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Abstract

Feature points for image correspondenceare often se-
lectedaccording to subjectivecriteria (e.g. edge density,
nostrils). In thispaper, wepresenta general, non-subjective
criterion for selectinginformativefeature points,basedon
thecorrespondencemodelitself. We describetheapproach
within theframework of theBayesianMarkov randomfield
(MRF)model,wherethedegreeof featurepoint information
is encodedby the entropy of the likelihoodterm. We pro-
posethat feature selectionaccording to minimumentropy-
of-likelihood(EOL) is lesslikely to leadto correspondence
ambiguity, thusimprovingtheoptimizationprocessin terms
of speedand quality of solution. Experimentalresults
demonstratethecriterion’sability to selectoptimalfeatures
points in a wide variety of image contexts (e.g. objects,
faces). Comparisonwith the automatic Kanade-Lucas-
Tomasifeatureselectioncriterion showscorrespondenceto
be significantlyfasterwith feature pointsselectedaccord-
ing to minimumEOL in difficult correspondenceproblems.

1. Introduction

Imagecorrespondencerefersto the task of finding the
optimal mappingof featurepoints in a model image to
pointsin a new image. In this paper, we addressthe ques-
tion of how to selectthe optimal featurepoints for image
matching. Most existing strategiesbasetheir selectionof
“informative” featurepointson subjectivecriteria. For ex-
ample,finding correspondencesbetweenfaceimagestends
to involve a searchfor typical facial featuressuchaseyes
or noses[5, 20]. In contour-basedapproaches[9], evenly-
spacedpoints lying on the boundaryof an object are as-
sumedto be equally informative. Automatedstrategies
identify informative image featurepoints basedon crite-
ria suchas edgedensity [17]. Although suchtechniques

work reasonablywell in thecontext for whichthey werede-
signed,becauseof theunderlyingsubjectivity of thefeature
selection,they cannotbe guaranteedto work in new con-
texts. In general,selectionof non-subjective featurepoints
for imagecorrespondencehaslargely beenignoredin the
literature.

Typically, oncefeaturepointsareselected,a correspon-
dencemodel combiningan imagesimilarity metric and a
regularizationstrategy is developed,basedon the chosen
featurepoints. Next, an optimizationstrategy is invoked
with theobjectiveof attaininganoptimally fast,unambigu-
ouscorrespondencesolution.In thispaper, wechooseto re-
verse this procedureandintroducea novel, non-subjective
approachto automaticfeaturepointselection.Weshow that
by basingthechoiceof featurespreciselyon thegivencor-
respondencemodel,optimizationover theselectedsetwill
necessarilyresult in a fast, unambiguouscorrespondence
solution. This approachis non-subjective in the sensethat
themodelitself determineswhich imagefeaturepointsare
best,eliminatingtheneedfor additionalcontext-specificse-
lectiontechniques.

We embedour approachwithin a generalBayesianim-
agecorrespondencemodel,whereimagesimilarity is repre-
sentedby the likelihoodprobability distribution. We show
how the entropy of the likelihood (EOL) distribution can
thenbe usedto definea mapdescribingthe degreeof in-
formationcontentin all pointsin the input image. Feature
pointsselectedaccordingto a minimumEOL criterionare
leastlikely to suffer from correspondenceambiguity, given
the similarity metric. This, in turn, leadsto a fasterand
morereliableoptimizationsolution. By describingour cri-
terionwith thelanguageof informationtheory, thestrategy
is generalizableto any context wherethe local imagesim-
ilarity metriccanbedefinedthrougha probabilitydistribu-
tion over thespaceof possiblemappingsolutions.

Theremainderof ourpaperis organizedasfollows: Sec-
tion 2 describesour approachwithin the context of the
BayesianMRF imagecorrespondencemodel. We define



a global optimization strategy, and describehow feature
pointswith low EOL result in a fast,unambiguous,global
solution. Experimentalresultsin Section3 show how the
EOL criterion identifiesoptimal featurepoints for corre-
spondencefor a wide variety of imagesusing a simple
BayesianMRF implementation.Correspondencetrials are
performedcomparingEOL featurepoint selectionwith the
Kanade-Lucas-Tomasi(KLT) [17] operator, apopularauto-
matic featurepoint selectionapproachbasedon edgeden-
sity. Finally, Section4 offersa brief conclusion.

