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Abstract

In this paper, we present a generative model for textured
motion phenomena, such as falling snow, wavy river and
dancing grass, etc. Firstly, we represent an image as a lin-
ear superposition of image bases selected from a generic
and over-complete dictionary. The dictionary contains Ga-
bor bases for point/particle elements and Fourier bases for
wave-elements. These bases compete to explain the input
images. The transform from a raw image to a base or a to-
ken representation leads to large dimension reduction. Sec-
ondly, we introduce a unified motion equation to charac-
terize the motion of these bases and the interactions be-
tween waves and particles, e.g. a ball floating on water.
We use statistical learning algorithm to identify the struc-
ture of moving objects and their trajectories automatically.
Then novel sequences can be synthesized easily from the
motion and image models. Thirdly, we replace the dictio-
nary of Gabor and Fourier bases with symbolic sketches
(also bases). With the same image and motion model, we
can render realistic and stylish cartoon animation. In our
view, cartoon and sketch are symbolic visualization of the
inner representation for visual perception. The success of
the cartoon animation, in turn, suggests that our image and
motion models capture the essence of visual perception of
textured motion.

1 Introduction

Natural scenes contain rich stochastic motion patterns
which are characterized by the movement of a large num-
ber of distinguishable or indistinguishable elements, such as
falling snow, flock of birds, river waves, etc. These motion
patterns, called textured motion [16], temporal texture [14]
and dynamic textures[13] in the literature, cannot be ana-
lyzed by conventional optical flow fields [6] and have stim-
ulated growing interests in both graphics and vision.

In graphics, the objective is to render photorealistic
video sequences or non-photorealistic but stylish cartoon
animations. Both physics-based[10] methods, such as par-

tial differential equations, and image-based, such as video
texture[12] and volume texture [18], are studied to simulate
fire, fluid and gaseous phenomena.

In vision, Szummer and Picard studied a spatial-
temporal auto-regression (STAR) model [14], which is a
causal Gaussian Markov random field model (GMRF) in
space and time. Bar-Joseph et. al. extended 2D texture syn-
thesis work to generate volume texture using a tree struc-
tured representation [1]. Soatto et. al. [13] represented
an image by linear combination of principal components
which are computed from the training sequence. Then
an auto-regression (AR) model was applied to the coeffi-
cients of those principal components for motion dynamics.
Fitzgibbon [3] used a similar image representation with a
global camera motion component to analyze textured mo-
tions for registration purpose.

In the above works, the basic moving elements are either
represented by pixels or by the entire image or its princi-
ple components. Such representations are either too local
or too global to capture the semantic structures of the ob-
jects in the video sequences, despite their success in syn-
thesis. Recently, Wang and Zhu [16] proposed a generative
model to represent an image with a number of Gabor bases.
They computed the moving objects, like snow flakes, by
grouping spatially close and temporally consistent trajec-
tories of the bases to form what they called the “motons”.
This model, however, is inefficient to represent motion with
indistinguishable elements, such as water waves. It is gener-
ally considered challenging, in both vision and graphics, to
model the interactions between particle objects and waves,
for example, a ball or a boat on a river.

Motivated by these observations, this paper presents a
general representation for textured motion in four aspects.

1. Photometric model. An image is represented as a su-
perposition of bases from an over-complete dictionary, in-
cluding Fourier bases and Gabor sin/cos bases at different
scales, orientations. As Fig.1 shows, the Gabor and Fourier
bases are selected through a competition and explain-away
mechanism and are effective for particle and wave patterns,
respectively. It is shown in Table 1 that large dimension
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Model Parameters to Remember Compression Ratio
Training Sequence 150× 200(I)× 100(nfrm) = 3× 106 NA

Video Textures 150× 200(I)× 100(nfrm) = 3× 106 1 : 1
Dynamic Textures 150× 200(I) + 150× 200× 20(PCA) + 20× 20(A) + 20(σ) ≈ 6.3× 105 1 : 5
Textured Motion 103(magn)+103(phase)×8(Cov)+103(σ)+[20(p)+20(γ)+1(σγ)]×8 ≈ 104 1 : 300

Table 1: Comparison of the compress ratios among 3 typical models for wavy river sequence.

reduction is achieved after transforming a raw image to a
token representation.

