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Abstract
The ability to reliably infer the nature of telephone conversations opens up a variety of
applications, ranging from designing context-sensitive user interfaces on smartphones, to
providing new tools for social psychologists and social scientists to study and understand social
life of different subpopulations within different contexts. Using a unique corpus of everyday
telephone conversations collected from eight residences over the duration of a year, we investigate
the utility of popular features, extracted solely from the content, in classifying business-oriented
calls from others. Through feature selection experiments, we find that the discrimination can be
performed robustly for a majority of the calls using a small set of features. Remarkably, features
learned from unsupervised methods, specifically latent Dirichlet allocation, perform almost as well
as with as those from supervised methods. The unsupervised clusters learned in this task shows
promise of finer grain inference of social nature of telephone conversations.

I. Introduction and Motivation
With the growing popularity of voice interface in portable devices, there is an increasing
demand for context-sensitive computing and context-sensitive user interfaces. For example,
during a business call, a user may wish to access his calendar or his office emails. Likewise,
during a personal call, he may wish to access his twitter messages or his facebook page.
Such context-sensitive interfaces can help reduce cognitive load under challenging
circumstances (e.g., driving) as well as for older adults. Apart from facilitating efficient
interaction with others, the ability to automatically infer the social nature of conversations
can provide new tools for social psychologists and social scientists to study and understand
social life of different subpopulations under different situations.

The goal of this work is to characterize social engagement in older adults so that we can
better understand its ameliorating effect on cognitive decline [1]. While social engagement
is multifaceted, older adults, who are often less mobile, rely on telephone conversations to
maintain their social relationships. A recent survey by Pew Research Center found that
among adults 65 years and older about nine-in-ten talk with family or friends every day and
more than 95% of adults use landlines telephones for all or most of their calls [2].

Given the above premise, we focus our attention on studying social interactions over
landline telephones among older adults. To facilitate such a study, we collected telephone
conversations from a small group of older adults for several months, after obtaining their
consent, as described in Section II. Note, this corpus is unlike publicly available corpora
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such as Switchboard and Fisher in that the conversations are natural and cover a wider range
of topics from everyday life with more conversational partners.

Teasing apart the nature of spoken discourse is an active area of research with topics such as
affect recognition [3], recognition of speaker characteristics [4], determination of dialog acts
[5], [6], [7], content-driven topic modeling [8], [9], [10] and the role of small talk versus
substantive conversation in social well-being [11]. Of particular interest to our own work are
the studies conducted over the Switchboard telephony corpus [12]. This corpus contains
telephone recordings between pairs of individuals, where participants were asked to draw
from a particular theme of social conversation (e.g. music, crime, air pollution) when
chatting over the telephone. The presence of well-defined labels has led to several
Switchboard topic classification studies [13], [14]. Despite imperfect automated speech
recognition, topics were discriminated with a surprisingly good accuracy. While
Switchboard has been undeniably useful in probing the topic classification problem, it is
limited by the fact that all conversations consist of social discourse with an unfamiliar
contact.

Everyday telephone conversations, on the other hand, are highly diverse in nature, ranging
from business-oriented calls to highly personal calls. As an initial step towards
characterizing these calls, we investigate a coarse classification between business-oriented
calls and calls from/to residential lines. The privacy constraints on the corpus preclude
human transcriptions and annotation of the data. Instead, we rely on side information
collected from online sources. This classification task provides a mechanism to learn
features related to lexical choice and speaking style that signal formal and informal social
contexts. Such features may be useful in characterizing the diverse calls observed in
everyday life. For this purpose, as described in Section III, we investigate a variety of
features, extracted solely from the content, content that is obtained from automatic
transcription and is errorful. We examine unsupervised methods for feature selection to
utilize the large number of calls without side information. In Section IV, we analyze the
errors incurred by our classifier and show that the confidence of the classifier can be
quantified.

