
Edit Distance From Graph Spectra

A. Robles-Kelly
Department of Computer Science

The University of York
Heslington, York YO105DD, UK

arobkell@cs.york.ac.uk

E. R. Hancock
Department of Computer Science

The University of York
Heslington, York YO105DD, UK

erh@cs.york.ac.uk

Abstract

This paper is concerned with computing graph edit dis-
tance. One of the criticisms that can be leveled at existing
methods for computing graph edit distance is that it lacks
the formality and rigour of the computation of string edit
distance. Hence, our aim is to convert graphs to string se-
quences so that standard string edit distance techniques can
be used. To do this we use graph spectral seriation method
to convert the adjacency matrix into a string or sequence or-
der. We pose the problem of graph-matching as maximum a
posteriori probability alignment of the seriation sequences
for pairs of graphs. This treatment leads to an expression
for the edit costs. We compute the edit distance by finding
the sequence of string edit operations which minimise the
cost of the path traversing the edit lattice. The edit costs
are defined in terms of the a posteriori probability of visit-
ing a site on the lattice. We demonstrate the method with
results on a data-set of Delaunay graphs.

1. Introduction

Graph-matching is a task of pivotal importance in high-
level vision since it provides a means by which abstract
pictorial descriptions can be matched to one-another. Un-
fortunately, since the process of eliciting graph structures
from raw image data is a task of some fragility due to noise
and the limited effectiveness of the available segmentation
algorithms, graph-matching is invariably approached by in-
exact means [17, 14]. The search for a robust means of inex-
act graph-matching has been the focus of sustained activity
over the last two decades. Early work drew heavily on ideas
from structural pattern recognition and revolved around ex-
tending the concept of string edit distance to graphs [14, 5].
One of the criticisms that can be aimed at this early work is
that it lacks the formal rigour of the corresponding work on
string edit distance. However, recently, Bunke and his co-
workers have returned to the problem and have shown the

relationship between graph edit distance and the size of the
maximum common subgraph [2].

An alternative approach to the problem is to convert
graphs to string sequences and to use the existing theory
of string edit distance. The problem of converting a graph
to a sequence is known as seriation. Stated succinctly, it
is the task of ordering the set of nodes in a graph in a se-
quence such that strongly correlated nodes are placed next
to one another. The problem is important in a number of ar-
eas including data visualisation and bioinformatics, where
it is used for DNA sequencing. The seriation problem can
be approached in a number of ways. Clearly the prob-
lem of searching for a serial ordering of the nodes, which
maximally preserves the edge ordering is one of exponen-
tial complexity. As a result, approximate solution methods
have been employed. These involve casting the problem in
an optimisation setting. Hence techniques such as simu-
lated annealing and mean field annealing have been applied
to the problem. It may also be formulated using semidef-
inite programming, which is a technique closely akin to
spectral graph theory since it relies on eigenvector meth-
ods. However, recently Atkins, Boman and Hendrikson [1]
have shown how to use an eigenvector of the Laplacian ma-
trix to sequence relational data. There is an obvious parallel
between this method and the use of eigenvector methods to
locate steady state random walks on graphs.

The aim in this paper is to exploit this seriation method
to develop a spectral method for computing graph edit dis-
tance. The task of posing the inexact graph matching prob-
lem in a matrix setting has proved to be an elusive one. This
is disappointing since a rich set of potential tools are avail-
able from the field of mathematics referred to as spectral
graph theory. This is the term given to a family of tech-
niques that aim to characterise the global structural prop-
erties of graphs using the eigenvalues and eigenvectors of
the adjacency matrix [3]. In the computer vision literature
there have been a number of attempts to use spectral proper-
ties for graph-matching, object recognition and image seg-
mentation. Umeyama has an eigendecomposition method

