitted).

Theorem 1 (Pointwise Convergence)d is a continuously
differentiable regular curve itk? intersecting each straight
line a finite number of times then

IClg — |Cle

asd, supy, |Adk|, andsup,, |e| get to zero.

Each edge angular orientation is now determined by spheri-
cal anglesb;, = {¢, ¢« }. Using Cauchy-Crofton formula
for the area of surfaces in 3D Riemannian spaces we obtain
the following edge weights:

6% ex)? - ADy, - det D(p)
m- (e - D(p) - ex)?

wy(p) (7)

where A®;, = Ay - Ay correspond to a given par-
titioning of the unit sphere among angular orientations
oy, @g,...,P,, of edges in the neighborhood system.
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(a) Original data  (b) 4 n-system (c) 8 n-system
image restoration experiments on 2D data

(a) Liver, 144x170x170 (b) Lung, 253x165x205

Figure 7. Globally minimal surfaces for
image-based Riemannian metrics (geocuts).

(d) Original data () 6 n-system (f) 26 n-system

. object extraction experiments on 3D data
5. Experimental Results : P

Cauchy-Crofton formulas from integral geometry were Figure 8. Reducing metrication artifacts.

the key instruments for obtaining our technical results in

Sections 3.2 and 4. These results establish an interestingpackground” seeds. The running time for the examples in
link between two branches of mathematics: combinatorial gigyre 7 varies from 10 to 60 seconds on a 1.4GHz Pentium
optimization and differential geometry. In this section we |y pc depending on the neighborhood size (up to 26).
show that both disciplines can benefit from this link. In fact In the experiments of Figure 7 we used an anisotropic
graph cuts can be used in differential geometry as a nUMerRiemannian metric (induced from imag

ical method to compute globally optimal minimal surfaces

in N-D Riemannian spaces for a given set of boundary con- D(p) = g(VI))-I+ (1-g(JVI])) -u-u”

ditions (Section 5.1). On the other hand, better approxima- ) ] ] o .

tion of continuous metrics can help many existing graph-cut Whereu = 7. is a unit vector in the direction of image
based techniques in vision to reduce their metrication arti gradient at poinp andI is the identity matrix. We used

facts (Section 5.2). scalar functiory(z) = exp(—%). Note that in the coordi-
nate system aligned with image gradient (a.t= (1,0, 0))
5.1. “Geocuts” algorithm metric D(p) is represented by the diagonal matrix

L o _ D(p) = diag (1, g(|VI]), g(IVI]))

Geocuts algorithm is a combination of the theoretical re-
sults in Section 4 with the graph-cut segmentation method It is known that anisotropic methods have advantages
in [2]. Equation 7 tells how to set edge weights so that the over isotropic techniques. At the same time, standard
cost of graph cuts approximates Riemannian length/area ofanisotropic diffusion techniques are typically slowerrtha
the corresponding contours/surfaces. [2] explains how toisotropic methods. Note that geocuts algorithm deals
impose hard constraints (boundary conditions) on a graph.equally efficiently with isotropic or anisotropic metriés
The globally optimal cut on the corresponding grid can be
computed in close to linear time via a number of basit 5.2. Reducing metrication errors
graph cut methods from combinatorial optimization.

In Figure 7 we show a couple of examples of globally Many standard graph-cut based methods (see Sec-
optimal minimal surfaces that we obtained using geocuts.tion 2.3) use energy functions that include a term penajizin
In both cases we used the following boundary conditions. segmentation discontinuities. Our results allow such serm
The “background” seeds were automatically set at voxelsto represent geometrically justified length/area of segmen
at the very border of the volume. The “object” seeds were boundaries. This could significantly reduce metrication er
manually placed in a single slice in the center of the ob- rors. Figure 8(b) shows such errors in the context of image
ject of interest. Then we applied a “max-flow” algorithm restoration via graph cut technique in [4] (Potts model) us-
from [3] which (in one pass) finds a globally minimal sur- ing standard 4-neighborhood system. In (c) we show the
face (cut) among all surfaces that separate the “object” andresults of the same algorithm when Potts model interaction
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penalties were set from Euclidean cut metric weights in (4) [10] M. M. Deza and M. LaurentGeometry of Cuts and Metrics

using 8-neighborhoods. Similarly, Figure 8(e) shows met-
rication artifacts generated by a graph-cut based object ex [11]
traction method in [2]. The results in (e) are for a simple
6-neighborhood system. The results in Figure 8(f) use 26-
neighborhoods with geometrically justifies weights in (7).

In fact, the idea of using bigger neighborhoods is not

[12]

new in the context of Dijkstra based methods on graphs. [13]

In the context of graph cuts, however, it was not clear how
to set weights for different types of edges. Our theoretical
results remove this problem. Formulas (4,7) explain how to [14

set edge weights to obtain desired geometric properties for[ls]

regular neighborhoods of any size and configuration.
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