2. The Entropy-of-Likelihood (EOL) Criterion

Theproblemof imagecorrespondenceis definedasfol-
lows: Given a model imageof a scene,��� , determinethe
locationsof the imagepixels in a new imageof the scene,��� , wheresomearbitrarydeformationhastakenplacein the
scenebetweenimageacquisitions.Specifically, correspon-
denceseeksa displacementfield � of randomvectors,�
	 ,
eachof whichmapsafixed �
������� pixel location� � 	 in � � to
a random �
������� pixel location � � 	 in � � . Imagecorrespon-
dencerequiresa modelto evaluatethefitnessof � , andan
optimizationstrategy to find anoptimalinstanceof � based
on themodel.

Thegoalof correspondenceis to find a fast,unambigu-
ousmappingsolution.Ideally, a featurepoint selectioncri-
terionshouldevaluatepointsaccordingto their potentialto
fulfill this goal. Sucha criterion can only be definedby
explicitly consideringthecorrespondencemodelused,and
possiblythe optimizationstrategy. We thereforebegin by
describingaBayesianimagecorrespondencemodelandop-
timization strategy, which provide the context in which a
generalandusefulcriterioncanbedefined.We thendefine
theEOL criterionfor featurepoint selection.

2.1. Bayesian Image Correspondence Model

The BayesianMarkov randomfield (MRF) correspon-
dencemodelprovidesa generalframework for combining
local imagefeatureswith prior knowledgeof spatialrela-
tionshipsbetweenfeatures.In themodel,similarity andreg-
ularizationtermsaredefinedasprobabilitydensities,whose
form can easily be changedwithout modifying the over-
all formulation. The modelhasbeenwidely applied;ap-
proachessuchasactive blobs[15], deformablemodels[9],
andactive shapemodels[2] canall bedescribedusingthe
BayesianMRF model[10].

TheBayesianapproachto imagecorrespondencedefines
a posteriorprobability densityfunction over displacement
vectorfield � , conditionalon theimages�
� and ��� :

���
��� �����������������
��� � ���!�"�#�$���
�#��� (1)

where�%�
���&� �������#� and�%�'�#� arereferredto asthelikelihood
and�%�
�(� prior distributions,respectively.

The Markov randomfield (MRF) is a generalizationof
theMarkov processto higherdimensions,statingthataran-
domvector �
	*)+� is independentof therestof thefield �
givenasubset,-	/.0� of neighboringrandomvectors:
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A MRF is equivalentto a Gibbsdistribution over a ran-
domfield � [7]:

���
�#�*298 �:�%��;=<>�
�(���? � (3)

where <>�
�(� is referredto as an energy functional, and?
is a normalizationconstant. The energy functional is

equalto thesumof individualenergy termsoverall Markov
neighborhoodcliques, i.e. all fully connectedsingles,pairs,
triples,etc...of variables��	 in neighborhoods,-	 suchthat:
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Theposteriordensityfunction in (1) canbe describedasa
MRF by definingboththelikelihoodandtheprior asGibbs
distributions[6, 16]:

�%�'��� � � �"� � �*298 �:�%��;=<>�
�I� ���:�"�������?
298 �:�%��;=<>�
���&� �J���
����� 8 �:�%��;=<>�
�(���? 6 (5)

The two energy functionals <>�
� � � �J��� � � and <>�
�(� define
the likelihoodandtheprior, andarespecifiedaccordingto
theparticulartaskat hand. We considerthe likelihooden-
ergy functional as representinga measureof local image
similarity betweenapoint in � � andit’s displacementin � � .
Theprior energy functionaldescribestheprior assumptions
asto how the neighboringvectors � 	 and � E canvary spa-
tially. Our posteriorenergy functional is thereforeof the
form:
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where< L �'� � � � � ���
	'� and < N �1�
	"� �7E
� representthelikelihood
andtheprior energy terms,respectively.

