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Abstract

We address the problem of camera motion and structure
reconstruction from line correspondences across multiple
views, from initialization to final bundle adjustment. One of
the main difficulties when dealing with line features is their
algebraic representation.

First, we consider the triangulation problem. Based on
Plücker coordinates to represent the lines, we propose a
maximum likelihood algorithm, relying on linearising the
Plücker constraint, and on a Plücker correction procedure to
compute the closest Plücker coordinates to a given 6-vector.

Second, we consider the bundle adjustment problem. Pre-
vious overparameterizations of 3D lines induce gauge free-
doms and/or internal consistency constraints. We propose
the orthonormal representation, which allows handy non-
linear optimization of 3D lines using the minimum 4 param-
eters, within an unconstrained non-linear optimizer.

We compare our algorithms to existing ones on simulated
and real data.

1. Introduction

The goal of this paper is to give methods for reconstruc-
tion of line features from image correspondences over mul-
tiple views, from initialization to final bundle adjustment.
Reconstruction of line features is an important topic since it
is used in various areas. Bundle adjustment is the compu-
tation of an optimal visual reconstruction of camera motion
and 3D scene structure, where optimal means of maximum
likelihood in terms of reprojected image error. We make no
assumption about the calibration of the cameras. We assume
that line correspondences over at least three views are avail-
able1.

While the multiple-view geometry of lines is well-
understood, see e.g. [3, 5], there is still a need for practi-
cal structure and motion algorithms. The factorization al-
gorithms, e.g. [7], yield reliable results but requires that
all lines are visible in all views. We focus on the common

1line correspondences over two views do not constrain the camera mo-
tion.

three-stage approach, see e.g. [5, §17.5], consisting in (i)
computing camera motion using inter-image matching ten-
sors, (ii) triangulating the features and (iii) running bundle
adjustment.

There exist reliable algorithms for step (i). In particular,
it can be solved by computing trifocal tensors for triplets of
consecutive images, using e.g. the automatic computation
algorithm described in [5, §15.6], and registering the triplets
in a manner similar to [4]. Other integrated motion estima-
tion systems are [8], based on Kalman filtering techniques,
and [11] based on registering each view in turn.

In steps (ii) and (iii), one of the main difficulties when
dealing with line features arises: The algebraic representa-
tion. Indeed, there is no minimal, complete and globally
non-singular parameterization of the 4-dimensional set of
3D lines, see e.g. [5, §2.2]. Hence, they are often over-
parameterized. The algorithm in [5, §15.2] shows that the
‘two image lines’ representation is well-adapted to the com-
putation of the trifocal tensor, while the sequential algorithm
of [8] is based on Plücker coordinates.

Concerning step (ii), many of the previous works as-
sume calibrated cameras, e.g. [6, 9, 10, 12], and use spe-
cific Euclidean representations. The linear three view al-
gorithm of [12] and the algorithm of [10] utilize a ‘clos-
est point+direction’ representation, while [9] uses the pro-
jections of the line on the x = 0 and the y = 0 planes,
which has obvious singularities. These algorithms yield sub-
optimal results in that none of them maximizes the individ-
ual likelihood of the reconstructed lines.

Bundle adjustment, step (iii), is a non-linear procedure
involving camera and line parameters, which maximizes the
likelihood of the reconstruction, corresponding to minimiz-
ing the reprojection error when the noise on measured fea-
tures is assumed to have an identical and independent nor-
mal distribution. Previously-mentioned overparameteriza-
tions are not well-adapted to standard non-linear optimizers.
An appropriate representation would note involve internal
constraint or gauge freedom.

To summarize, there is a need for an efficient optimal tri-
angulation algorithm, and a representation of 3D lines well-
adapted to non-linear optimization. We address both of these
problems. In §3, we propose triangulation methods, and in



§4, we propose a non-linear representation of 3D lines that
we call the orthonormal representation, meeting the above-
mentioned efficiency constraints. Finally, §5 validates our
algorithms and compares them to existing ones.

