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Abstract

This paper proposes a switching hypothesized 

measurements (SHM) model supporting multimodal 

probability distributions and presents the application of 
the model in handling potential variability in visual 

environments when tracking multiple objects jointly. For 

a set of occlusion hypotheses, a frame is measured once 
under each hypothesis, resulting in a set of measurements 

at each time instant. A computationally efficient SHM 

filter is derived for online joint region tracking. Both 
occlusion relationships and states of the objects are 

recursively estimated from the history of hypothesized 

measurements. The reference image is updated adaptively 
to deal with appearance changes of the objects. The SHM 

model is generally applicable to various dynamic 

processes with multiple alternative measurement methods. 

1. Introduction 

Visual tracking is important in application areas 

including human-computer interaction, surveillance, and 

visual reconstruction. Tracking could be difficult due to 

the potential variability such as partial or full occlusions 

of objects, appearance changes caused by variation of 

object poses or illumination conditions, as well as 

distractions from background clutter. 

The variability in visual environments usually results 

in a multimodal state space probability distribution. Thus, 

one principle challenge for visual tracking is to develop 

an accurate and effective model representation. The 

Kalman filter [3] [17], a classical choice employed in 

tracking work, is restricted to representing unimodal 

probability distributions. Joint probabilistic data 

association (JPDA) [2] and multiple hypothesis tracking 

(MHT) [5] techniques are able to represent multimodal 

distributions by constructing data association hypotheses. 

A measurement may either belong to a target or be a false 

alarm. The multiple hypotheses arise when there are more 

than one target and many measurements in the scene. 

Dynamic Bayesian networks (DBN) [8], especially 

switching linear dynamic systems (SLDS) [18] [19] and 

their equivalents [14] [22] have been used to track 

dynamic processes. Intuitively, a complex dynamic 

system is represented with a set of linear models 

controlled by a switching variable. Moreover, Monte 

Carlo methods such as the Condensation algorithm [12] 

[15] support multimodal probability densities with sample 

based representation. By retaining only the peaks of the 

probability density, relatively fewer samples are required 

in the work of [4]. 

On the other hand, measurements are not readily 

available from image sequences in visual tracking. Even 

an accurate tracking model may have a poor performance 

if the measurements are too noisy. Thus, the measurement 

process is another essential issue in visual tracking to deal 

with the potential variability. Parametric models can be 

used to describe appearance changes of target regions 

[10]. In the work of [6] and [7], adaptive or virtual snakes 

are used to resolve the occlusion. A joint measurement 

process for tracking multiple objects is described in [20]. 

Moreover, layered approach [13] [24] is an efficient way 

to represent multiple moving objects during visual 

tracking. A moving object is characterized by a coherent 

motion model over its support region. 

The idea of hypothesized measurements, which results 

in a switching hypothesized measurements (SHM) model 

that differs from the above mentioned state space models, 

is proposed in this paper. The ability to support 

multimodality makes the model suitable for handling the 

potential variability in visual tracking. At each time 

instant, the approach acquires a set of hypothesized 

measurements for different occlusion hypotheses rather 

than uses a uniform measurement process. A 

computationally efficient filtering algorithm is derived for 

tracking multiple objects jointly. Both occlusion 

relationships and states of the objects are estimated from 

the history of hypothesized measurements. The proposed 

method helps prevent distractions from background 

clutter. When there is a high confidence in nonocclusion, 

the reference regions can be adaptively updated to deal 

with object appearance changes. 

Previously, Ghahramani and Hinton introduced a DBN 

framework for learning and inference in switching state 

space models [9]. Pavlovic et al. proposed a SLDS 

approach for human motion analysis [18]. A switching 

model framework for the Condensation algorithm is also 

proposed by Isard and Blake [11]. In their work, the 

switching variable determines which dynamic model is in 

effect at each time instant. Rather than switches among a 

set of models, the SHM approach switches among a set of 

known hypothesized measurements. The JPDA algorithm 

[2] can be cast in the framework of SLDS as well. 
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Moreover, in our model each measurement component

corresponds to one and only one given target region (see 

section 3). 

