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Abstract

The introduction of the joint image manifold allows to treat
the problem of recovering camera motion and epipolar ge-
ometry as the problem of fitting a manifold to the data mea-
sured in a stereo pair. The manifold has a singularity and
boundary, therefore care must be taken when fitting it.

This paper reviews the notion of joint image manifold,
and how previous motion recovery methods can be viewed
in its context, and then offers a new fitting method, which
improves upon previous results, especially when the extent
of the data and/or the motion are small.

1. Introduction and Previous Wor k

Given a stereo pair with point correspondences, one seeks to
recover the epipolar geometry, which encompasses the cam-
era motion and 3D structure. This is a fundamental problem
in computer vision, and there exists a huge body of research
tackling it; see [5] for a thorough treatment. Due to the
small space allotted to submissions, we will assume famil-
iarity with such basic concepts as the essential and funda-
mental matrices and the focus of expansion (FOE). We also
apologize for not being able to provide a more complete
survey of previous work.

In the pioneering work [9], a simple algebraic relation
between the corresponding points and the epipolar geome-
try was derived, which allows to recover the essential matrix
given eight matching points in a stereo pair. We refer to this
as the direct solution. In [16], it was assumed that more
matching pairs are given, and that there are errors in the co-
ordinates. In this scenario, the problem cannot be solved ex-
actly as in [9], therefore one seeks an approximate solution
by minimizing the sum of squares of the aforementioned al-
gebraic relation. We will henceforth refer to this method by
the commonly used name algebraic method.

More recent work has roughly followed two other direc-
tions:

e The geometric method. The idea here is to find a “le-
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gal” geometric configuration (i.e. one satisfying the
epipolar geometry constraints), such that the sum of
squared distances of the matching pairs from it is min-
imal. This problem is numerically more challenging,
but it yields better results [5].

e The ML (Maximum Likelihood) method, sometimes re-
ferred to as the Bayesian approach. Here, the idea is to
recover the epipolar geometry G which maximizes the
probability Pr(G /D), where D is the measured data
(in this case the matching pairs). Some work in this
direction is presented in [14, 6, 7, 13, 3].

In the rest of this paper, we will first introduce the relation
between the four approaches describe here (direct, alge-
braic, geometric, ML), and the problem of manifold fitting.
Then we shall pursue the ML method in some depth, and
point out some scenarios in which it is advantageous com-
pared to other methods. Lastly, some experimental work is
presented.

2. The Joint Image Space and
Manifold Fitting

The important notion of joint image space (JIS hereafter)
[2, 15] allows an attractive interpretation of the epipolar ge-
ometry problem as a problem of fitting an algebraic variety.
The JIS for a given epipolar configuration consists of the
set of matching pairs which adhere to the epipolar geom-
etry. One may work in projective or Euclidean space; we
will use the latter, in which the JIS is a three dimensional
manifold which happens to be an algebraic variety of order
two [2].

The key observation in this paper is that since the JIS
manifold is an algebraic variety, the JIS (and epipolar ge-
ometry) recovery problem reduces to the problem of fitting
an algebraic variety, i.e. an implicit polynomial, to the data.
While this idea is not new [2, 15], this work suggests to use
a fitting method which in some cases performs better than
previous work.
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2.1. Fitting Algebraic Varieties

Given a set of points {¢;} in Euclidean space, one may seek
a polynomial p such that its zero set (i.e. the points in which
it obtains a value of zero), approximates {q;} [8, 12]. Ob-
viously, this is useful when one seeks a polynomial relation
which has to be satisfied by some measured data — but this
is exactly the situation we face when trying to recover the
epipolar geometry! An explanation follows, as well as an
interpretation of the four aforementioned methods as fitting
techniques.

In [9], the following equation was derived:
(x1,y1, 1) E(x2,y2,1)! = 0, where E is the essential
matrix and {(z1,y1), (2,y2)} a pair of matching points.
This is a linear constraint on E’s elements, and if we look
at the manifold (which is really the JIS) in 4D space defined
by (z1,y1,1)E(z2,y2,1)! = 0, the problem reduces to
fitting such a manifold (defined by FE) to the data. How
should this be done? Let us proceed to review some
methods and compare them to work done in the realm of
epipolar geometry recovery.

e Direct solution. If it is assumed that no error is present
in the data, it is possible to recover E by directly
solving the equations (x1,y1,1)E(z2,y2,1)! = 0.
Clearly, if eight pairs are available, there results a sys-
tem of eight linear equations in eight variables [9].
Alas, usually the data is susceptible to measurement
errors.

o Algebraic method — minimize the sum of squares of the
constraints [16]. This is a common method for treating
noisy data and the case in which there are more de-
grees of freedom in the data than in the model. In the
context of algebraic variety fitting, this is equivalent to

minimizing Z p?(¢;); but this is a notoriously weak
i
method for fitting varieties [8, 12, 1].