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

that matches graphs of the same size [20]. Borrowing ideas
from structural chemistry, Scott and Longuet-Higgins were
among the first to use spectral methods for correspondence
analysis [16]. They showed how to recover correspon-
dences via singular value decomposition on the point asso-
ciation matrix between different images. In keeping more
closely with the spirit of spectral graph theory, Shapiro
and Brady [18] developed an extension of the Scott and
Longuet-Higgins method, in which point sets are matched
by comparing the eigenvectors of the point proximity ma-
trix. Horaud and Sossa[6] have adopted a purely struc-
tural approach to the recognition of line-drawings. Their
representation is based on the immanental polynomials for
the Laplacian matrix of the line-connectivity graph. Shok-
oufandeh, Dickinson and Siddiqi [19] have shown how
graphs can be encoded using local topological spectra for
shape recognition from large data-bases. Using the appa-
ratus of the EM algorithm, Luo and Hancock [9] have re-
turned to the method of Umeyama and have shown how
it can be rendered robust to differences in graph-size and
structural errors. Making use of a purely structural repre-
sentation of the graph, they cast the problem into a matrix
setting. The correspondance matching problem is posed as
the maximum likelihood estimation of the matrix of corre-
spondance indicators and solved using the apparatus of the
EM algorithm. Although the algorithm of Luo and Hancock
[9] is robust to structural errors and differences in graph-
size, it is slow to converge. Furthermore, it is sensitive to
initialisation.

By using the spectral seriation method, we are able to
convert the graph into a string. This opens up the possi-
bility of performing graph matching by performing string
alignment and minimising the Levenshtein or edit distance
[7, 22]. We can follow Wagner and use dynamic program-
ming to evaluate the edit distance between strings and hence
recover correspondences [22]. It is worth stressing that al-
though there been attempts to extend the string edit idea to
trees and graphs [23, 12, 14, 17], there is considerable cur-
rent effort aimed at putting the underlying methodology on
a rigourous footing.

2. Graph Seriation

Consider the graph � � ����� with node index-set �
and edge-set � � ����� �������� ��� � � � �� �� �� ���.
Associated with the graph is an adjacency matrix � whose
elements are defined as follows

����� ��� �

�
� if ���� ��� � �

� otherwise
(1)

Our aim is to assign the nodes of the graph to a sequence
order which preserves the edge ordering of the nodes. This

sequence can be viewed as an edge connected path on
the graph. Let the path commence at the node �� and
proceed via the sequence of edge-connected nodes � �
���� ��� ��� ���� where ���� ����� � �. With these ingredi-
ents, the problem of finding the path can be viewed as one
of seriation, subject to edge connectivity constraints.

As noted by Atkins, Boman and Hendrikson [1], many
applied computational problems, such as sparse matrix en-
velope reduction, graph partitioning and genomic sequenc-
ing, involve ordering a set according to a permutation � �
������� ������ � � � � ����� ��� so that strongly correlated to-
kens are placed next to one another. The seriation problem
is that of finding the permutation � that satisfies the con-
dition ����� � ����� � ����� � ���	�
� � ��	� �� 	
��
� �� � ��	� ���. This task has been posed as a combina-
torial optmisation problem which involves minimising the
penalty function

���� �

�� ��
���

�� ��
���

����� ���
�
�����
 �����

��

for a a real symmetric adjacency matrix �.
Unfortunately, the penalty function ����, as given above,

does not impose edge connectivity constraints on the or-
dering computed during the minimisation process. Further-
more, it implies no directionality in the transition from the
node indexed �� to the one indexed ����. To overcome these
shortcomings, we turn our attention instead to the penalty
function

���� �

�� ����
���

����� �����
�
�����
 �������

��
(2)

where the nodes indexed �� and ���� are edge connected.
After some algebra, it is straightforward to show that

���� �

�� ����
���

����� �����������
�
� �������

�
�

 �

�� ����
���

����� �����������������

(3)

It is important to note that ���� does not have a unique min-
imiser. The reason for this is that its value remains un-
changed if we add a constant amount to each of the co-
efficients of �. We also note that it is desirable that the
minimiser of ���� is defined up to a constant
 whose solu-
tions are polynomials in the elements of �. Therefore, we
subject the minimisation problem to the constraints