Rasmussen and Hager describe a joint measurement

process enumerating all possible occlusion relationships

[20]. The measurement with respect to the most possible 

occlusion relationship is determined using the information

from the current frame. The corresponding measurement

is then plugged into a Kalman tracker. In our approach,

the estimation is based on the history of all the

(hypothesized) measurements. In the work of Galvin et al. 

[7], two virtual snakes, a background and a foreground

snake for each object, are generated to resolve the 

occlusion when two objects intersect. Their manner

parallels to the case of acquiring measurements under a

set of two hypotheses in our method.

The remainder of the paper is arranged as follows:

Section 2 presents the formulation of the SHM model.

Section 3 proposes the measurement process for joint

region tracking. Section 4 derives the filtering algorithm.

Section 5 describes the implementation details. Section 6

discusses the experimental results. At the end, our

technique is concluded in section 7. 

2. Model 

2.1. Generative SHM model

To model a dynamic system with state space 

representation, consider the evolution of a hidden state

sequence {zk} (k N), given by

zk+1 = fk(zk, nk),  (1)

where f is a state transition function,

and {n

znz nnn
k RRR:

k} is a process noise sequence. The objective of 

online tracking is to recursively estimate zk from a 

measurement sequence. In a complex system with 

dynamic mode control, there exists a mode or switching

state sequence {sk}, with sk  {1, 2, …, L} (L N). The 

switching state sk determines which mode is in effect at 

time k. Usually the sequence {sk} is modeled as the

outcome of an unobserved discrete first order Markov

process.

Specifically, the mode switching is correlated with the

measurement process in our work. The notion of a 

uniform measurement is extended to a set of L
hypothesized measurements yk = (yk,1, yk,2, … , yk,L). Each 

yk,j (1 j L) is called a hypothesized measurement since 

it is obtained by assuming that the switching state sk is j at 

time k. For the measurement under the jth hypothesis,

yk,j = hk,j(sk, zk, vk,j),  (2)

where h  is the measurement

function, and v

yvz
nnn

jk RRRN:,

k,j is the measurement noise under the jth

hypothesis. To make the model computationally efficient,

we assume that the hypothesized measurements are 

conditionally independent on each other when both the

hidden state zk and the switching state sk are given. This

switching hypothesized measurements (SHM) model can

be represented by a dynamic Bayesian network shown in

Figure 1. 

Figure 1. Bayesian network representation of the SHM
model.

2.2. Example of hypothesized measurements

To illustrate the idea of hypothesized measurements in

the SHM model, a simple example of the measurement

process for jointly tracking a rectangle and a circle is 

studied in this section. The two objects translationally

move in an image sequence {gk}.

(a) (b)

(c) (d)
Figure 2. (a) (b) Two frames of the “rectangle and circle” 
sequence under different occlusion relationships. (c)
Masked image under the first occlusion hypothesis. (d) 
Masked image under the second occlusion hypothesis.

When measuring the centroids of these two objects

from the kth frame gk, two occlusion relationship

hypotheses (hypotheses corresponding to the rectangle

being in front of the circle and the circle being in front of

the rectangle, see Figure 2a and 2b) should be considered.

The switching state sk is introduced to describe the depth

ordering at time k. sk equals 1 if the rectangle is in front of 

the circle, and 2 if the circle is in front of the rectangle.

The hypothesized measurement yk,j (1 j  2) is written as

, where  is the measurement of the T
jkjk ),( )2(

,
)1(
, yy

)1(
, jky
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rectangle centroid, and y  is the measurement of the 

circle centroid under the jth hypothesis.

)2(
, jk

Under the hypothesis of sk = 1, i.e. the circle is

occluded by the rectangle at time k, the rectangle should

be measured first to acquire . Then the observed 

rectangle is masked in the image (see Figure 2c). The 

occluded area of the circle is ignored and only the visible

region is matched normally to get . Thus, the 

occlusion will not affect the measurement result.