2. Preliminaries and Notations
We make no formal distinction between coordinate vec-

tors and physical entities. Everything is represented in ho-
mogeneous coordinates. Equality up to scale is denoted by
∼, transposition and transposed inverse by T and −T. Vec-
tors are typeset using bold fonts (L, l), matrices using sans-
serif fonts (S, A, R) and scalars in italics. Bars represent
inhomogeneous leading parts of vectors or matrices, e.g.
MT ∼

(
M̄T | m

)
. The L2-norm of vector v is denoted

‖v‖. The identity matrix is denoted I. SO(2) and SO(3)
denote the 2D and 3D rotation groups. The 2D Euclidean
distance between point q and line l, weighted by q3, is:

d2
⊥(q, l) = (qTl)2/(l21 + l22). (1)

Given two 3D points MT ∼
(
M̄T | m

)
and NT ∼(

N̄T | n
)
, one can represent the line joining them by a

homogeneous ‘Plücker’ 6-vector LT ∼
(
aT | bT

)
, where

a = M̄× N̄ and b = mN̄− nM̄. This vector must satisfy
the following Plücker constraint :

C(L) = 0 where C(L) = aTb. (2)

Given a standard (3 × 4) perspective projection matrix
P ∼ (P̄ | p), a (3 × 6) matrix projecting Plücker line coor-
dinates [2, 3] is given by:

P̃ ∼ (det(P̄)P̄−T | [p]×P̄). (3)

As noted in [5, §15.7.2], no matter how many points are
used to represent an image line l, the quadratic error function
on it can be expressed in the form d2

⊥(x, l)+d2
⊥(y, l) for two

weighted points x, y on l. We will use this representation
for simplicity. If we have 3D lines S = {L1, . . . ,Lm} and
cameras M = {P1, . . . , Pn}, the negative log likelihood
function E(S,M) for the reconstruction, corresponding to
the reprojection error, can be written in terms of individual
reprojection errors E(Lj ,M) for each line j:

E(S,M) =
m∑

j=1

E(Lj ,M) (4)

E(Lj ,M) =

n∑

i=1

(
d2
⊥(xij , lij) + d2

⊥(yij , lij)
)
. (5)

3. Triangulation
This section discusses computation of structure given

camera motion. We propose direct linear and iterative non-
linear methods to recover Plücker line coordinates.

First, we describe a somehow trivial linear algorithm
where a biased error function (compared to the reprojection
error) is minimized. This algorithm is subject to the same
kind of drawback as the 8 point algorithm for computing
the fundamental matrix: due to possible noise in the data,
the resulting 6-vectors do not generally satisfy the bilinear
Plücker constraint (2), similarly to the matrix computed by
the 8 point algorithm not being rank deficient [5, §10.2]. We
propose what we call a Plücker correction procedure, which
allows to compute the closest Plücker coordinates to a 6-
vector.

Second, we propose an algorithm where the reprojection
error of the line is minimized. The cornerstone of this algo-
rithm is the linearization of the Plücker constraint.

Since the reconstruction of each line is independent from
the others, we drop the j index in this section.

3.1. Linear Algorithm
We describe a linear algorithm, ‘LIN’. In the reprojec-

tion error (5), each term is based on the square of the 2D
point-to-line orthogonal distance d⊥, defined by equation
(1). The denominator of this distance is the cause of the non-
linearity. Ignoring this denominator leads to an algebraic
distance denoted by da, biased compared to the orthogonal
distance. da is linear in the predicted line l and defined by
d2

a(q, l) = d2
⊥(q, l) w2 = (qTl)2, where the scalar factor w

encapsulates the bias as w2 = l21 + l22:

(wi)
2

=
(
(P̃iL)1

)2

+
(
(P̃iL)2

)2

. (6)

We define the biased linear least squares error function:

B(L,M) =
n∑

i=1

(
(xiT

P̃
iL)2 + (yiT

P̃
iL)2

)
= ‖A(2n×6)L‖

2

(7)

A
T =

(
. . . P̃iTxi P̃iTyi . . .

)
. (8)

Since L is an homogeneous vector, we add the constraint
‖L‖2 = 1. The L that minimizes B(L,M) is then given
by the singular vector of A associated to its smallest singu-
lar value. Due to noise, the recovered 6-vector does not in
general satisfy the Plücker constraint (2).