�����
� �

�� ��
���

����� ��������
� and

�� ��
���

�����
� �� � (4)

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Combining the constraint conditions given in Equation
4 with the definition of the penalty function given in Equa-
tion 3, it is straightforward to show that the permutation �
satisfies the condition

�� ��
���

�� ����
���

�
����� �������� � �����

�
�����

�

�

�� ����
���

������
�
� �������

�
�

(5)

Using matrix notation, we can write the above equation in
the more compact form

��� �
�� (6)

where � � ������
�� �����

�� � � � � ����� ��
��� and � is the

��
 ���� matrix

� �

�
�����
� � � � � � �

� � �
. . .

...
...

. . .
. . .

. . . �
� � � � � � �

�
����	 (7)

Hence it is clear that locating the permuation � that min-
imises ���� can be posed as an eigenvalue problem, and
that � is an eigenvector of �. This follows from the fact
Equation 6 can be obtained by multiplying both sides of
the eigenvector equation �� �
� by � . Furthermore,
due to the norm condition of the eigenvector, the constraint
�� �

��� �����
� �� � is always satisfied. Taking this analysis

one step further, we can premultiply both sides of Equation
6 by �� to obtain the matrix equation ����� �
����.
As a result, it follows that

 �
�����

����
(8)

We note that the elements of the permutation � are re-
quired to be real. Consequently, the co-efficients of the
eigenvector � are always non-negative. Since the elements
of the matrices � and � are positive, it follows that the
quantities ����� and ���� are positive. Hence, the set
of solutions reduces itself to those that are determined up to
a constant
 � �.

With these observations in mind, we focus on proving
the existence of a permutation that minimises ���� sub-
ject to the constraints in Equation 4, and demonstrating that
this permutation is unique. To this end we use the Perron-
Frobenius theorem [21]. This concerns the proof of exis-
tence regarding the eigenvalue
� � ��	������������ ��
��
of a primitive, real, non-negative, symmetric matrix �, and
the uniqueness of the corresponding eigenvector ��. The
Perron-Frobenius theorem states that the eigenvalue
� � �

has multiplicity one. Moreover, the co-efficients of the cor-
responding eigenvector �� are all positive and the eigenvec-
tor is unique. As a result the remaining eigenvectors of �
have at least one negative co-efficient and one positive co-
efficient. If the matrix � is non-stochastic in nature (i.e. the
graph � � ����� is not
-regular), �� is also known to be
linearly independent of the all-ones vector � �
�� ������ ��� .
Hence, the leading eigenvector of � is the minimiser of
����.

The elements of the leading eigenvector �� can be used
to construct a serial ordering of the nodes in the graph. We
commence from the node associated with the largest com-
ponent of ��. We then sort the elements of the leading
eigenvector such that they are both in the decreasing mag-
nitude order of the co-efficients of the eigenvector, and sat-
isfy edge connectivity constraints on the graph.The proce-
dure is a recursive one that proceeds as follows. At each
iteration, we maintain a list of nodes visited. At itera-
tion
 let the list of nodes be denoted by ��. Initially,
�� � �� where �� � ��
��	� �

����, i.e. �� is the com-
ponent of �� with the largest magnitude. Next, we search
through the set of first neighbours ��� � �
�����
� � ��
of �� to find the node associated with the largest remain-
ing component of ��. The second element in the list is
�� � ��
��	����� �

����. The node index �� is appended
to the list of nodes visited and the result is ��. In the
th
(general) step of the algorithm we are at the node indexed
�� and the list of nodes visited by the path so far is ��.
We search through those first-neighbours of �� that have
not already been traversed by the path. The set of nodes
is �� � ���� � ��� 	 � �� ���. The next site to be appended
to the path list is therefore ���� � ��
��	��	� �

����. This
process is repeated until no further moves can be made.
This occurs when �� �
 and we denote the index of the
termination of the path by � . The serial ordering of the
nodes of the graph � is given by the ordered list or string
of nodes indices �� .