Similarly, under the hypothesis of s

)1(
1,ky

)2(
1,ky

k = 2, i.e. the rectangle 

is occluded by the circle, the circle should be matched

first to get , then the masked image (see Figure 2d) is 

used to measure .

)2(
2,ky

)1(
2,ky

Given the occlusion relationship sk at time k, the 

hypothesized measurement yk,j for j sk may bias the true 

value since the measurement is obtained under a false

hypothesis. Unfortunately, whether the rectangle occludes

the circle or the circle occludes the rectangle is not given

before hand. So it is not known whether yk,1 or yk,2 is the

proper measurement for frame gk. To handle this

uncertainty, the occlusion relationship could be estimated

from the history of all the hypothesized measurements.

Moreover, it is obvious that both hypothesized

measurements support the condition of nonocclusion 

since different depth orderings of nonoverlapping objects

are visually equivalent. The values of p(sk = 1) and p(sk = 

2) should be equal in the case of  nonocclusion.

2.3. Linear SHM model for joint tracking 

For joint tracking of M (M N) objects in the scene, 

the switching state sk represents the occlusion relationship

(or depth ordering) at time k, sk  {1, …, L}. The number

of all occlusion relationship hypotheses is L = M!. The 

switching state transition probability is given as 

p(sk+1 = i | sk = j) = i,j, with = 1.  (3) 

i

ji,

The hidden state zk is denoted as ,

with (1 m M) being the state of the mth object

(e.g. position and velocity) at time k. For a linear process

with Gaussian noise, the hidden state transition function is

TM
kkk ),,,(

)()2()1(
zzz

)(m
kz

zk+1 = Fzk + n,

p(zk+1 | zk) = N(zk+1; Fzk, Q),  (4) 

where F is the state transition matrix, n is a zero-mean

Gaussian noise with covariance matrix Q, and N(z; m, )

is a Gaussian density with argument z, mean m, and 

covariance .

Given the switching state sk at time k, the 

corresponding hypothesized measurement could be 

considered as a proper measurement centering on the true

value, while every other y

ksk ,y

k,j for j sk is an improper

measurement generated under a wrong assumption. The 

improper measurement should be weakly influenced by

the hidden state zk and have a large variance. To simplify

the computation, we assume a normal distribution for a 

proper measurement and a uniform distribution for an 

improper measurement. The measurement function is 

simplified as 

yk,j =
otherwise,,

,if,,

w

vHz kjkk sj

p(yk,j | sk, zk) =  (5) 
otherwise,,constanta

,if),,;( ,, kjkkjk sjN RHzy

where H is the measurement matrix and vk,j is a zero-

mean Gaussian noise with covariance matrix Rk,j. w is a 

uniformly distributed noise, whose density is a small

positive constant. For the measurement of M objects (e.g. 

translation), yk,j is denoted as , and 

v

TM
jkjkjk ),,,( )(

,
)2(

,
)1(
, yyy

TM
jk ))(

,vk,j is written as ( .jkjk ,,, )2(
,

)1(
, vv

Combining with the conditional independence among

the hypothesized measurements, we know that

p(yk | sk = j, zk) = p(yk,1, yk,2, …, yk,L | sk = j, zk)

=

l

kklk jsp ),|( , zy

= p(yk,j | sk = j, zk)

jl

kklk jsp ),|( , zy

 N(yk,j; Hzk, Rk,j).  (6)

3. Measurement 

Multiple, occluding objects are modeled using layer

representation. Layers are indexed by m = 1, 2 , …, M,

with layer 1 being the layer that is closest to the camera

and layer m being behind layer 1, 2, …, m–1. There is one 

object in each layer. Each depth ordering permutation is 

tagged with a index j (1 j L). For the example in 

section 2.2, it is known that M = 2 and L = 2. 