2. Geometric model. Each object in the scene is represented
by a number of bases with deformable structures. For in-
stance, a ball is represented by a few Gabor bases moving
together and a river is represented by a number of Fourier
bases with displacements in phases.

3. Dynamic model. We adopt a general motion equation
which includes an AR component for each base, external
forces and the interactions with other bases. For example,
a ball (Gabor bases) on a river is driven by wind and water
waves (Fourier bases).

4. Sketch model. We replace the dictionary of Gabor and
Fourier bases with sketches (symbolic tokens), thus change
the photometric model to a sketch model. Together with the
same motion model, we can render non-photorealistic and
stylish cartoon animation. In our view, cartoon and sketch
are symbolic visualization of the inner representation for
visual perception. The success of the cartoon animation, in
turn, suggests that our representation captures the essence
of visual perception of textured motion.

In summary, our representation is much more parsimo-
nious compared with other models. Table. 1 lists the com-
pression rates of each model for a wavy river sequence.
The training sequence is 100-frame long and each frame
has 150× 200-pixels. The video texture method [12] stores
the entire sequence, and synthesizes a new sequence by re-
ordering the training frames to achieve smooth transition.
Dynamic textures [13] characterizes the stochastic process
by remembering a number of parameters, including 1 mean
image, 20 principle components of the frames, a dynamics
matrixA and 20 noise terms. Therefore, the model achieves
better compact rate of about 1 : 5. Our model uses about
1000 Fourier bases with 1000 magnitudes and 1000 phases
to represent the image without noticeable loss, and the dy-
namics are fitted by a 20th (p) order AR model on the co-
efficients with some noise terms. The compression rate is
about 1 : 300, due to the use of a generic dictionary.

In the following of the paper, we present four models se-
quentially – photometric, geometric, dynamic, and sketch.
A number of synthesized movies and cartoon animation are
shown as results, which are better evaluated from [20].

2 Textured motion representation

Let I[0, τ ] denote an image sequence on a 2D lattice Λ in
a discretized time interval [0, τ ] = {0, 1, ..., τ}. For t ∈
[0, τ ], I(u, v) or I(u, v, t) ∈ I[0, τ ] denotes a pixel on a
frame.

2.1 Photometric model– particles vs waves

There are two general image coding paradigms [2] in the lit-
erature: compact coding and sparse coding. Compact cod-
ing uses a complete basis/dictionary or tight frame, such as
Fourier transform and wavelets. In this scheme, an input
signal is represented by a combination of all bases in the
dictionary. Sparse coding uses an over-complete dictionary,
e.g. Gabor bases, LoG (Laplacian of Gaussian) bases. As
the basis is over complete, an input signal is represented by
a very small population of the bases which are experts for
the input signal. This leads to an effective representation
with large dimension reduction.

We employ the over-complete dictionary ∆ with both
Gabor and LoG bases ∆pcl to represent point like objects
– particles and Fourier bases ∆wav for wave patterns.

∆ = ∆pcl ∪ ∆wav.

It is known what the Gabor bases are specified by vari-
ables β = (x, y, σ, θ) for position, scale and orientation, the
LoG bases are isotropic with variables β = (x, y, σ) and
Fourier bases are defined by spatial frequency and phase
β = (ξ, η, φ). Thus we have

∆pcl = {Gcos(u, v;β), Gsin(u, v;β), LoG(u, v;β) : ∀β},
∆wav = {FB(u, v;β) : ∀β}.

An image I is a superposition of N image bases.

I =
N∑

j=1

αjψj + n, ψj ∈ ∆, (1)

where αj is a coefficient of base ψj , n is a noise process for
the residues. In general, we have

|∆| = O(100 |Λ|), and N = O(|Λ|/100).
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Input image Reconstruction by ∆wav Reconstruction by ∆pcl Coefficient plots

(a)

                                                

Birds flying 300 Fourier Bases 216 Gabor Bases

(b)

                                                

Water waves 300 Fourier Bases 320 Gabor Bases

(c)

                                                

Ball on water 400 Fourier Bases 291 Gabor Bases 80 Fouriers + 21 Gabors

Figure 1: Comparison of image reconstructions by Fourier bases ∆wav and Gabor/LoG bases ∆pcl respectively. The curves
plot the base coefficients obtained by projecting the images onto the image bases. The thick curve is for ∆pcl. The slopes
of the curves reflect the coding efficiencies of the dictionary. (a) A typical particle image - flying birds. (b) A typical wave
image - wavy river. (c) A typical image with mixed objects of particles and waves - floating ball.