II. Corpus of Everyday Telephone Conversations
A. Overview

Our corpus consists of 12,067 digitized landline telephone conversations. Recordings were
taken from 10 volunteers over a period of approximately 12 months. Subjects were all native
English speakers recruited from the greater Portland area in US. Audio captured from the
USB recording devices was processed off-line with an ASR system. Apart from recorded
speech, our corpus includes a rich set of meta data, including subject ID, time of day, call
direction (incoming vs outgoing), duration and DTMF signaling tones, which we have not
exploited in this study.

For this initial study, we discard conversations with less than 30 automatically transcribed
words primarily to get rid of spurious and noisy recordings related to device failure and
incorrectly dialed telephone numbers. Moreover, short conversations are less likely to
provide enough social context to be useful. In addition to dropping short conversations, we
also pre-process our transcripts with a short stop-word list. This list was created from the ten
most numerous words in the corpus. Words appearing on this list were eliminated from the
transcripts.

Of the 8,558 available conversations, 2,728 were identified as residential conversation and
1,095 were identified as business conversation. This left 4,395 unlabeled records, for which
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the reverse-phone-lookup was either inconclusive or for which the phone number
information was missing and/or improperly recorded. From the labeled records we created a
balanced verification set containing 164,115 words over 328 conversations. The remainder
was used to create a balanced training set consisting of 866,696 words over 1,862
conversations. For the balanced training set, we randomly selected 931 of the available 2564
residential training examples. Empirically, we found that dropping the 1,631 additional
training records had negligible impact during cross validation experiments. The detailed
breakdown of the corpus is give in Table I.

B. Automatic speech recognition
Our ASR system is structured after the IBM's conversation telephony system which gave the
top performance in 2004 evaluation of speech recognition technology by National Institute
of Standards and Technology [15]. The acoustic models were trained on about 2000 hours of
telephone speech from Switchboard and Fisher corpora [12]. The system has a vocabulary of
47K and uses a trigram language model with about 10M n-grams, estimated from a mix of
transcripts and web-harvested data. Decoding is performed in three stages using speaker-
independent models, vocal-tract normalized models and speaker-adapted models. The three
sets of models are similar in complexity with 8000 clustered pentaphone states and 150K
Gaussians with diagonal covariances. Our system does not include discriminative training
and performs at about 24% on NIST RT Dev04. While our ASR system was trained on
telephony speech, the training data differs from our corpus in diversity of content and
speaking style as noted earlier. We cannot report a direct measure of transcription accuracy
on our corpus since we lack human-generated reference transcripts.

III. Classification experiments
A. N-gram Features

To form an experimentation baseline, we examine the use of n-gram modeling. N-grams
offer a simple, but rich representation of conversational data. In order to remove duration
effects, we restrict our focus to n-gram frequencies rather than raw n-gram counts. We then
scale these frequencies by the log-document-frequency. The dth entry into a conversation
feature vector is thus given as:

(1)

where cd is the count of the dth token in the given conversation and wd is the log-document-
frequency scaling:

(2)

Empirically, we did not find significant changes in overall accuracy from normalizing for
number of spoken words. However, we did find that the log-document-frequency scaling
tended to reduce variance within the k-fold cross-validation sweeps.

For all of our experiments we use an SVM classifier, implemented in libSVM [16]. The
parameters for SVM were chosen using a 30-fold cross-validated (CV) grid search over the
training data. The unigram feature vector contained 25,201 unique tokens while the bigram
feature contained 736,033 unique tokens. Experimental results for several basic n-gram
features are given in the top section of Table II. First and foremost, it is clear a large and
exploitable differences exist between the two classes. For the majority of our experiments
we managed to achieve over 80% classification accuracy on the verification data; an
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encouraging result given that features were extracted from errorful ASR transcripts. The
unigram vector with radial basis function (RBF) kernel performed the best, yielding 87.50%
accuracy.

More interesting perhaps is lack of improvement seen from bigrams: 84.76% verification
accuracy. This drop in accuracy was consistent with lower accuracies observed during cross
validation. We hypothesize two reasons for why moving toward the richer bigram model
degraded results. First, ASR transcription error compounds when migrating from unigram to
bigram analysis. This makes bigrams much more sensitive to the ASR transcription error.
Secondly, the bigram feature set was extremely sparse (736K bigram tokens versus 25K
unigram tokens), with a very few bigrams appearing more than a handful of times.