Under each occlusion relationship hypothesis, the 

object in the front layer 1 should be measured first from

the image gk at time k. Then the object in layer 2 can be 

matched from the masked image, and so on. At last the

object in layer M can be measured. Thus occluded points

are not matched when measuring the objects.

Measurement results of nonoverlapping objects should be

equivalent for different depth ordering permutations.

During the measurement process, the motion of a point x

within the target region is described by a parametric

model d( , x), with d(0, x) = x.  = ( (1), (2), …, ) is 

a set of motion parameters. The dimension of the motion

vector , i.e. n

)(n

, changes under different motion models

(two for the translational model, six for the affine model,

and nine for the perspective model, for example). Under 
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the jth hypothesis, the measurement for the mth object

 is denoted as . Given the

reference image g

)(
,
m

jky

E

),,,(
),(

,
)2,(

,
)1,(

,
nm

jk
m

jk
m

jk yyy

)(
,
m

jky
)(

,
m

jke

),,,
),(

,
)2,(

,
) nm

jk
m

jk vv

r (r < k), the measurement is based on 

minimizing the mean of squared intensity differences

between the current image and the reference region. The

mth object is located at area Dm in the reference image.

For each measured ,  is the corresponding

minimum squared difference mean.

)(
,2)]()),(([

|| m
jk

rir

m e
gg

D

xxed

jikjkkik

jikjkkik

N ,;(

),;(

|,1,|1,1

|,1,|1,1

SHmy

SHmy

ik
T

jkkjik ,1,|1|,1 RHHPS ,

1
|,1,|1|,1 jik

T
jkkjik SHPK ,

)( ,|1,1|,1,|1|,1 jkkikjikjkkjik HmyKmm ,

jkkjikjkkjik ,|1|,1,|1|,1 HPKPP ,

),;(

),;(

|,1,|1,1,,

|,1,|1,1,,
|,1

jikjkkik

j

jkji

jikjkkikjkji
jik

N

N

SHmy

SHmy
,

The measurement noise for the mth object  is 

denoted as (  under the jth

hypothesis. From appendix A, it can be known that

)(
,
m

jkv

1,(
,
m

jkv

mk+1,i = jik

j

jik |,1|,1 m ,

Pk+1,i = jik

j

jik |,1|,1 [P +

])[( 2),(
,

im
jkv

Dmx

, (7)
]))(( ,1|,1,1|,1

T
ikjikikjik mmmm . (11)

The state at time k+1 is estimated as 

ik
i

kk
i

k isps ,11:111 maxarg)|(maxargˆ y ,where ei is the unit vector of dimension n  with a non-zero

element in the ith position. To reduce the computation, it

is assumed that the components of the measurement noise

are uncorrelated to each other. Thus the diagonal matrix

Rk,j can be easily computed from (7). Moreover, it should

be noted that other measurement approaches (e.g. the 

snake methods in [6] and [7]) are also applicable for the

SHM model.

),ˆ,ˆ|(maxargˆ 1:11111
1

kkkkkkk ssssp
k

yzz
z

= .  (12)
kk ssk ˆ|ˆ,1 1

m

It can be seen that the computation of the SHM filter is 

slightly more complex than the computation of multiple

Kalman filters (or Gaussian sum filters [1]).

5. Implementation 4. Filtering 

When an object is totally (or mostly) occluded by the

other objects at time k, no (or few) points of the target

region will be matched. The corresponding squared 

difference mean is computed as  for the mth

object under the jth hypothesis, where 

)(
,11

m
jke

1 ( 1 > 1) is a

penalty term. The estimation is based on the result of time

k–1 when no visible region of the object is expected at

time k. The penalty 1 helps prevent interpreting an object

as being completely occluded when there is image

evidence for its visibility.