2.2. Optimization Strategy

Oncethe model hasbeenspecified,correspondenceis
calculatedby optimizing over a fitnessfunction. In the
BayesianMRF model, the fitnessfunction is the posterior
in (5), and the goal is to find the maximum a posterior
(MAP) displacementfield instanceQSRUT N suchthat:

Q RUT N32 argmaxV W/�%�
�I� ���������
��XY6 (7)



Existingoptimizationstrategiescanbebroadlyclassifiedas
either global or local in nature[10]. Local strategies in-
clude iterative or gradientbasedschemes,which aregen-
erally sub-optimalandbasedon assumptionsthatcanpro-
ducespurious,incorrectlocal solutions[8]. Global strate-
giesrequiresearchingtheentireposteriorsolutionspacefor
a global maximum. Sucha searchis combinatorialin na-
ture andintractablein general,but feasiblefor correspon-
dencemodelsbasedonasmallnumberof featurepoints[3].
We motivatethe EOL criterion usingan exhaustive search
globalstrategy, althoughany optimizationstrategy canben-
efit from featurepointsselectedaccordingto thecriterion.

An exhaustivesearchfor theglobaloptimumof thepos-
terior in (5) requiresa searchover all possiblecombina-
tions of instancesof � . If � consistsof Z randomvari-
ables�
	 , andthedomainof randomvariables��	 consistsof[

discreteinstances\�]	 �"^_29`Y6G6 [ , anexhaustive searchis
of complexity ab� [ N � . The searchfor a globally optimal
solutioncanbe viewed asthe traversalof a searchtreeof
fixed depth Z , wherebranchingat depth c correspondsto
choosinginstancesof �
	 . Suchasearchcanbesolvedusing
techniquessuchasdynamicprogramming[3] or theViterbi
algorithm[13].

In orderto performthesearchin reasonabletime,search
heuristics[14] mustbeusedto intelligentlyprune,or disre-
gard,provablysub-optimalsolutions.We considera depth-
first treesearchwhereinstancesof � 	 areevaluatedin abest-
first manner, andalpha-betapruning is used[14]. Sucha
strategy canefficiently eliminatelargeregionsof thesearch
spacewhen QSRUT N representsasignificant,uniqueposterior
maximum,andis foundearlyon in thesearch.

2.3. EOL Feature Point Evaluation

With a generalmodelandthe optimizationstrategy de-
fined,weproceedto identify featurepointswhicharelikely
to result in a fastand unambiguouscorrespondencesolu-
tion. We begin by noting that in the tree searchstrategy,
eachlevel c of thetreecorrespondsto a branchingfactorof[

, where
[

is the numberof discreteinstances\ 	 in the
domainof randomvariable � 	 . Using the best-firstsearch
heuristic[14], instances\ 	 areselectedfor evaluationfrom
most to leastprobable,in order to locate Q R(T N early on
andeffectively prunethesearchtree.

During thesearch,theprobabilityof instances\ 	 canbe
evaluatedusingthecorrespondencemodelposteriorin (5),
conditionalon instances\��!6G6 \ 	1d � alreadyselected:
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Dueto theexponentialformulation,theposteriorexpres-
sionin (8) representsanupperboundon themaximumpos-
terior valueobtainableat a stagein the searchtree. It can

thus be usedto prunethe tree if anotherbranchhaspre-
viously yielded a higher solution, i.e. if the branchcor-
respondingto QSRUT N hasalreadybeenencountered.In the
worstcase,theposteriorin (8) is uniformly distributed,with
many equallyprobableinstances\e	 to be evaluated. This
resultsin a large branchingfactor, and the probability is
high thatmany falsebrancheswill be taken beforefindingQ R(T N . In thebestcase,it is highly informative,containing
asmallnumberof highlyprobablelocationsto beevaluated,
after which pruning can effectively eliminatesub-optimal
solutions.

The strategy we proposein this paper is to evaluate
points � 	 accordingto how well they leadto anunambigu-
ous,informative posteriorin (8). This canbedoneby cal-
culatingtheShannonentropy [4], awell-known measureof
probabilitydistributionambiguity:
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d ����2
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In orderto simplify theentropy calculationin (9), we pro-
poseconsideringonly the likelihoodterm of the posterior
in (8), which representsthelikelihoodof amatchoccurring
betweenafeaturepointin �
� andarandompointin ��� . In ef-
fect, thefewerpotentialmatches,thesmallerthebranching
factorof the global optimizationstrategy, and the smaller
thenumberof potentiallyambiguouscorrespondencesolu-
tions. We thus introducethe notion of computingthe en-
tropy of the likelihooddistribution (EOL) asa measureof
how likely � 	 is to resultin a fast,unambiguouscorrespon-
dencesolution:

i �1�
	"� � � ��� � ��\ � 6G6H6 \e	
d � �*} i �1��	4� � � �"� � ��2
fAj] g � 8 �Y�%��;=< L �
� � � � � ��\�]	 ����< L �
� � � � � ��\�]	 �76 (10)