B. Alternate Features: Stemmed, LIWC, POS
Given the issues with n-gram sparsity it begs the question whether more parsimonious
feature sets can achieve similar accuracies. We investigate three lower dimensionality
feature sets: 1) stemmed unigrams, 2) a hand-crafted dictionary of salient words from social
psychology, and 3) part of speech tags (POS).

Word stemming is used to map families of words down to a morphological base (e.g. jump,
jumps, jumped, jumping → jump). Stemming is employed within many machine learning
applications were the morphological variants of words are viewed as a source of noise on
top of the more important content-conveying word stem. We use an implementation of the
Porter stemmer for our experiments [17]. While the stemmer does miss many mappings (e.g.
geese, goose) it results in a reduction of the dictionary down to approximately 15,000 word
stems.

We investigated a hand-crafted dictionary of salient words, called LIWC, employed in a
number of social psychology studies [18]. This dictionary attempts to group words into 64
categories such as pronouns, activity words and positive and negative emotions. The
categories have significant overlap and a given word can map to zero or more categories.
The clear benefit of LIWC is that the word categories have very clear and pre-labeled
meanings. However, since categories are not defined under any sort of mathematical criteria,
there are no guarantees the resultant feature will possess any useful discriminative
information.

Finally, we examine the use of part-of-speech (POS) tags as a feature set. Though the POS
feature is orders of magnitude more compact than the unigrams, our primary goal here is to
probe the utility of syntactic versus content driven features. We obtain our POS features by
running our ASR transcripts through the Stanford tagger [19]. Stop words were left in place
to provide the context necessary for tagging words accurately. We treat the 36 POS tags as a
`bag of features', deriving frequency based estimates as per the unigram feature vector.

The bottom section of Table II gives the recognition accuracies for the aforementioned
feature sets. While all of the reduced feature sets did posses significant discrimination
utility, it is clear varying degrees of performance has been sacrificed. In particular, the
degradation caused by unigram stemming was somewhat surprising given that the dictionary
was only shrunken from 25K words down to 15K stems. The LIWC feature set saw even
further degradation in accuracy, which can perhaps be attributed to its very aggressive word
mappings. POS tag features also suffer performance degradation, with accuracy of about
77.7%. Though not as discriminative as the unigrams, it suggests discrimination can be
achieved without content-based features and with only coarse features related to speaking
style. Furthermore, such POS features can be extracted reliably from noisy ASR transcripts.
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To test whether the POS information was complementary to the content-based features, we
ran an additional experiment where we created a hybrid unigram-POS feature set. Here,
feature tokens were given as a word-POS tuple (denoted by × sign in Table II). Depending
on context, a word can be associated with a number of tags. This had a counter-productive
effect of increasing the dictionary size to 35,274. Unfortunately the additional information
did not seem to provide any benefit over the standard unigram. We also tried simply
concatenating the POS feature vector onto both the unigram and LIWC vectors (denoted by
+ signs in Table II), but similarly, we saw no improvement.

C. Supervised Feature Selection
Given the mixed results from alternate feature sets, we now investigate the somewhat
simpler approach of pruning the unigram dictionary. This dictionary truncation can be
undertaken with several criteria in mind, though in this study we limit our scope to
frequency based and mutual information (MI) based methods. For frequency based removal,
we simply simply drop rare words. Any word fails to appear in a certain number of
conversations is dropped. For the MI based method, we calculate the mutual information
between word presence and class labels. Words with low mutual information are then
selected as candidates for removal. As well as being more principled than the frequency-
based truncation, calculation of MI rankings gives us direct insight into the lexicon of the
two classes. Table III shows several high MI ranked words for both categories. Here we
have shown the top 30 MI ranked words indicative of a business call and 30 words
indicative of a social call.