From a Bayesian perspective, the online tracking

problem is to recursively calculate the posterior state

space distribution. Given the measurement data y1:k = 

{yi}1 i k up to time k, the probability density function

(pdf) p(sk, zk | y1:k) is expressed as 

p(sk = j, zk | y1:k) = p(sk = j | y1:k) p(zk | sk = j, y1:k)

= k,j N(zk; mk,j, Pk,j),  (8)

where p(sk = j | y1:k) is denoted as k,j, with = 1, 

and the pdf p(z

j

jk ,

k | sk = j, y1:k) is modeled as a normal

distribution N(zk; mk,j, Pk,j) under each switching state 

hypothesis. Hence p(zk | y1:k) is a mixture of L Gaussians. 
Due to the variation of the object poses and

illumination conditions, the reference image should be

updated throughout the tracking process to deal with the

object appearance changes. Frame gk can be used as the 

reference image when the following is satisfied.

At time k+1, the set of hypothesized measurements yk+1

becomes available, and it is used to update { k,j, mk,j,

Pk,j}1 j L to { k+1,i, mk+1,i, Pk+1,i}1 i L. From appendix B, the

filtering algorithm is 

L
jk

j

2
,min ,

2
,

1
max

L
jk

j
.  (13)

k+1,i = p(sk+1  = i | y1:k+1)

=

i j

jkji

j

jkji N

),,

,,

, (9) 

The value of 2 is a little bit smaller than one. From (13),

it is known that the update is with a high confidence in

nonocclusion.

The switching state transition probability is set as 

otherwise,,
1

,if,1

3

3

,

L

ji

ji  (14)

p(zk+1 | sk+1= i, y1:k+1) N(zk+1; mk+1,i, Pk+1,i), (10)

where

mk+1|k,j = Fmk,j,

Pk+1|k,j = ,QFFP
T

jk ,
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where 3 is a small positive value so that two successive 

switching states are more likely to be of the same label.

The transition matrix F, covariance matrix Q, and 

measurement matrix H are defined in the same way as in 

a classical Kalman tracker with second order model [21].

The objects are assumed to be separated from each other

in the initial image g0. At the beginning, the reference

image is set as gr = g0. The target regions are detected 

from the initial image using an adaptive foreground 

detection method [23]. The initial 0,j, m0,j, and P0,j should

be equal for different j because of nonocclusion. 0,j = 

p(s0 = j) = 
L

1
. According to the definition of the motion

model d, the initial mean m0,j is set as a zero vector. The 

initial covariance matrix P0,j is set as diagonal with small

variances since the initialization is assumed to be

accurate.

6. Results and discussion 

The proposed approach is tested on both synthetic data

and realistic data. The parameter values are set as 1 = 

1.1, 2 = 0.98, and 3 = 0.1. Using a Pentium 4 1.4GHz 

PC, our C program can process 5 frames per second in the

experiments.

Figure 3 shows quantitatively the results of jointly

tracking a rectangle, a diamond, and a circle under noisy

background in a synthetic image sequence of 200 frames.

The state of the tracker is the position, diameter,

orientation, and the velocities of these parameters. Each

measurement is a translation, scaling, and rotation. Figure

3a shows the 10th, 70th, 90th, and 130th frame of the

sequence. It could be seen that the circle is totally

occluded in Figure 3a.3. Figure 3b shows the true

horizontal trajectories of the three objects. Figure 3c and 

3d demonstrate the tracking results of the SHM filter and

the Kalman filter. Comparing with the Kalman filter, the

tracking performance is greatly improved by our 

algorithm when heavy occlusions take place among the

three objects. The objects are correctly tracked even when 

total occlusion occurs.

Figure 4 shows the tracking of two hands as they cross 

twelve times in a realistic image sequence of 800 frames.