There are similarities between the use of the leading
eigenvector for seriation and the use of spectral methods
to find the steady state random walk on a graph. There
are more detailed discussions of the problem of locating the
steady state random walk on a graph in the reviews by Lo-
vasz [8] and Mohar [10]. An important result described in
these papers, is that if we visit the nodes of the graph in
the order defined by the magnitudes of the co-efficients of
the leading eigenvector of the transition probability matrix,
then the path is the steady state Markov chain. However,
this path is not guaranteed to be edge connected. Hence, it
can not ne used to impose a string ordering on the nodes of
a graph. The seriation approach adopted in this paper does
impose edge connectivity constraints and can hence be used
to convert graphs to strings in a manner which is suitable for
computing edit distance.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

3. Edit Distance Computation

In practice we will be interested in finding the edit dis-
tance for a pair of graphs �
 � ��
 � �
 � and �� �
��� � �� �. From now onwards, we refer to the graph
�
 � ��
 � �
� as the model graph and to the graph
�� � ��� � �� � as the data-graph. The leading eigenvec-
tors of the corresponding adjacency matrices �
 and ��

are respectively��
 � ���
���� ��
 ���� � � � � ��
���
 ��� and
��� � ���� ���� �

�
� ���� � � � � �

�
� ���� ���. We denote the se-

riation for the model graph by � � ���� ��� � � � � ���� ��.
In a similar fashion, the seriation corresponding to the data
graph is denoted by � � ���� ��� � � � � ���� ��.

3.1. Probabilistic Framework

Our aim in this section is to develop a probabilistic
framework for computing the edit distance between the
graphs �
 � ��
 � �
� and �� � ��� � �� �. Here,
we use the strings � and � to index the rows and col-
umn of an edit lattice. The rows of the lattice are in-
dexed using the data-graph string, while the columns are
indexed using the model-graph string. To allow for differ-
ences in the sizes of the graphs we introduce a null symbol
� which can be used to pad the strings. We pose the prob-
lem of computing the edit distance as that of finding a path
� �� ��� ��� ������ ������ �
 � through the lattice. Each ele-
ment �� � ��
 ������
 ��� of the edit path is a Cartesian
pair. We constrain the path to be connected on the edit lat-
tice. In particular, the transition on the edit lattice from the
state �� to to the state ���� is constrained to move in a di-
rection that is increasing and connected in the horizontal,
vertical or diagonal direction on the lattice. The diagonal
transition corresponds to the match of an edge of the data
graph to an edge of the model graph. A horizontal tran-
sition means that the data-graph index is not incremented,
and this corresponds to the case where the traversed nodes
of the model graph are null-matched. Similarly when a ver-
tical transition is made, then the traversed nodes of the data-
graph are null-matched.

To commence, we require some formality. Suppose that
�� � ��� �� and ���� � ��� �� represent adjacent states in
the edit path between the seriations� and � . According to
the classical approach, the cost of the edit path is given by

����� � � ���� �
�
����

���� � ����� (9)

where ���� � ����� is the cost of the transition between
the states �� � ��� �� and ���� � ��� ��. The optimal
edit path is the one that minimises the edit distance between
string, and satisfies the condition �� � ��
���� ���� and
hence the edit distance is ����� � � �����. Classically,

the optimal edit sequence may be found using Dijkstra’s al-
gorithm [4] or by using the quadratic programming method
of Wagner and Fisher [22].