Calculationof (10) is computationallyintensive, requir-
ing a sumover theentiredomainof � 	 for eachpoint in ��� .
This is necessarybecauseintuitively, theEOL criterionpro-
videsa measureof theambiguityof the likelihoodover all
possiblematchesin � � of a fixed point in � � . In practice,
undertheassumptionthat � � and � � containapproximately
the samelocal imagefeatures,the EOL canbe calculated
off-line from � � alonefrom thelikelihoodof �%�
��	"� � � ��� � � .

To selectfeaturepointsfor correspondence,anEOL map
canbecalculatedoverall imagepointsfrom whichasubset
is to be chosenfor correspondence.Thosechosenaccord-
ing to minimum EOL aremorelikely to result in fast,un-
ambiguousimagecorrespondence.An exampleof anEOL
mapgeneratedfor the imageof a cat canbe found in Fig-
ure1. Notehow informativefeaturepointsagreewith intu-
itivenotionsof imageimportance(e.g.eyes,ears).



(a) (b)

Figure 1. (a) Cat image [12] (b) Entr opy-of-
likelihood image, mapped suc h that light pix-
els correspond to low EOL, highl y inf ormative
points. In this case, the likelihood of the cor -
respondence model represents a diff erence-
of-Gaussian similarity metric described in
Section 3.1.1.

3. Experimentation

In this section,we presenta seriesof experimentsper-
formedto demonstratethattheEOL criterioncanbeusedto
selectoptimal featurepointsfor correspondence.We begin
by describingthe specificBayesianMRF implementation
usedthroughouttheexperimentation.Next, wedescribeour
implementationof featurepointselectionbasedontheEOL
map,andtheoptimization.Finally, we performcorrespon-
denceexperimentscomparingEOL featureselectionwith
thepopularKanade-Lucas-Tomasi(KLT) automaticfeature
selectioncriterion[17], over a wide varietyof imagepairs.
Throughoutall experimentation,the samemodel and op-
timization is used,andonly the featureselectioncriterion
is varied. The trials demonstratethat EOL featurepoints
resultin faster, morereliableimagecorrespondencefor an
arbitrarilyspecifiedmodel.

3.1. Bayesian MRF Implementation

We first describethe particular implementationof the
BayesianMRF model used throughoutexperimentation.
We emphasizethat the particularmodel chosenwas only
onepossibleimplementation,andtheEOL criterioncanbe
usedin any correspondencemodel for which local image
similarity canbe definedasa probability distribution over
the domainof � 	 . For convenience,we use �~� 	 and ��� 	 to
denotethepointsin ��� and ��� associatedwith displacement
vector � 	 .
3.1.1 Likelihood Energy
As mentionedin 2.1, we definethe likelihoodof ��	 to be
a local imagesimilarity metric, that is independentof the
similarity at neighboring� E . The likelihoodenergy thusis
definedoversinglecliques,expressinglocal similarity as:

< L �
� � � � � ����	5��2 @
]

�h� ] �
� � �'� � 	h��;3� ] �'� � �'� � 	'��� �� �L � (11)

where � ] �h� are local imagefeatures,and � �L is a variance
term. Specifying � ] �'� is task specific; any relevant im-
agefeaturescanbeused.In this paper, we usemulti-scale
difference-of-Gaussian(DOG) features[11]. TheGaussian
blurring kernelprovidespartial robustnessto small pertur-
bationsin local imagegeometryandspuriousnoise.DOG
featuresarealsorotationallyinvariant,marginalizingorien-
tation andsimplifying the domainof � 	 to �1�%����� locations
in ��� . For experimentation,� ] �h� consistedof 4 levels of
DOG features,calculatedusingGaussianblurring kernels
of sigma2, 4, 8, 16,and32 pixels,with varianceparameter� �L 2�`
�:� .
3.1.2 Prior Energy

The prior energy function is designedto reflect any prior
assumptionsmaderegardingthepossiblespatialvariations
betweenfeatures.We defineour prior to reflectthegeneral
assumptionthattherelativedistancebetweenfeaturepoints
remainsapproximatelyconstantbetween��� and ��� :