3.2. Plücker Correction
Let LT ∼ (aT | bT) be a 6-vector that does not nec-

essarily satisfy the Plücker constraint (2), i.e. aTb might
be non-zero. We seek L̂T ∼ (uT | vT), defined by
min

L̂,uTv=0 ‖L̂ − L‖2. Although this problem has a clear
and concise formulation, it is not trivial.

We propose the following solution, summarized in a prac-
tical manner in table 1. Due to lack of space, we provide the
proof of this algorithm in the extended version of this paper
only. We transform the original 3D problem to an equivalent
2D problem, and solve the 2D transformed problem.
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• Compute the singular value decomposition
(a b) = ŪΣ̄V̄T.

• Let Z̄ = Σ̄V̄T, form matrix T = ( z21 z22

z12 −z11
).

• Compute the singular vector v̂ associated to the
smallest singular value of matrix T.

• Let V̄ =
(

v̂1 −v̂2

v̂2 v̂1

)
, we obtain:

(u v) ∼ Ū V̂ diag
(
V̂TΣ̄V̄T

)
.

Table 1. The Plücker correction algorithm. Given a
6-vector LT ∼ (aT | bT), this algorithm computes
the closest Plücker coordinates L̂T ∼ (uT | vT), i.e.
uTv = 0, in the sense of the L2-norm, i.e. ‖L̂− L‖2

is minimized.

3.3. Quasi-Linear Algorithms

We describe algorithms ‘QLIN1’ and ‘QLIN2’, that con-
sider the reprojection error (5). They are based on an itera-
tive bias-correction, through reweighting of the biased error
function (7). Such algorithms are coined quasi-linear.

We showed previously that the orthogonal and the alge-
braic distances are related by a scalar factor, given by equa-
tion (6), depending on the 3D line. The fact that these fac-
tors depend on the unknown 3D line suggests an iterative
reweighting scheme.

The first approach that comes to mind is ‘QLIN1’. The
linear system considered for method LIN is formed and
solved. The resulting 6-vector L0 is corrected to be valid
Plücker coordinates. This yields a biased estimate of the 3D
line. Using this estimate, weight factors that contain the bias
of the linear least squares error function are computed, and
used to reweight the equations. The process is iterated to
compute successive refined estimates Lk until convergence,
where k is the iteration counter. Convergence is determined
by thresholding the difference between two consecutive er-
rors. It is typically reached in 3 or 4 iterations.

Experimental results show that this naive approach per-
forms very badly, see §5. This is due to the fact that the
Plücker constraint is enforced afterhand and is not taken into
account while solving the linear least squares system.

To remedy to this problem, we propose ‘QLIN2’, that lin-
earizes and enforces the Plücker constraint (2), as follows.
The algorithm is summarized in table 2. Rewrite the con-
straint as C(L) = LTGL where G(6×6) = ( 0 I

I 0
). By ex-

panding this expression to first order around the estimate Lk,
and after some minor algebraic manipulations, we obtain the
following linear constraint on Lk+1:

Ck(Lk+1) = LT

k GLk+1 = 0.

We follow the constrained linear least squares optimiza-

tion method summarized in [5, §A3.4.3] to enforce this lin-
earized constraint, as well as ‖Lk+1‖ = 1, while minimizing
B(Lk+1,M).

1. Initialization: Form the linear least squares system
A from equation (8), compute L0 by minimizing
‖AL0‖

2, see §3.1, and by applying the Plücker cor-
rection procedure described in §3.2. Set k = 0.

2. Constraint linearization: Compute the SVD LT

k G ∼

uTdiag(1, 0, 0, 0, 0, 0)(v(6×1) | V̄(6×5))
T

.

3. Estimation: Compute minγ,‖γ‖2=1 ‖AV̄γ‖2 and set
Lk+1 = V̄γ.

4. Bias-correction: Reweight the linear system A by
computing the weights according to equation (6).

5. Iteration: Iterate steps 2, 3 and 4 until convergence.

Table 2. Quasi-linear triangulation algorithm ‘QLIN2’.