However, in this paper we adopt a different approach.
We aim to find the edit path that has maximum probability
given the available leading eigenvectors of the data-graph
and model-graph adjacency matrices. Hence, the optimal
path is the one that satisfies the condition

�� � ��
��	
�

 �����
 � �
�
� � (10)

To develop this decision criterion into a practical edit dis-
tance computation scheme, we need to develop the a poste-
riori probability appearing above. We commence by us-
ing the definition of conditional probability to re-write the
a posteriori path probability in terms of the joint probabil-
ity density ���
 � �

�
� � for the leading eigenvectors and the

joint density function ���
 � �
�
� ��� for the leading eigen-

vectors and the edit path. The result is

 �����
 � �
�
� � �

 ���
 � �
�
� ���

 ���
 � �
�
� �

(11)

We can rewrite the joint density appearing in the numer-
ator to emphasise the role of the components of the adja-
cency matrix leading eigenvectors and the component edit
transitions explicit

� ������ � ��� � �
� ���� ���� �

�

����� ����� �
�

� ���� �
�

� ������� ��� ��� ����

� ���
�
� ��

�
�

(12)

To simplify the numerator, we make a conditional in-
dependence assumption. Specifically, we assume that the
components of the leading eigenvector of the adjacency ma-
trices, depend only on the edit transition �� associated with
their node-indices. Hence, we can perform the factorisation

� ������ � ��� � �

���
���

� ���� ���� �
�

� �������
�
� ���� ��� � � � � ���

� ���
�
� ��

�
�

(13)

where ���� ��� ���� �
� is the joint prior for the sequence of
edit transitions and ��� �� is the coordinate pair on the edit
lattice associated with the state ��. To simplify the joint
prior, we assume that transitions between sites that are not
adjacent on the edit lattice are conditionally independent.
As a result

 ���� ��� � � � � �
� � ��
�

���
���

 ��������� (14)

This takes the form of a factorisation of conditional
probabilities for transitions between sites on the edit lattice
 ���������, except for the term ��
� which results from
the final site visited on the lattice. To arrive at a more ho-
mogeneous expression, we use the definition of conditional
probability to re-express the joint conditional measurement

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

density for the adjacency matrix leading eigenvectors in the
following form

� �������� �
�

� ������� �
� �����

�

����� ��� ����� �������� �
�

� ����

� ����
(15)

Substituting Equations (14) and (15) into Equation (13)
we find

� ������ � �
�

� � �

� ��
���

� �����
�

����� ��� ����
� ���� �����

� ����� ������

�

�

��

���
� �������� �

�

� ����

� ���� � ��� �

(16)

Since, the joint measurement density ���
 � �
�
� � does

not depend on the edit path, it does not influence the deci-
sion process and we remove it from further consideration.
Hence, the optimal path across the edit lattice is

�� � ��
 ��	
�����������

�
�
���

 �����

�

���� ��� ����

 ���� �����

 ���� ������

�� (17)

The information concerning the structure of the edit path
on the lattice is captured by the quantity

!����� �
 ���� �����

 ���� ������
(18)

To establish a link with the classical edit distance picture
presented in Section 3, we can re-write the optmimal edit
path as a minmisation problem involving the negative loga-
rithm of the a posteriori path probability. The optimal path
is the one that satisfies the condition

�� � ��� ��	
�����������

� ��
���

�
�� �����

�

����� ��� �����
	������

��

(19)
As a result the elementary edit cost ���� � ����� �
����� �� � ��� ��� from the site ��� �� and the edit lattice
to the site ��� �� is

���� � ����� ��
�

	� �����

�

����� ��� ����

�
	� �������
�

����� ��� �	�� �
	������

�
(20)

3.1.1 Lattice Transition Probabilities

Recently, we have reported a methodology which lends it-
self to the modelling of the edge compatibility quantity
!����� [11]. It is based on the idea of constraint corrup-
tion through the action of a label-error process.