� �r�~� 	 �'�~� E ��} � ����� 	 �
��� E ��6 (12)

where
� �h� is the Euclideandistance. The prior energy is

thendefinedoverall neighboring��	 and �7E as:

< N �
��	4� ��E���2 � � � ��� � 	��
� � E
�M; � � �r� � 	��'� � E
��� ��~�N t$� � � (13)

where � N t$� � reflectsthe amountof variation permittedin
therelativedistanceassumption.As for neighborhoodrela-
tionships,we evaluatethe relative distanceassumptionbe-
tweenall pairs � 	 and � E . We define � N t1� � asproportional
to

� ���~� 	 �
�~� E � to reflectthe assumptionthat the greaterthe
separationbetweenneighboringpointsin � � , thehigherthe
expectedvariationin their relative distancesin � � . For all
experiments,weuse � N t$� � 2A� � �r� � 	e�
� � E
� .
3.2. EOL Feature Point Selection and Optimization

Image correspondencetrials were performedon input
imagespairs.For eachimagepair, theEOL mapwascalcu-
latedoff-line for eachpixel in image��� . A setof � 1 feature
pointsis thenchosenfrom � lowestvalleys of the map,as
thesereflect the lowest entropy points. We use ��2�`��
for experimentation.To ensurethatfeaturepointswerenot
clusteredin a small imageregion,a minimumdistanceof 5
pixelswasenforcedbetweenall featurepoints.

Optimizationwasperformedon-lineasdescribedin Sec-
tion 2.2, to find the optimal Q RUT N displacementof fea-
turepointsfrom ��� to ��� . In thesearch,variableswereor-
deredin decreasingsignificanceaccordingto theparticular
featureselectioncriterion, andinstancesof variableswere

1 � is anarbitraryfeaturesetsizechosenempirically.



(a) � � : Faceimage (b) EOL map

(c) EOL featurepoints � � (d) Correspondingpointsin � �
Figure 2. Feature selection and correspon-
dence for a face image (a) using the EOL map
(b). In (c) and (d), the EOL feature points are
found at the center of the white cir cles over-
laying ��� and ��� .

evaluatedin orderof decreasinglikelihood.Computational
complexity of optimizationwasreducedby constrainingthe
domainof ��	 to instances\e	 correspondingto peaksof the
likelihoodof ��	 .

In orderto emphasizethegeneralityof theapproach,the
strategy proposedin thispaperwastestedonawidevariety
of imagetypes. We testedfaceimagecorrespondenceus-
ing theMIT facedatabase[19]. Figure2 illustratesanEOL
map(b) computedoff-line onthefaceimagedepictedin (a).
Notehow themostinformativefacialfeaturepoints(shown
in (c)) accordingthe EOL agreewith intuitive notionsof
interestingfacial features,namelyeyes,nostrils,etc. The
generalityof the approachlies in the fact that thesepoints
werechosenwithout the requirementof explicitly specify-
ingafacemodel.Theresultof correspondencecanbefound
in (d). A slight correspondencemismatchoccurson theleft
eye in (d) becausethe distanceprior in (13) permits two
symmetricsolutions,aboveandbelow theeye.

3.3. Comparison of EOL and KLT Feature Selection

To demonstratethat theEOL canbeusedto selectopti-
mal pointsfor imagecorrespondence,we performedcorre-
spondencetrials comparingfeaturepointsselectedaccord-
ing to minimumEOL with selectionaccordingto theKLT
criterion [17], which favors points with significant, non-
uniformly orientededgedensity. The goal of testingwas
to compareEOL andKLT featurepointselectionaccording
correspondenceoptimizationtime. We expectedEOL fea-
tureswould generallyresultin fasteroptimization.Feature
pointswereselectedasin Section3.2: mapswerecomputed
off-line basedon theKLT andEOL criteria,andthebest10
peaks(or valleys)werechosenfor correspondence.

In termsof implementation,the KLT criterion required
specificationof 5 subjective parameters(i.e. local window
size,minimumedgeeigenvalue,etc.).We usedthedefaults
asspecifiedin [1]. TheEOL criterionis definedentirelyby
thelikelihoodof thecorrespondencemodelin Section3.1.1,
andrequiredno additionalparameters.