Thus a raw image is transformed into a parsimonious token
representation, called base map.

B = {bj = (αj , βj), j = 1, 2, ..., N}. (2)

Furthermore, we divide the base map into a particle map
Bpcl and a wave map Bwav.

B = Bpcl ∪ Bwav.

Similarly, we transform an image sequence I[0, τ ] into a to-
ken representation B[0, τ ] where each base bj(t) is tracked
frame by frame. It is worth mentioning that each Fourier
base FB can move only in one dimension [4], thus the 2D
spatial velocity is transformed to a 1D phase speed

φj(t)
dt

= ξj
dx

dt
+ ηj

dy

dt
. (3)

Fig. 1 compares the particle bases ∆pcl and the wave
bases ∆wav in representing different textured motion pat-
terns. We select three typical images for illustration. From
each image, we obtain two reconstructions: one by wave
(Fourier) bases ∆wav and the other by particle (Gabor and
LoG) bases ∆pcl. We select the bases from each dictionary

using a match pursuit procedure[7]. This is a greedy algo-
rithm that picks a base which has the highest response on
the current residue image. So at each step, it reduces the
reconstruction error in a steep descent way. We plot the co-
efficients αj , (j = 1, 2, ..., N) of the selected bases from
∆wav and ∆pcl. The slopes of the curves reflect the coding
efficiency of the dictionary. The steeply decreasing curve
implies that the bases are very effective in reconstructing
the image, hence capture the essential objects in the image,
whereas a flat curve means the opposite.

Fig. 1.(a) is a flock of birds. In contrast with the roughly
reconstructed image by N = 300 Fourier bases, the image
withN = 216 particle bases is reconstructed very well. The
curve plot shows that the first few Fourier bases have large
responses capturing the global lighting effects in the sky.
Therefore, the best representation for this image is a few
Fourier bases for lighting plus the particle bases for indi-
vidual birds. Fig. 1.(b) is a water wave image. The Fourier
bases are obviously better than the particle bases. Both the
reconstructed images and the two curves serve as the evi-
dence. Finally, Fig.1.(c) shows a ball floating on river. We
can see that neither type of bases alone is able to effectively
represent this image. However, the last image in the row
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Observed sequence of flying birds.                                    

Synthesized sequence with fewer flying birds to show
video editing effect.

Figure 2: Example of modeling and synthesizing a flying-
bird sequence.

exhibits a better reconstruction using a combination of 80
Fourier bases and 21 Gabor bases.

These examples demonstrate that textured motion se-
quences have both wave and particle patterns, and the com-
bined dictionary representation is both concise and mean-
ingful.

2.2 Geometric model – the moving elements

In the photometric model, as the dictionary ∆ is generic, a
particle object, like a bird or ball, is represented by a few
bases moving together with closely tangled trajectories. It
is also the case for the Fourier bases for waves as they also
travel in groups [15]. The water waves that we observe are
summation of travelling sinusoid waves caused by differ-
ent sources of motion, such as wind, boat, earthquake, etc.
Therefore, the moving elements are represented by a num-
ber of bases (nb) with some deformable configuration in
space and phase domain.

π = (nb, {bj = (αj , βj), j = 1, 2, . . . , nb}),
which are the instances from a moton dictionary Φ. Fur-
thermore, as each moton has a lifespan [tb, te] ⊂ [0, τ ] [16],
e.g., a bird can fly into our view at time tb and out of our
view at time te, we represent the moving object in space,
frequency and time by a representation

C[tb, te] = (π(tb), π(tb+1), ..., π(te)).

Thus we obtain a meaningful semantic representation of the
textured motion in terms of the moving elements, their de-
formation, and trajectories.

W = (K, {Ci[tbi , tei ], i = 1, 2, ...,K}),
where K is the number of objects in the sequence.

                                    

Observed sequence of wavy river.                                    

Synthesized sequence of wavy river.

Figure 3: Results of river sequence.

In summary, we have the following two-level generative
model for an image I,

W Φ−→ {Bwav,Bpcl} �−→ I.