The model leads to an expression for the compatibility
that is devoid of free parameters and which depends on the
edge-set in the graphs being matched. Details of the deriva-
tion of the model are omitted from this paper for reasons of
brevity. The compatibility contingency table is

������ �

	

�

�

�
� if �� � ���� if ��� �� � ��

and ��� 	� � ��

� if �� � ���� if ��� �� � ��

and �� � � � 	 � ��

� if �� � ���� if �� � � � � � ��

and ��� 	� � ��

� if �� � � � � � �� and �� � � � 	 � ��
(21)

3.1.2 A Posteriori Correspondence Probabilities

The second model ingredient is the a posteriori probabil-
ity of visiting a site on the lattice. Here we assume that
the differences in the components of the adjacency matrix
leading eigenvectors are drawn from a Guassian distribu-
tion. Hence,

� ������� ���� ��� ���� �

������
�����

��
���

	
�

�
� �

���

�������� �
�

� ����
�

� if �� �� � � � �� ��

� if � � � or � � �

(22)

3.2. Minimum Cost Path

With the edit costs at hand, we proceed to find the path
that yields the minimum edit distance. Our adopted algo-
rithm makes use of the fact that the minimum cost path
along the edit lattice is composed of sub-paths that are also
always of minimum cost. Hence, following Levenshtein [7]
we compute a ��� � � ��
 � transition-cost matrix " whose
elements are computed recursively using the formula

��� �

	

�

�

���� � ��� if � �
 and � �

���� � ��� �
����� if � �
 and � � �

���� � ��� �
����� if � �
 and � � �

���� � ��� � ��	�
����� �

������
��������
if � � � and � � �

(23)

The matrix " is a representation of the accumulated min-
imal costs of the path along the edit lattice constrained to
horizontal, vertical and diagonal transitions between adja-
cent coordinates. The minimum cost path can be proven
to be that of the path closest to the diagonal of the ma-
trix [7]. As a result, the edit distance is given by the bot-
tom rightmost element of the transition-cost matrix. Hence,
����� � � "��� ����� �.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Figure 1. Example image, polygonalisation results and
Delaunay triangulation

4. Experiments

We have experimented with our new matching method
on an application for performing automatic image database
indexing and retrieval. We have performed experiments
on a database containing 245 binary images of trademark-
logotypes1. Here, the graphs are constructed as follows.
First, we have extracted the set of straight line segments
using the method in [13]. With the set of straight line seg-
ments at hand, we proceed to compute their center-points.
The graphs used in our experiments are the Delaunay trian-
gulations of these points. In the top left-hand-panel in Fig-
ure 1, we show an example of the images used in our exper-
iments. The middle panel shows the results of the straight
line extraction method. The corresponding Delaunay graph
is displayed in the right-hand-panel.

4.1. Database Indexing

For indexing the database, we proceed as follows. We
commence computing the complete set of distances be-
tween each of the distinct pairs of graphs. Once the set
of distances is to hand, we construct the matrix # whose
element ������ is the edit distance ������ between the graph
indexed 	� and the graph indexed 	�.

We commence the indexing process by applying the pair-
wise clustering algorithm of Robles-Kelly and Hancock
[13] to the similarity data for the complete set of graphs
in the database. The pairwise clustering algorithm requires
distances to be represented by a matrix of pairwise affinity
weights. Ideally, the smaller the distance, the stronger the
weight, and hence the mutual affinity to a cluster. The affin-
ity weights are required to be in the interval
�� ��. Hence,
for the pair of graphs indexed 	� and 	� the affinity weight
is taken to be

$����� � �	�
�

%

������
��	�#�

�
(24)

1All trademarks and logotypes remain the property of their re-
spective owners. All trademarks and registered trademarks are
used strictly for educational and academic purposes and without
intent to infringe on the mark owners.

500

1000

1500

2000

2500

3000

Graph Edit Distance Matrix

50 100 150 200

50

100

150

200

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial Estimate of the Affinity Matrix

50 100 150 200

50

100

150

200

(b)

Figure 2. Edit distance matrix and affinity matrix for the
logotype-database.

where % is a constant. For all our experiments, we have
set % � �. The clustering process is an iterative one that
maintains two sets of variables. The first of these is a set
of cluster membership indicators &����� which measures the
affinity of the graph indexed 	 to the cluster �� indexed
' at iteration (of the algorithm. The second, is an es-
timate of the affinity matrix based on the current cluster-
membership indicators $ ���. These two sets of variables
are estimated using interleaved update steps, which are for-
mulated to maximise a likelihood function for the pairwise
cluster configuration. The initial matrix of affinity weights
computed by the clustering algorithm when indexing the
database is shown in Figure 2b. The matrix # is displayed
in Figure 2a.