4. Bundle Adjustment
Bundle adjustment is the non-linear minimization of the

reprojection error (4), over camera and line parameters. We
focus on the parameterization of 3D lines. Parameterizing
the camera motion has been addressed in e.g. [1, 5, §A4.6].

4.1. Problem Statement
As said in the introduction, there are various possibili-

ties to overparameterize the 4-dimensional set of 3D lines,
which, in the context of non-linear optimization, may induce
several problems.

This motivates the need for a representation of 3D lines
allowing non-linear optimization with the minimum 4 pa-
rameters. In that case, there is no free scale induced by ho-
mogeneity or internal consistency constraints, and an uncon-
strained non-linear optimizer can be used.

4.2. The Orthonormal Representation

The orthonormal representation has been introduced in
[1] for the non-linear optimization of the fundamental ma-
trix with the minimum 7 parameters. It consists in finding
a representation involving elements of SO(n) and scalars
(hence the term ‘orthonormal representation’). In particular,
no other algebraic constraints should be necessary, such as
the rank-two constraint of fundamental matrices or the bilin-
ear Plücker constraint. Using orthonormal matrices implies
that the representation is well-conditioned. Based on such a
representation, local update using the minimum number of
parameters is possible. We derive a closed-form of the Jaco-
bian matrix of the Plücker coordinates with respect to these
parameters.
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Example: representing P
1. We derive the orthonormal

representation of the 1-dimensional projective space P
1.

This is used in §4.3 to derive the orthonormal representa-
tion of 3D lines. Let σ ∈ P

1. Such a 2-vector is defined
up to scale and has therefore only 1 degree of freedom. We
represent it by an SO(2) matrix W defined by:

W =
1

‖σ‖

(
σ1 −σ2

σ2 σ1

)
. (9)

The first column of this matrix is σ itself, normalized to unit-
norm. Let θ be the update parameter. A local update step is
W ← WR(θ) where R(θ) is the 2D rotation matrix of angle
θ. The Jacobian matrix ∂σ

∂θ
evaluated at θ0 = 0 (the update

is with respect to a base rotation) is given by:

∂σ

∂θ

∣∣∣∣
θ0

=
∂w1

∂θ

∣∣∣∣
θ0

=

(
−σ2

σ1

)
= w2, (10)

where wi is the i-th column of W.

Updating SO(3). A matrix U ∈ SO(3) can be locally
updated using 3 parameters by any locally non-singular rep-
resentation, such as 3 Euler angles θT = (θ1 | θ2 | θ3) as:

U← UR(θ) with R(θ) = Rx(θ1)Ry(θ2)Rz(θ3), (11)

where Rx(θ1), Ry(θ2) and Rz(θ3) are SO(3) matrices repre-
sentating 3D rotations around the x-, y- and z-axis of angle
θ1, θ2 and θ3 respectively. The Jacobian matrix, evaluated at
θ0 = 0(3×1), is given by :

∂vect(U) = −
(
[l1]× [l2]× [l3]×

)T
∂θ, (12)

where li is the i-th row of U.

4.3. The Case of 3D Lines

The case of 3D lines is strongly linked with the cases of
SO(2) and SO(3), as shown by the following result:

Any (projective) 3D line L can be represented by
(U, W) ∈ SO(3)×SO(2), which is the orthonormal repre-
sentation of the 3D line L.

The proof of this result is obtained by showing that
any 3D line has an orthonormal representation (U, W) ∈
SO(3)× SO(2), while any (U, W) ∈ SO(3)× SO(2) cor-
responds to a unique 3D line. The next paragraph illustrates
this by means of Plücker coordinates. These results are sum-
marized in table 3 in a practical manner.

Relating Plücker coordinates and the orthonormal rep-
resentation. The orthonormal representation of a 3D line
can be computed from its Plücker coordinates LT ∼

(aT | bT), by factorizing C̄(3×2) ∼ (a b) as :

C̄ ∼
(

a

‖a‖
b

‖b‖
a×b

‖a×b‖

)

︸ ︷︷ ︸
SO(3)



‖a‖

‖b‖




︸ ︷︷ ︸
(‖a‖ ‖b‖)T∈P1

.