This representation is not only low-dimensional and
generic, but also captures the essence of visual perception of
textured motion. In Section 4, we use this generative model
to synthesize cartoon animation by only replacing the bases
B and moving elements π with a symbolic representation.

2.3 Dynamic model – the interactions

In this section, we present a dynamic model for the motion
of moving elements and especially their interactions. We
are especially interested in two types of interactions. (1).
The influence of waves on particles. Particle elements in
textured motion are often driven by waves, for example, a
ball floating on a wavy river. This kind of effect is previ-
ously hard to simulate [12, 13]. (2). The interactions among
wave components. The relative motion of different Fourier
bases must be constrained to keep certain phase alignments.
Other interactions, such as particle collision, particle-wave
collision (splash) are not considered in this paper.

Let π be the motion status (e.g. π = x is the position
for particles, and π = φ is the phase for Fourier bases).
The general motion equation for π(t) is a p-th order AR
model with coefficients a = (a1, . . . , ap), driven by a sim-
ple Brownian motion n, an influence from the other waves
U(Bwav(t)), and an external force c(t) from objects outside
of the system, such as gravity, wind field and external con-
straints, which may vary over space and time.

π(t) =
p∑

j=1

ajπ(t− j) + U(Bwav(t)) + c(t) + n (4)

In the rest of this section, this general motion equation is
reduced to three special cases that occur in our experiments.
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Observed sequence of grassland.                                    

Synthesized sequence of grassland.

Figure 4: Results of grassland sequence.

Case 1: Dynamic model for free moving particles –
falling snow, flying birds.

In this case, the location x(t) of a particle is the status
π(t) of the object in Eq.4. By assuming there is minimum
interaction among particles, we obtain its motion equation
as a degenerated case from Eq.4.

x(t) =
p∑

j=1

ajx(t− j) + c+ n,

where, the external force field c(t) is assumed to be spatially
and temporally constant.

Case 2: Dynamic model for waves – wavy river.
In this case, Fourier bases are selected to represent the

image sequence. Their motion is characterized by phase
change φ(t) in frequency domain [4]. Eq.3 shows that if
a wave travels at a constant velocity, φj is a line in phase-
temporal domain. Once wrapped into [0, 2π), it appears to
be periodic.

We model the motion of the Fourier bases by a Gaussian
Markov Random Field (GMRF). AR model is applied to
the coefficients of eigen-phase vectors, which are extracted
from the covariance matrix of phases, to estimate wave mo-
tion. Thus the π(t) in Eq.4 is the coefficient of the principle
components. As another special case of the general motion
equation, the dynamics of which is shown as follows.

{
φ(t) =

∑m
j=1 γj(t)ϕj + nφ

γ(t) =
∑q

j=1 λjγ(t− j) + nγ

whereϕj is the jth eigen-phase vector with coefficient γj(t)
at frame t, m is the number of eigen-phase vectors, q is
the order of AR model, and λ is the AR coefficient for the
eigen-phase coefficients , nφ and nγ are the noise of φ and
γ respectively, which are both assumed to be Gaussian.

Case 3: Dynamic model for particle-wave interactions –
floating ball or foams.

                                    

Observed sequence of floating ball.                                    

Synthesized sequence of floating ball.            

Figure 5: Learned results from floating-ball sequence.

In this case, not only should particles motion in space
and waves motion in phase domain be modelled, but also
their interactions. Here we assume waves have more influ-
ence on particles instead of vice versa.




x(t) =
∑p

j=1 ajx(t− j) + b∆φ(t) + c+ n

φ(t) =
∑m

j=1 γj(t)ϕj + nφ

γ(t) =
∑q

j=1 λjγ(t− j) + nγ

Similar to the previous 2 cases, the first equation models the
motion of particles, and the rest equations are about waves.
A regression model b∆φ(t) is introduced to describe the
influence of the waves on particles. ∆φ(t) is the phase shift
between frame t and t − 1, b is the regression coefficient.
After we combine the two motions, the model becomes a
coupled Gaussian Markov Random Field.

3 Learning and inference

Given an input sequence Iobs
[0,τ ], our objective is to learn both

geometric and dynamic models automatically. The geomet-
ric model parameterized by Φ identifies the moving ele-
ments in the sequence. And the dynamic model specified
by parameters Γ characterizes the motion of the moving el-
ements. To learn these models, we should also compute the
hidden variables W and B from Iobs

[0,τ ]. They are the inner
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Observed sequence floating foams.                                    