Finally, we perform a further eigendecomposition to
identify the graph corresponding to the center for each clus-
ter in the database. To do this, we commence computing
the cluster affinity matrix$� for the cluster indexed '. Let
��� and ��� be two graphs corresponding to two images in
the database indexed 	� and 	�. The elements of the matrix
$� are given by

$�
������� �

�
$������� if ����� ���� � ��

� otherwise
(25)

(a) (b) (c)

(d) (e) (f)

Figure 3. Cluster-center and sample cluster members.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Recall that Sarkar and Boyer [15] have shown that the scalar
quantity x

¯
�
�$

�x
¯�

, where $� is the affinity matrix and
x
¯�

� �x
¯�
���� x

¯�
���� � � �� is a vector of cluster-membership

variables, is maximised when x
¯

is the leading eigenvector of
$�. Viewed in this way, each such matrix represents a dis-
tinct cluster and its leading eigenvector represents the indi-
vidual cluster-membership affinities of the graphs. Hence,
if x

¯�
is the leading eigenvector of $�, the center of the

cluster indexed ' is the graph ��� � ���� � x
¯�
�	�� �

��	
����
��� �x¯�

�
���.
In Figure 3, we show example images for the classes in-

dexed ' � �� � (i.e. the first and second clusters). For the
first cluster, we show the image corresponding to its center
in Figure 3a. Two sample images corresponding to graphs
in the first cluster are shown in Figures 3b and 3c. Figure 3d
shows the center of the second cluster. Two sample images
corresponding to graphs in the second cluster are displayed
in Figures 3e and 3f. For our database, the indexing pro-
cess extracted 34 clusters with an average of 7 images per
cluster.

4.2. Search and Retrieval

Once the database has been indexed, we can perform
search and retrieval making use of a query image. At in-

Figure 4. Top row: input query images; Bottom rows:
search results.

put, we extract the set of straight line segments and com-
pute their center-points. The graph�� corresponding to the
query image is obtained computing the Delaunay triangula-
tion of these points.

As a consequence of the database indexing process
outlined in the previous section, search and retrieval are
straightforward tasks. The search process is as follows.
First, we compute the set of graph edit distances �#� �

� ������ ������ � � � � �������� between the graph �� and the set

of cluster-center graphs �� � � ���� ���� � � � � ������. Once the
set of graph edit distances is to hand, we find the cluster
index �' such that �' � �� � � � ���

���
����

�������.

The query results, ordered by relevance, are given by
the images corresponding to the set of graphs �� �
����� ���� � � � � �������� such that��� � �
� subject to the con-
dition ����� � ����� � � � � � ��

�������, where ����� is the graph
edit distance between the graphs ��� � �

� and �� .

In Figure 4, we show the results of two query operations.
In the top row, we show the two input query images. These
are an image of a variant of the “Days Inn” logotype and
a “Crush” logotype image. The three bottom rows show,
in order of decreasing importance, from top-to-bottom, the
three most relevant search results for each of the two input
images.

It is worth noting that the database contains only two
“Days Inn” logotype images and a single “Crush” logotype
image. Hence, from our results, we can conclude the algo-
rithm is able to cope with structural errors and differences
in graph-size.

5. Conclusions

The work reported in this paper provides a synthesis
of ideas from spectral graph-theory and structural pattern
recognition. We use a graph spectral seriation method based
on the leading eigenvector of the adjacency matrix to con-
vert graphs into strings. We match the resulting string rep-
resentations by finding the path on the edit lattice whose
cost is minimum. The edit costs needed are computed using
a simple probabilistic model of the edit transitions which is
designed to preserve the edge order on the correspondences.
The minimum cost edit sequence may be used to locate cor-
respondences between nodes in the graphs under study.