Using either dictionary truncation method, we can achieve various levels of pruning by
altering the respective threshold parameters. Dictionary sizes tested range from 250 to the
full 25k. The lower limit of 250 was selected to ensure every conversation had at least one
in-dictionary word. Figure 1 shows the effect of truncating the unigram dictionary. It is
immediately apparent that the unigram dictionary is extremely robust to a wide range of
pruning. Not surprisingly, the MI approach gave better verification accuracies – particularly
at more aggressive settings. However it is of interest to note that both methods performed
remarkably well given their simplistic strategy. A 1000-word dictionary here gave better
performance than the much larger stemmed unigram dictionary (15K words), a finding
which suggests important information resides within the word morphology. As a final note,
we did not observe a monotonic degradation of accuracy when increasing the pruning. Both
methods produced a local optima around the 1000-word setting, which appears to be
indicative of a trade-off between the negative effect of sparsity and positive effect of model
richness.

D. Unsupervised Feature Selection: Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) was first proposed as a way to generatively model a
collection of documents [8]. Here, individual documents are modeled as a mixture of K
latent topics, each of which is governed by a multinomial distribution. We are motivated to
test LDA models here for three reasons. First it utilizes a `bag of words' model, which may
be more robust to ASR error. Second, it is capable of producing parsimonious models
without the loss of richness incurred by truncating unigrams. Finally, being a generative
model we can leverage the substantial amount of unlabeled data on our corpus.

LDA requires specification of two hyper-parameters. The hyper-parameter α is the Dirichlet
prior for the topic multinomial distribution over conversations, while β is the Dirichlet prior
for the word multinomials over topics. Setting these parameters to small values has the
effect of modeling conversations with few topics (in the case of α) and modeling topics with
few words (in the case of β).
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For our experiments we generate a K-topic LDA model from the 8230 non-verification
records. Experimentally, we found best CV results were gained by setting LDA parameters
α and β to 0.01 and 0.1 respectively. To produce feature vectors, we calculate log-
probabilities for the K topics in each conversation. Results for the LDA experiments are
shown in Figure 2 for varying numbers of topics. The unsupervised features perform almost
as well as unigram features, achieving an accuracy of 86.59% with 30 topic clusters. Though
accuracy did drop when the number of clusters were reduced, decent discrimination
persisted down to the 2-topic model. This suggests the LDA model was able to
approximately learn the our classes in an unsupervised manner. Indeed, when peering into
words which constituted the topics, a business/social trend did seem to emerge. Table IV
lists words strongly associated with the two topics and clearly the unsupervised clustering
appears to have automatically differentiated the business-oriented calls from the rest. On
closer examination, we found that most of the probability was distributed in a limited
number of words in the business-oriented topic. On the contrary, the probability was more
widely distributed among words in the other cluster.

IV. Error analysis
In this final experiment Section, we perform several error analyses on our data. Since the
unigram feature set gave top performance, we use it as the basis for these experiments. Our
first error analysis concerns error break-down for individual subjects. Our reason for
undertaking this analysis was to ensure our model were not simply learning the lexicon of
the more dominant contributors at the expense of the other subjects. Breakdown of the
verification error is given in Table V. Despite variation among subjects, clear discrimination
was achieved in each case. Encouragingly, homes 4 and 8 achieved very high classification
scores despite cumulatively contributing less than 4% of the training corpus.

Our next error analysis concerns error distributions conditioned on conversation lengths.
Our hypothesis here was that the longer a (homogeneous) conversation goes on for, the
easier it should be to determine its context. To test this, we break the verification data into 5
groups sorted by word counts. Accuracies for each verification sub-group are given in Table
VI. Here a fairly clear pattern emerges, with error increasing for the shorter conversations.
However, once word counts hit 300–400 words (2–3 minutes of conversation), accuracy
tended to plateau.