Synthesized sequence floating foams.            

Figure 6: Learned results from floating-foam sequence.

representation of the motion sequence. As a result, with the
learnt parameters and the inferred hidden variables, one can
easily synthesize sequences following the two-level gener-
ative model as described in Section 2.2. This algorithm
produces all the results presented in the previous Section
(Fig. 2-6).

Based on the models and analysis described above, we
divide our learning scheme into three parts.

1. “Particle learning” in the spatial-temporal domain. It
includes computing the forces created by the waves,
which is resolved by estimating the regression coeffi-
cient b in Case 3.

2. “Wave learning” in frequency-temporal domain.

3. Fuse waves and particles in the image domain.

As the particles displacement will be influenced by the
phases of the waves, whereas, the phases are also affected
by the identified particles, the ”particle learning” and ”wave
learning” processes are inseparable.

The problem is posed as statistical learning by maximum
likelihood estimate (MLE). The log-likelihood function for
an observed training sequence Iobs

[0,τ ] is

L(Θ) = log p(Iobs
[0,τ ]; Θ) = log

∫
p(I|W ; Φ)p(W ; Γ)dW

where Θ = (Φ,Γ) is the parameter governing the textured
motion patterns, andW denotes the hidden variables related
to the specific sequence Iobs

[0,τ ]. The goal of learning is to
estimate Θ with maximum likelihood,

Θ∗ = arg maxL(Θ).

To solve the MLE in the above equation, we set ∂L(Θ)
∂Θ = 0.

And we have

1
p(Iobs[0, τ ]; Θ)

∂
∫
p(Iobs[0, τ ],W [0, τ ]; Θ)dW [0, τ ]

∂Θ
= 0,

Ep(W [0,τ ] | Iobs[0,τ ];Θ)[
∂ log p(Iobs[0, τ ],W [0, τ ]; Θ)

∂Θ
] = 0.

We adopt the stochastic gradient algorithm used in [5]
to solve this MLE problem. The learning iterates in three
steps.

1. Sampling W syn
[0,τ ] ∼ p(W |Iobs; Φ,Γ) under the current

estimated Θ. This step includes the following two
parts.
Part 1 Computing particle bases to form Bpcl, then
grouping bases into motons, and tracking these mo-
tons. The computation is realized by Markov Chain
Monte Carlo (MCMC) techniques.
Part 2 Computing wave bases forming Bwav. This is
done by Fourier transformation on the remaining im-
ages after sift out the particles.

As the Fourier bases are consistent through the se-
quence, the MCMC steps are mainly designed to
adjust the trajectories of the motons Cj [tbj , tej ], j =
1, 2, ...,K, so that some trajectories are grouped, ex-
tended, and mutated to achieve a high posterior proba-
bility. For the details of Markov Chain moves design,
please refer to our technical report [17].

2. Updating the motion dynamics parameter Γ for both
particles and waves.

Γwav ← (1− ρ)Γwav + ρ
∂ log p(Bwav[0, τ ]; Γwav)

∂Γwav
,

Γpcl ← (1− ρ)Γpcl + ρ

K∑
k=1

∂ log p(Ck[0, τ ]|Bwav[0, τ ]; Γpcl)
∂Γpcl

3. Updating the moton parameter Φ by clustering and
grouping. In this step, only the particles moton is con-
cerned, because we assume each Fourier base forms a
moton by itself.

Φ← (1− ρ)Φ + ρ

τ∑
t=1

∂ log p(Bpcl(t)|W (t); Φ)
∂Φ
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Figure 7: From photorealistic to semantic representation.

The above learning process, including identifying par-
ticle objects, waves, and estimate of parameters, is com-
pletely automatic. There is no human intervention. Some
learned results are shown in Fig.3 - 6. And more results
can be seen from [20]. For more details of the automatic
learning process, please refer to our technical report [17].

4 Sketch model

In this section, we present a sketch model and a novel way
to render cartoon animation from the input and synthesized
sequences.