Thetestsetfor included35 imagepairsfrom theVASC
database[18] depictinga wide variety of scenes(e.g. ob-
jects,naturalandsyntheticscenes,aerialphotographs,etc.).
Imagespairsconsistedof differentviewpointsof the same
scene. In the interestof a fair comparison,we intention-
ally choseimagepairssuchthatall featurepointsselected
arevisibly presentin both images,i.e. we did not consider
occludedfeatures.Trialsweredeemedsuccessfulif acorre-
spondencesolutionwasfound in lessthan20 minutes.All
imageswerescaledto `
�:�U�_`���� resolutionfor processing.

The time requiredto find Q R(T N rangedfrom millisec-
ondsto minutes,dependingonthecomplexity of thescenes
in theimages.All correspondencesolutionsfoundappeared
qualitatively plausible,althoughno groundtruth compar-
ison was performed. EOL featurepoints resultedin 33
successfulsolutions,ascomparedwith 18 for KLT feature
points. Figure3 illustratesa plot comparingoptimization
time for eachimage pair. Optimization of EOL feature
pointswasfasterin 27 of the33 solutions.

Of the35 imagepairstested,20 wererelatively simple,
unclutteredscenessuchas the as one shown in Figure 4.
For theseimagepairs,optimizationtime for EOL feature
pointswasonly marginally superiorto KLT featurepoints.
Intuitively, suchimageshave relatively few featurepoints
to choosefrom, andthereforefewerpotentialfalsematches.
All 20 correspondencetrials weresuccessfulfor EOL fea-
tures,verses16 successfultrials for KLT features. For 6
of the20 trials (house1,toys, book,ball, fruit, Pepsi[18]),
optimizationwasfasterfor KLT features.

The remaining15 image pairs containeda larger de-
greeof featurecomplexity andwerethereforeprimecandi-
datesfor testingthetwo approachesin moredifficult image
matchingcontexts. EOL featuresoutperformedKLT fea-



Figure 3. Comparison of EOL and KLT feature
selection. Optimization time (log scale) is
sho wn for a test set of 35 image pair s, sor ted
accor ding to EOL optimization time . Points
above the EOL cur ve represent image pair s
for whic h optimization was slo wer for KLT fea-
ture points. When no correspondence was
found after 20 min utes, time 6 is displa yed.

turesin termsof optimizationspeedin all trials. Out of 15
trials,13weresuccessfulusingEOL features,but only 2 us-
ing KLT features(SeeFigure5 for example).Interestingly,
in the2 trialsresultingin successfulcorrespondenceof KLT
features,severalfeaturepointschosenaccordingto theKLT
criterion werethe sameasthosechosenby the EOL crite-
rion. Figure6 depictssuchacase.

It is not surprisingthat the EOL criterion outperforms
the KLT criterion, sinceit is designedto identify feature
pointswhich areoptimal for theparticularcorrespondence
modelused.This is preciselythestrengthof theapproach;
if themodelis modifiedto useasimilarity metricspecificto
differentlocal imagecharacteristics,theEOL criterionwill
definea new setof optimal featurepoints to achieve fast,
unambiguouscorrespondence.A subjectiveapproach,such
astheKLT featureselection,will alwaysidentify thesame
sub-optimalsetof featurepoints.

4. Conclusions

In this paper, we introducedthe EOL asa novel crite-
rion for selectingoptimal featurepoints for imagecorre-
spondence.Thecriterion is optimal in the sensethat it se-
lectspreciselythepointswhich drive optimizationtowards
a fast and unambiguoussolution basedon the correspon-
dencemodelitself,notonsubjectivenotionsof featurepoint
importance. We describedthe criterion in the context of
a generalBayesianMRF model,which canbe adaptedto
a wide variety of local imagesimilarity measuresandim-
ages.Experimentalresultsshow thatfeaturepointsselected
accordingto theEOL criterionoutperformthewell-known
KLT criterion in termsof optimizationtime. Futurework

(a)Telephone:�
� and ���

(b) EOL featurecorrespondence

(c) KLT featurecorrespondence

Figure 4. Telephone scene . In (b) and (c), EOL
and KLT feature points are found at the center
of the white cir cles seen overlaying ��� and ��� .
The default KLT parameter s used were: win-
dow size = (7,7), smoothing = true , gradient
sigma = 1.0, min eigenvalue = 1.

will involve furthervalidationof theEOL criterion,includ-
ing testingover a rangeof correspondencemodelsandop-
timizationstrategies,andgroundtruth verificationof corre-
spondenceaccuracy.
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