e Geometric method. This is easily seen to be equivalent
to fitting a variety by minimizing the sum of squared
distances of the data from it. While computationally
challenging, it yields better results [12, 1, 5].

e ML method. This was introduced in [17]. The idea is
to recover the variety V, given the data D = {q;}, by
maximizing the probability Pr(V/D) (here, g; will be
a point in R* obtained by concatenating two match-
ing points in a stereo pair, and V' a variety defining
the epipolar geometry, as will be explained shortly).
Using Bayes’ formula, this is usually taken to be pro-

portional to Pr(D/V) = H Pr(g;/V) (assuming no

i
a-priori preference of one variety over the other, and
considering that D is fixed). But, as opposed to the
geometric method — which assumes that Pr(q;/V) is

proportional to exp %), where o is the noise
variance and d(q;, V') the distance from ¢; to V' — the
ML method seeks a more accurate estimate which uses
the full probability distribution over V', which up to a

normalizing factor equals

d2 (CIu ’U)

Pria/V) = [ exp(- %

|4

v (1)

where the integration is with respect to the usual Lebesgue
measure, which assigns identical measures to regions with
identical area. In [17] it is shown that while the ML criterion
is more complicated than the algebraic and geometric ones,
it yields better results, especially when

o The variety is small with respect to the noise.
e The variety is strongly curved.

e The variety has a boundary.

In all these cases, exp(— %) is a poor approximation
to Eq. 1, especially if there’s data close to the singularity
or the boundary. This possible pitfall was noted in [14],
however it was assumed that the JIS is “locally linear”, and
it was proved (as in [17]) that in this case exp(— %)
equals Eq. 1. However, as we shall demonstrate, the JIS is
not locally linear, and therefore the ML method is expected
to perform better, especially in scenarios in which there is
data close to to the singularity or boundary of the JIS.

It should be noted that the geometric method can also be
viewed as a maximum likelihood estimate — not of the man-
ifold alone, but of the manifold and the “true” (denoised)
sources of the measurement points simultaneously. The
ML method used here alleviates this problem by integrat-
ing out the “true” points, yielding the correct probability of
the manifold only.

3. TheCone

We now take a closer look at the cone which constitutes
the JIS [2]. Using the well-known notion of the fun-
damental matrix F', the epipolar constraint can be writ-
ten as (x1,y1,1)F(xa,y2,1)! = 0 for matching points
(z1,41), (x2,y2). It is also well-known that F' is of rank
2 (see [5] for discussion and references). Now follow a few
lemmas:

Lemmal Under the transformation (zi,y1,z2,y2) —
(.’L’l —ay,Yy — bl,l'z — Qg,Y2 — bg), Where(al,bl, ].)F =
0, Ft(ay,ba, 1)t = 0%, the fundamental matrix assumes the
form

Fi. Fi» 0
0 0 O
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Note that this transformation is achieved simply by moving
the origin of the left and right images to the FOE. The proof
isimmediate.

Lemma2 In the notation of Lemma 1, the con-
straint  (z1,y1)F(z2,y2)! can be expressed as
(x1,y1, %2, y2) Fa(x1,y1, 22, y2)" = 0, where ([2])

0 0 Fi1 Fio
0 0 Fy1  Fy
Fi1 Fy 0 0
Fia Fy O 0

Fy=

The proof isimmediate.

Lemma3 There is a rotation of coordinates
such that if F4 is in the form of Lemma 2, then
(x1,y1, @2, y2) Fa(w1,y1, 22, y2)" isequal to

(7 —yi) + N (x5 — v3) (2)

The proof follows simply by diagonalizing the 4 x 4 matrix
of Lemma 2. It turns out that it has two pairs of eigenval-
ues with opposite signs, +X;, =A> given by the following
expressions.

e1 = 2F% +2F%L + 2F} 4+ 2F5,,es = F}, + F, +
Fyy + Fyy + 2F3, F3, + 2F5, F, — 2F5 Fp
—2F0, F3) + 2F7 F3) + 2F7 Fy + 8F11 Fio Fyy s,

1 7 1 /
Al = 5 61—|-2\/_2,A2 61—2\/_

W& note, however, that the rotation required for diagonal-
izing F' is not separable in the images — i.e. it cannot
be represented as a combination of separate rotations in
(z1,y1) and (z2,y2), butit“ mixes’ all thefour coordinates
(z1,y1,%2,y2). However, asfar asthefitting is concerned,
this makes no difference.

Eq. 2 evidently describes a cone in R*. We next address
the problem of fitting such a cone. Since the object being
fit is not a function but a manifold, this is a problem often
referred to as “errors in variables” [11]. We have adopted
the solution offered in [17].