In practice, we use QR decomposition, C̄(3×2) =
U(3×3)Σ(3×2). As already mentioned, the special form of
matrix Σ is due to the Plücker constraint. While U ∈ SO(3),
the two non-zero entries of Σ defined up to scale can be rep-
resented by an SO(2) matrix W, as shown in §4.2.

Going back from the orthonormal representation to
Plücker coordinates is trivial. The Plücker coordinates of the
line are obtained from its orthonormal representation (U, W)
as:

LT ∼ (w11u
T

1 | w21u
T

2 ), (13)

where ui is the i-th column of U.

A 4-parameter update. Since U ∈ SO(3), as reviewed
in §4.2, it can not be minimally parameterized but can be
locally updated using equation (11), as U ← UR(θ) where
θ ∈ R

3. Matrix W ∈ SO(2) can be updated as W ←
WR(θ), where θ ∈ R. We define the update parameters
by the 4-vector pT ∼ (θT | θ). We denote J the (6 × 4)

Initialization. The initial guess is given by the Plücker
coordinates LT

0 ∼ (aT
0 | b

T
0 ).

• Compute the orthonormal representation (U, W) ∈
SO(3) × SO(2) of L0 by QR decomposition :

(a0 b0) = U

(
σ1

σ2

)
and set W =

(
σ1 −σ2

σ2 σ1

)
.

• The 4 optimization parameters are pT = (θT | θ)
where the 3-vector θ and the scalar θ are used to
update U and W respectively.

Update. (i.e. one optimization step)

• Current line is LT ∼ (w11u
T
1 | w21u2

T) and
∂L/∂p is given by equation (14).

• Compute p by minimizing some criterion.

• Update U and W: U← UR(θ) and W←WR(θ).

Table 3. Elements for 3D line optimization through the
orthonormal representation.

Jacobian matrix of the Plücker coordinates, with respect to
the orthonormal representation. Matrix J must be evaluated
at p0 = 0(4×1). By using the orthonormal representation to
Plücker coordinates equation (13) and equations (10,12) :

J(6×4) =

(
0(3×1) −σ1u3 σ1u2 −σ2u1

σ2u3 0(3×1) −σ2u1 σ1u2

)
. (14)
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Geometric interpretation. Each of the 4 above-defined
update parameters p has a geometric interpretation. Since
matrix W encapsulates the distance d from the origin O to
L, parameter θ acts on d. Matrix U is related to a 3D coor-
dinate frame attached to L. Parameter θ1 rotates L around a
circle with radius d, centered on O, and lying on the plane
defined by O and L. Parameter θ2 rotates L around a circle
with radius d, centered on O, and lying in a plane contain-
ing O, the closest point Q of L to O, and perpendicular to
L. Parameter θ3 rotates L around the axis defined by O and
Q. For the last three cases, the angles of rotation are the
parameters themselves. This interpretation allows to easily
incorporate a priori knowledge while estimating a line. For
example, to leave the direction of the line invariant, one may
use the 2 update parameters θ2 and θ, while to leave the dis-
tance of the line to the origin invariant, one may use the 3
update parameters θ.

5. Experimental Results

5.1. Simulated Data

Our simulated experimental setup consists of a set of
cameras looking inwards at 3D lines randomly chosen in a
sphere. Cameras are spread widely around the sphere. We
fix the focal length of the cameras to 1000 (in number of
pixels). Note that this information is not used in the rest of
the experiments. The end-points of all lines are projected in
all views, where their positions are corrupted by an additive
Gaussian noise.

We compare the 4 methods given in this paper: LIN,
QLIN1, QLIN2 and MLE (bundle adjustment based on our or-
thonormal representation of 3D lines), as well as the method
given in [5, §15.4.1], denoted by ‘MLE HARTLEY’. This
method consists in non-linearly computing the trifocal ten-
sor as well as reconstructed lines by minimizing the repro-
jection error (4) and parameterizing the 3D lines by two
of their three images. We also compare QLIN2 to a direct
Levenberg-Marquardt-based minimization of the reprojec-
tion error: These two methods give undistinguishable results
in all our experiments. Note that most existing methods, e.g.
[6, 9, 10, 12] can be applied only when camera calibration is
available.