In our view, cartoon is a simplified and symbolic visu-
alization of our inner representation W . Suppose we have
computed W[0,τ ] from the input sequence Iobs

[0,τ ] or W[0,τ ]

has been synthesized from the learned model Θ. In photo-
realistic rendering, we use the dictionaries ∆pcl and ∆wav

to render a motion sequence

W[0,τ ]
∆pcl, ∆wav−→ I[0,τ ].

To render cartoon animation, it takes two steps. Firstly,
we extract a subset of hidden variablesW ′

[0,τ ], which is sup-
posed to capture the essential semantics, fromW[0,τ ] to sim-
plify the description. For example, let π ∈ W be a snow
flake, we represent its geometric shape in the cartoon but
ignore its photometric properties. Secondly, we replace the
two dictionaries ∆pcl and ∆wav by symbolic bases ∆′

pcl and
∆′

wav, respectively to render cartoon animation S[0,τ ] using
the generative model:

W ′
[0,τ ]

∆′
pcl, ∆′

wav−→ S[0,τ ].

where S[0,τ ] is a sketch for an observed or newly synthe-
sized sequence. This procedure is illustrated in Fig.7 and 9.
The animated cartoon can be viewed from [20].

Now we briefly explain how we choose a symbolic rep-
resentation for particles and waves. We seek ∆′

pcl and ∆′
wav

to represent the style of the cartoon. (1). We render a par-
ticle element π by contour outlines for birds and by spline
curves for grasses. (2). As we cannot sketch each individual

                        

a)Observed image b)Interpolated image

Figure 8: Image interpolation from extracted sketches.

Fourier base for waves, we combine all the Fourier bases to
generate a wave function instead:

J =
n∑

j=1

αjψj , ψj ∈ ∆wav.

We sketch J by spline curves at the ridges and valleys
∇2J = 0. Fig.7 shows an example.

We claim that wave sketch is a almost sufficient seman-
tic image representation as we can recover the original im-
age from those extracted sketches. Fig.8 shows an example
for the river image. For each point (x, y) on the symbolic
sketch, i.e. ∇2J(x, y) = 0, we remember the pixel inten-
sity J(x, y) and the slope ∇J(x, y). Then we interpolate
the rest of the image by spline or simple heat diffusion using
the sketch as boundary condition. This is related to Marr’s
conjecture of the primal sketch. Marr conjectured that the
zero-crossing and their slope are sufficient for recovering
band-pass filtered image.

Fig. 9 shows a combined cartoon animation. We choose
three natural sequences: flying birds, floating ball on a river
and wavy grassland, and learn the geometric and dynamic
models for each of them. Then we render synthesized se-
quences and generate their cartoons using the sketch model.
The floating ball is replaced by a boat. And the dancing
flower is one of the grasses from the grassland. A static
background – mountain, sun, and river bank is drawn man-
ually in Fig.9.(a). We fill the three cartoons into the blank
areas of the background image to render the animation.

There is a slight detail in the animation of grass. The tip
of a grass is treated as a particle, whose motion is driven by
the learnt Fourier waves from the grass sequence (case 2,
Fig.4). The root of the grass is fixed, and the curve between
the two points is interpolated by a spline. The movement
of the tips are similar to the motion of floating particles in
water. Let (x, y) be a tip of the grass, its motion follows

(x(t), y(t)) =
p=2∑
i=1

ai(x(t− i), y(t− i)) + κ(x− x0, y − y0)

+
q∑

k=1

bk(ξk, ηk)′dφk(t) + n.

which is almost the same as case 3, except that we add an
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background image t = 1 t = 10 t = 20

Figure 9: Synthesized cartoon sequence based on learned textured motions.

extra term of the force. Each tip is assumed to have a rest-
ing position (x0, y0), and a spring κ is attached between
(x, y) and (x0, y0). This generates the nodding effects for
the grass.

5 Summary and future work

In this paper, we presented a generative model for textured
motion and introduced an image representation scheme us-
ing over-complete generic basis to model natural images
containing local particles and global wave patterns. A gen-
eral motion equation is derived to characterize the interac-
tion of waves and particles. A sketch model for render-
ing non-photorealistic sequences from the learned geomet-
ric and dynamic models is also presented.

In the future, we would extend this work by (1) mod-
elling the interaction among particles, e.g. collision, (2)
studying the influence of particles on waves, e.g. splash
effect of a stone dropped into water.
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