Our final analysis concerns the separability of the two classes. To do this, we measure the
confidence of the classifier against the accuracy it actually achieves. Ideally, a high
confidence should be matched with very high accuracy. To measure confidence in the SVM
classifier, we use the absolute SVM decision score. As with the previous experiment, we can
sort verification examples into sub-groups to individually evaluate accuracy. Results are
given in Table VII. Here, results shows clear correlation between classifier confidence and
accuracy. The high correlation between confidence level and accuracy allows us to achieve
an arbitrary precision, by selectively ignoring `hard to classify' examples. Figure 3 shows
the trade-off plot between test set coverage and accuracy. As a final note, the sub-groups of
both word counts and confidence levels typically had balanced levels of residential and
business conversation. One exception to this was the top 20% confidence group, which was
70% business calls. Further investigation revealed that many of these calls could be traced
back to automated customer service conversations – calls which tended to have a very
limited and recognizable vocabularies.
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V. Conclusion
In this paper we evaluated the utility of various lexical features in discriminating business-
oriented telephone conversations from the others. Similar to results on the topic
classification task, we found unigram features to give good discrimination even when they
are extracted from noisy ASR transcripts. The classification accuracy is not particularly
sensitive to number of features and performance degrades gracefully when the features are
pruned using supervised and unsupervised methods. Among the other features explored, we
found the performance to be most sensitive to word morphology (e.g. word tense), with
word stemming introducing significant reductions in accuracy. Part-of-speech tags possess
surprisingly good discrimination ability, given that the POS tags only capture speaking style
in coarse manner and is devoid of content. However, its performance is still eclipsed by the
unigram feature.

For this paper, the majority of experiments we have presented have relied upon a simple
binary classification of the data. While initially an arbitrary choice, this classification was
corroborated by the fact that unsupervised two-topic LDA models tended to learn the same
boundary. Of course, this begs the question whether topics learned in an unsupervised
manner using LDA would separate the conversations along social nature of the calls as well.
Our future work will examine such unsupervised methods as well as semi-supervised
methods where clusters are seeded, for example, with words related to health or dining out.
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Fig. 1.
Recognition accuracy under the effect of unigram dictionary pruning. Top plot shows cross
validation accuracies while bottom plot shows verification set accuracies.
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Fig. 2.
Classification using LDA topic log-probabilities.
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Fig. 3.
Accuracy of the unigram classifier with confidence pruning. Confidence is based on the
SVM output score. Testing examples with the lowest absolute scores are pruned first.
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TABLE II

Classification accuracies for basic word features. Accuracies are given for the hold-out verification testing
data.

Feature setting Accuracy (%)

Linear unigram 82.93

RBF unigram 87.50

RBF bigram 84.76

RBF stemmed unigram 83.23

RBF LIWC 78.66

RBF POS 77.71

RBF POS+LIWC 78.96

RBF POS+unigram 86.89

RBF POS×unigram 86.58
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TABLE III

Selection of words with high class label mutual information.

Business oriented Social oriented

Press, thank, calling, information, service, customer, number, quality,
please, pressed, representative, account, zero, seven, monitored,
transferred, nine, six, transfer, services.

Hi, dinner, she's, high, Brandon, home, dad, night, everybody, doing,
tonight, later, hello, mom, anyway, bad, nice, sleep, tomorrow,
house.
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TABLE IV

Binary topics for latent Dirichlet allocation.

Topic 1 Topic 2

Invalid, helpline, eligibility, transactions, promotional,
representative, mastercard, touchtone, activation, nominating,
receiver, voicemail, digit, representatives, Chrysler, ballots,
staggering, refills, resented, classics, metro, represented,
administer, transfers, reselling, recommendations, explanation,
floral, exclusive, submit.

Adorable, aeroplanes, Arlene, Astoria, baked, biscuits, bitches, blisters,
bluegrass, bracelet, brains, bushes, calorie, casinos, Char-lene, cheeses,
chit, Chris, clam, clientele, cock, cookie, copying, crab, Davenport,
debating, dementia, dictionary, dime, Disneyland, eek, Eileen,
fascinated, follies, fry, gained
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TABLE V

Verification error breakdown by subject.

Home Records Accuracy

1 8 87.50

2 103 84.47

3 42 80.95

4 6 100.00

5 27 77.00

6 74 94.59

7 25 88.00

8 43 90.70
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