We vary the added noise level from 0 to 2 pixels, while
considering 20 lines and 3 views. The result is shown on fig-
ure 1 (a). One observes that, beyond 1 pixel noise, methods
LIN and QLIN1 behave very badly. This is mainly due to the
bias introduced by the Plücker correction procedure. Meth-
ods QLIN2, MLE and MLE HARTLEY degrade gracefully as
the noise level increases. Method QLIN2 gives reasonable
results. Methods MLE and MLE HARTLEY give undistin-
guishable results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while consid-
ering a 1 pixel noise and 3 views. The result is shown on fig-
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Figure 1. Estimation error for different methods.

ure 1 (b). Similar conclusions as for the previous experiment
can be drawn, except for the fact, that when more than 30
lines are considered, methods LIN and QLIN1 give reason-
able results. Also, methods MLE and MLE HARTLEY give
results undistinguishable from the theoretical lower bound
when more than 45 lines are considered.

Another experiment, not shown here due to lack of space,
shows that when the number of views increases, the es-
timation error decreases for all compared methods. Note
that method MLE HARTLEY can not be used with more than
three views and is therefore not concerned with these con-
clusions. We observe that beyond 10 views, the result of
method MLE is undistinguishable from the theoretical lower
bound. The results given by methods LIN and QLIN1 are
reasonable when more than 15 views are considered.

The quasi-linear methods always converged within 5 it-
erations.

5.2. Real Data

We tested our algorithms on several image sequences.
For one of them, see figure 2 (a), we show results. We pro-
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Figure 2. Sample image out of a 5-frame indoor se-
quence overlaid with manually-provided lines (a), and
snapshot of the reconstruction given by MLE (b).

vide 45 line correspondences by hand. Note that some of
them are visible in two views only. We use these line corre-
spondences to compute the trifocal tensor corresponding to
each subsequence formed by a triplet of consecutive images,
using the linear method described in e.g. [5, §15.2]. We
use method QLIN2 to reconstruct the lines associated with
each triplet. We registered these subsequences by using the
method given in [2]. At this point, we have a suboptimal
guess of metric structure and motion. We further refine it
using our structure from motion algorithms, to reconstruct
each line by taking into account all of its images. The corre-
sponding estimation errors are, respectively for LIN, QLIN1
and QLIN2, 2.3, 1.9 and 1.4 pixels. We used the result of
QLIN2 to initialize our maximum likelihood estimator for
structure and motion based on the proposed orthonormal
representation together with a metric parameterization of the
camera motion, which ends up with a 0.9 pixel estimation
error.

QLIN2 MLE

Figure 3. Zoom on some original (white) and repro-
jected lines (black).

For each estimation, we reconstruct the end-points corre-
sponding to the first view (shown on the left of figure 2). The
maximum likelihood end-points are given by orthogonally
projecting their images onto the image of the correspond-
ing line. These results are visible on figure 3. Figure 2 (b)
shows the cameras and lines reconstructed by MLE. There

is visually no difference with the reconstruction provided by
algorithm QLIN2, but that reconstructions provided by LIN

and QLIN1 appear distorted.

6. Conclusion
We addressed the problem of structure and motion recov-

ery from line correspondences across multiple views.
First, we proposed an optimal triangulation algorithm,

minimizing the reprojection error, based on an iteratively
reweighted least squares scheme, a linearized Plücker con-
straint, and a Plücker correction procedure.

Second, we proposed the orthonormal representation of
3D lines, which allows non-linear optimization with the
minimal 4 parameters and analytic differentiation.

Experimental results on simulated and real data show that
the linear method and its naive bias-corrected extension per-
form very badly. Our bias-corrected algorithm performs
as well as direct Levenberg-Marquardt-based triangulation.
Based on our orthonormal representation, bundle adjustment
gives results close to the theoretical lower bound and undis-
tinguishable from the three-view maximum likelihood esti-
mator of [5, §15.4.1], while being usable with any number
of views.
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