The state of the tracker is the position and orientation, and 

the velocities of these parameters. Each measurement is a 

translation and rotation. Figure 4a shows the 30th, 65th,

165th, and 230th frame of the sequence. Appearance 

variation due to hand pose changes is obvious (see Figure

4a.4). Figure 4b and 4c demonstrate the tracking efficacy 

of the SHM filter versus the Kalman filter. The SHM 

filter successfully tracks both hands under different 

occlusion relationships (the left hand being in the front or 

the right hand being in the front). In Figure 4b, one hand

is drawn in black contour when the detected depth order 

indicates that it is in front of the other hand. The Kalman

filter has a similar performance when occlusions are not

severe, but poor under heavy occlusions. In Figure 4c.4,

the distraction from background clutter causes the

Kalman tracker to fail. The posterior distributions for the

vertical position of the occluded hand in Figure 4a.3 and

4a.4 are shown in Figure 4d and 4e. When the occlusion

is not severe, measurements under the two hypotheses are 

similar, and the distribution is unimodal (see Figure 4d). 

Under heavy occlusions, the distribution becomes

multimodal (see Figure 4e) because the two hypothesized

measurements turn to be different. The measurement

under true hypothesis matches the hand correctly, while

the measurement under false hypothesis is distracted by

background clutter. Figure 4f shows the probabilities of 

the first occlusion hypothesis (the left hand being in the

front) over the first 300 frames. The probabilities for the 

four frames shown in Figure 4a are circled in Figure 4f.

The probabilities of the two hypotheses are equal in the

nonoverlapping cases, while the probability of the true 

hypothesis becomes dominant under occlusions. As a

byproduct of the SHM filter, the quantitative information

helps update reference regions correctly to deal with the

object appearance changes. 

 (a.1) (a.2)   (a.3) (a.4)

(b) (c) (d)

–– rectangle 

--- diamond

.... circle 

Figure 3. (a) Four frames of the “three objects” sequence. (b) True horizontal trajectories of the objects. (c) Tracking result 
of the SHM filter. (d) Tracking result of the Kalman filter. 
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 (a.1) (a.2) (a.3) (a.4)   (d)

 (b.1) (b.2) (b.3) (b.4)   (e) 

 (c.1) (c.2) (c.3) (c.4) (f)
Figure 4. (a) Four frames of the “crossing hands” sequence. (b) Tracking results of the SHM filter. (c) Tracking results of 
the Kalman Filter. (d) (e) Posterior distributions of the left hand’s vertical position in (a.3) and (a.4). (f) Probabilities of the
left hand being in the front over time. 

(a.1) (a.2)

(a.3) (a.4)

(b) (c)
Figure 5. (a) Results of tracking the four shanks of two
persons. (b) Posterior distribution of the occluded body’s
horizontal position in (a.3). (c) Probabilities of the woman’s
body being in the front over time. 

Figure 5 shows the results of jointly tracking the four

shanks of a man and a woman as they cross in a sequence

of 80 frames. There should be totally 4! = 24 hypotheses

if we directly apply the SHM filter. Two reasonable

assumptions are made to prune less plausible hypotheses.

Firstly, one’s legs can not simultaneously occlude and be

occluded by the other’s legs. Secondly, the occlusion

relationship between the man and woman can be 

determined from their bodies. Thus, the whole tracking

procedure is divided into three trackers. The first one 

tracks the two bodies of the walkers. According to the

detected occlusion relationship, the two shanks of the

person in the front are then tracked. At last, the shanks of

the other person are tracked in the masked image. Figure 

5a shows the tracking results for the 32nd, 42nd, 46th,

and 54th frame of the sequence (circles are marked on the

man’s body and shanks, and rectangles are marked on the

woman). The man’s right shank has been totally occluded

when they cross. Figure 5b shows the posterior

distribution for the horizontal position of the occluded

body in Figure 5a.3. Figure 5c shows the probabilities of 

the woman’s body being in the front. The probabilities for

the four frames in Figure 5a are circled. The number of

occlusion relationship hypotheses grows nonlinearly with

the increase of objects. To reduce the computation, less 

plausible hypotheses should be (progressively) pruned

when the number of the objects for joint tracking is large.