We have demonstrated that both the edit sequence and
the associated distance are of practical use. The edit se-
quence delivers correspondences that are robust to struc-
tural error and can be used to cluster graphs into meaning-
ful classes for purposes of image-database indexing and re-
trieval.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

References

[1] J. E. Atkins, E. G. Roman, and B. Hendrickson. A spectral
algorithm for seriation and the consecutive ones problem.
SIAM Journal on Computing, 28(1):297–310, 1998.

[2] H. Bunke. On a relation between graph edit distance and
maximum common subgraph. Pattern Recognition Letters,
18(8):689–694, 1997.

[3] F. R. K. Chung. Spectral Graph Theory. American Mathe-
matical Society, 1997.

[4] E. W. Dijkstra. A note on two problems in connection with
graphs. Numerische Math, 1:269–271, 1959.

[5] M. A. Eshera and K. S. Fu. A graph distance measure for
image analysis. IEEE Transactions on Systems, Man and
Cybernetics, 14:398–407, 1984.

[6] R. Horaud and H. Sossa. Polyhedral object recognition by
indexing. Pattern Recognition, 28(12):1855–1870, 1995.

[7] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals. Sov. Phys. Dokl., 6:707–710,
1966.

[8] L. Lovász. Random walks on graphs: a survey. Bolyai Soci-
ety Mathematical Studies, 2(2):1–46, 1993.

[9] B. Luo and E. R. Hancock. Structural graph matching us-
ing the EM algorithm and singular value decomposition.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
23(10):1120–1136, 2001.

[10] B. Mohar. Some applications of laplace eigenvalues of
graphs. In G. Hahn and G. Sabidussi, editors, Graph Symme-
try: Algebraic Methods and Applications, NATO ASI Series
C, pages 227–275, 1997.

[11] R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph
edit distance. PAMI, 22(6):628–635, June 2000.

[12] B. J. Oommen and K. Zhang. The normalized string editing
problem revisited. PAMI, 18(6):669–672, June 1996.

[13] A. Robles-Kelly and E. R. Hancock. Pairwise clustering
with matrix factorisation and the EM algorithm. In Euro-
pean Conference on Computer Vision, pages 63–67, 2002.

[14] A. Sanfeliu and K. S. Fu. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Transactions on Systems, Man and Cybernetics, 13:353–
362, 1983.

[15] S. Sarkar and K. L. Boyer. Quantitative measures of
change based on feature organization: Eigenvalues and
eigenvectors. Computer Vision and Image Understanding,
71(1):110–136, 1998.

[16] G. Scott and H. Longuet-Higgins. An algorithm for associat-
ing the features of two images. In Proceedings of the Royal
Society of London, number 244 in B, pages 21–26, 1991.

[17] L. G. Shapiro and R. M. Haralick. Relational models for
scene analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4:595–602, 1982.

[18] L. S. Shapiro and J. M. Brady. A modal approach to feature-
based correspondence. In British Machine Vision Confer-
ence, pages 78–85, 1991.

[19] A. Shokoufandeh, S. J. Dickinson, K. Siddiqi, and S. W.
Zucker. Indexing using a spectral encoding of topological
structure. In Proceedings of the Computer Vision and Pat-
tern Recognition, pages 491–497, 1998.

[20] S. Umeyama. An eigen decomposition approach to weighted
graph matching problems. PAMI, 10(5):695–703, Septem-
ber 1988.

[21] R. S. Varga. Matrix Iterative Analysis. Springer, second
edition, 2000.

[22] R. A. Wagner and M. J. Fisher. The string-to-string correc-
tion problem. Journal of the ACM, 21(1):168–173, 1974.

[23] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and
K. M. Currey. An algorithm for finding the largest ap-
proximately common substructures of two trees. PAMI,
20(8):889–895, August 1998.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