Under realistic environments, it is understandable that

comparing with the other hypothesized measurements, the 

measurement under the true occlusion hypothesis usually

shows more regularity and has a smaller variance. Thus,

the true information (the switching state and the hidden

state) could be enhanced through the propagation. In 

addition, comparing with a uniform measurement process,

the acquirement of multiple hypothesized measurements
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helps decrease the information loss (e.g. caused by 

background clutter) in complex visual environments

before filtering.

7. Conclusion 

This paper makes two main contributions. First, we 

propose a switching hypothesized measurements model

for multimodal state space representation of dynamic

systems. Second, we describe a measurement process and 

derive an efficient filtering algorithm for joint region

tracking in image sequences. 

Our approach reasons about the occlusion relationships

explicitly. The occlusion relationships are quantitatively

estimated throughout the propagation. The information

can be used for reference update and further analysis.

Moreover, experimental results show that our method

helps handle appearance changes and distractions.

The SHM model discusses the measurement switching

in dynamic systems. It is complementary to the idea of

model switching in [9] [11] [19]. Effective combining of 

these two ideas may result in a more powerful framework

for visual tracking. Furthermore, from section 2.1 it can 

be known that the SHM model is generally applicable to

describe various dynamic processes in which there are

multiple alternative measurement methods.
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Appendix A 

Using the first order Taylor expansion and ignoring the

high order terms, we have that

|||)),(()),((| vgvg kik xdxed ,  (15) 

where v is a small random disturbance in the ith

component of the motion vector . For the points within

the mth object,

]))),(()),(([( 2
xdxed kik gvgE = c(m,i)E[v2], (16) 

where x Dm, and c(m,i) is the proportional factor. c(m,i)

can be learned from the reference frame by substituting r

for k, 0 for , and fixing the variable v as 1 in (16). Since

d(0, x) = x,

c(m,i) = ]))()),(([( 2
xxed rir ggE

mD

rir
m

gg
D

x

xxed
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||

1
.  (17)

From (17) we know that c(m,i) is computed as the mean of

the squared intensity differences in the reference region.

If the hidden state zk is given, the true value of the

motion parameters can be considered as Hzk in our model.

Denote as the true motion vector for the mth

object. Assume that the intensity distribution remains

constant along a motion trajectory,

should equal g

)()( m
kHz

)),)((( )(
xHzd

m
kkg

)() m ),(
,

im
jkv

r(x) for a visible point of the mth object.

Hence, variances of the measurement noise components

can be estimated by substituting for , and 

for v in (16). Combing with (5) under the jth hypothesis,
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Appendix B 

Using Bayes’ rule, we know that

p(sk+1, zk+1 | y1:k+1)

=
)|(

1

:11 kkp yy
p(yk+1 | sk+1, zk+1) p(sk+1, zk+1 | y1:k)

p(yk+1 | sk+1, zk+1) p(sk+1, zk+1 | y1:k).  (19)

In principle, the filtering process has three stages:

prediction, update, and collapsing.

With the transition probabilities in (3) and (4), the

predictive distribution for time k+1 is computed as 

p(sk+1 = i, zk+1 | y1:k)

=

j

kkk jsisp ,|,( 11 z

kkkk djsp zyz )|,( :1

=

j

kkk spjsisp ()|( 1

kkkk jspp zzz ,|()|( 1

=

j

kkjkji N QFzz ,;( 1,,

=

j

jkkkjkji N ,;( ,|11,, mz .  (20) 

After receiving the measurement set yk+1 at time k+1,

the posterior density is updated as follows,

p(sk+1 = i, zk+1 | y1:k+1)

p(yk+1 | sk+1 = i, zk+1) p(sk+1 = i, zk+1 | y1:k)

j

jkji ,, ;( ,1 kikN Hzy

),;( ,|1,|11 jkkjkkkN Pmz .  (21)
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If the covariances in Pk+1|k,j are small [1], the product in

(21) can be approximated by

[8] Z. Ghahramani, “Learning dynamic Bayesian networks,” in

Adaptive processing of temporal information (C. L. Giles 

and M. Gori, eds.), Lecture notes in artificial intelligence, 

pp. 168–197, Springer-Verlag, 1998. 
),;(),;( ,|1,|11,11,1 jkkjkkkikkik NN PmzRHzy

.),;(),;( |,1|,11|,1,|1,1 jikjikkjikjkkik NN PmzSHmy [9] Z. Ghahramani and G. E. Hinton, “Variational learning for 

switching state-space models,” Neural Computation, vol. 

12, pp. 963–996, 1998. 
(22)

The conditional probability of the switching state is 

updated as 
[10] G. D. Hager and P. N. Belhumeur, “Efficient region 

tracking with parametric models of geometry and 

illumination,” IEEE Trans. Patt. Anal. Mach. Intel., vol. 

20, pp. 1025–1039, 1998. 

k+1,i = p(sk+1 = i | y1:k+1)

= 11:111 )|,( kkkk disp zyz
[11] M. Isard and A. Blake, “A mixed-state Condensation 

tracker with automatic model-switching,” Proc.

International Conf. Computer Vision, pp. 107–112, 1998. 
. (23)

j

jkji ,, ),;( |,1,|1,1 jikjkkikN SHmy

[12] M. Isard and A. Blake, “Contour tracking by stochastic 

propagation of conditional density,” Proc. European Conf. 

Computer Vision, pp. 343–356, 1996. 

Since = 1, (9) can be obtained by normalizing.

From (21) – (23), the pdf p(z

i

ik ,1

k+1 | sk+1 = i, y1:k+1) becomes a 

mixture of L Gaussians. 

[13] N. Jojic and B. J. Frey, “Learning flexible sprites in video 

layers,” Proc. Conf. Computer Vision and Pattern

Recognition, vol. 1, pp. 199–206, 2001. p(z  | sk+1= i, y1:k+1)k+1

),;( |,1|,11|,1 jikjikk

j

jik N Pmz= .  (24) 
[14] C.-J. Kim, “Dynamic linear models with Markov-

switching,” Journal of Econometrics, vol. 60, pp. 1–22, 

1994.

It could be derived that [15] J. MacCormick and A. Blake, “A probabilistic exclusion 

principle for tracking multiple objects,” Proc. International 

Conf. Computer Vision, vol. 1, pp. 572–578, 1999. 
p(zk+1 | sk+1=i, sk = j, y1:k+1)

= .  (25)),;( |,1|,11 jikjikkN Pmz
[16] K. P. Murphy, “Learning switching Kalman filter models,”

Technical Report 98-10, Compaq Cambridge Research 

Lab, 1998. 

At time k, the distribution p(zk | y1:k) is represented as a

mixture of L Gaussians, one for each hypothesis of sk.

Then each Gaussian is propagated through state transition, 

so that p(zk+1 | y1:k+1) will be a mixture of L2 Gaussians. 

The number of Gaussians grows exponentially with time.

To deal with this problem, the mixture of Gaussians in

(24) is collapsed to a single Gaussian in (10) using

moment matching [16]. Collapsing is processed under

each hypothesis of sk+1. Therefore, the possibility of each 

hypothesis will not be cast throughout the propagation. 

[17] H. T. Nguyen, M. Worring, and R. van den Boomgaard, 

“Occlusion robust adaptive template tracking,” Proc.

International Conf. Computer Vision, vol. 1, pp. 678–683, 

2001.

[18] V. Pavlovic and J. M. Rehg, “Impact of dynamic model 

learning on classification of human motion,” Proc. Conf. 

Computer Vision and Pattern Recognition, vol. 1, pp. 788–

795, 2000. 

[19] V. Pavlovic, J. M. Rehg, T.-J. Cham, and K. P. Murphy, “A 

dynamic Bayesian network approach to figure tracking

using learned dynamic models,” Proc. Conf. Computer 

Vision and Pattern Recognition, vol. 1, pp. 94–101, 1999. 
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