3.1. Integrating Over the Cone

Following the discussion on the ML method, in order to
compute the probability of a candidate epipolar geometry
given measurement data, we must first make the coordinate
transformations indicated in Lemmas 1,2 (translatlon) and

Lemma 3 (rotation), and then compute f exp (4 q”v))dv

where C'is a cone as in Eq. 2 and ¢; a pomt in R*. In or-
der to somewhat simplify this integral, define the following
change of variables: 1 = Arcos (01), x> = rsin(f;),y; =

Ar cos(f2),y2 = rsin(f). Note that this change of vari-
ables allows to define the manifold as “free” (i.e. with-
out constraints), while reducing the number of variables to
three. Under this change, the integral becomes

27w 27

/ |.J| exp(— (Arcos @) — X1);; (rsin(f;) — X5)?

]

00
_ (Mrcos@2) —11)* + (rsin(fa) — ¥3)?
202

)drd01 d02 (3)

where |J| = rz)\\/Q + (A2 — 1)(sin®(8;) + sin®(8y)) is
the Jacobian corresponding to the variable change, and
X1,Y1, X5, Ys are the (transformed) measured data. The
internal integral (over r) can be explicitly computed, since
it is 72 times a Gaussian in r, and it therefore remains
to numerically evaluate a double integral over the square
[0,27] x [0,27]. We have applied the Hermite and Leg-
endre integration techniques to solve both this integral and
similar ones over the “half-cones” discussed in Section 3.2.

3.2. Isit Necessary?

Clearly, the ML method is more computationally expensive
than other methods, due to the numerical integration. When
is it important to suffer this overhead? As noted in [17, 14],
if the data is in a locally linear region of the cone, not much
is gained by integrating. However, in the following two
cases, the local linearity assumption is strongly violated.

e The (transformed) data points are close to the cone’s
apex, (0,0,0,0). Clearly, local linearity is violated.
This can happen, for example, when the object is
small, and the camera is moving towards it (as in track-
ing).

o For the sake of simplicity, assume for now that there is
only camera translation present, and that it is forward
or backward relative to the center of the scene, which
we assume to be at the origin of the coordinate system.
It is clear that if the matching point pairs are denoted

(pgz), pél)) then either all the “true” p(z)’s are closer

(1)og

to the origin than all the corresponding p,’’s, or vice-

versa — the “order constraint”.

‘What does this mean, in terms of the manifold? If we
disregard the order constraint, then the only restriction

on the matching pairs (in the very simple scenario de-

scribed above), is that each pé) is the product of pg g

by a certain scalar. So, the corresponding cone is equal
to

C= {($1:y1;5$1;5y1)|331,y1 € R,(s S RJr}

TEEE .2
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However, the order constraint implies that the legal
configurations of the “true” points (that is, the de-
noised measurement points) are in the union of the
“half-cones” C'1, Cs, where

Cy = {(w1,y1,021,0y1)|21,01 € R,0< 5 <1}
and
C2 = {(21,y1,021,6y1)|21,51 € R,1 < § < o0}

note that C;,C> are manifolds with boundary; the
boundary of both is {(x1,y1,21,%1)|z1,501 € R}
When can there be data points close to the boundary?
If the disparity between the matching points is large
relative to the noise, then the noised “true points” will
be close to each other (and hence to the boundary) only
with low probability. However, if the motion is small
(as can be the case in a video sequence), data will lie
by the boundary.

What does this mean, intuitively? Suppose that the

. . %) .
camera motion is forward, hence pg) is farther from

the origin than p§’>. If we simply integrate over the
entire cone, we are allowing illegal configurations in
which pgi) is farther from the origin than péi). If the
disparity is small, these illegal configurations are as-
signed relatively high probabilities, as even a small

noise can switch the order of the corresponding points.

In light of this, we have to integrate over C'; and Cs,
and multiply the resulting probabilities. Due to the
space limitation, we do not discuss the numerical inte-
gration in this case. It should be clear that the problem
of violating the order constraint for small motions oc-
curs in all scenarios, not only the simple one discussed
here.

3.3. A Simple Example

In order to demonstrate the importance of the ML method in
the presence of measurement data near a singularity of the
variety, we study a very simple case — a cone in R 2, which
consists of two straight lines: y = az,y = —ax for some
a. Let us compare the implementation of the algebraic, ge-
ometric, and ML methods, and their performance.

Denote the lines y = ax and y = —ax by L1 and L» re-
spectively. Then clearly the cone C' is the union of L; and
L. Tts implicit equation is (y — az)(y + az) = 0. Fol-
lowing the previous study of the three methods, and noting

that [ exp(—%)dl = exp (d?(q,L;)) (this is easy
L.

to verify either from symmetry consideration or direct in-
tegration), one can conclude that the following cost func-
tions have to be optimized for the various methods, in order

to recover the optimal slope a when given measured data
{q; = (zi,y:)} (let us assume that the noise variance satis-
fies 202 = 1):

e Algebraic method: minimize

Z(yi — ax;)*(yi + aw;)”

i

e Geometric method: minimize
> min{d*(g;, 1), d*(¢i, L2)}
e ML method: maximize

Zlog(exp(—dz(%,lfl)) +exp(—d*(gi, L2)))

Note that for points far away from the origin (which is
the cone’s apex) the geometric method and ML crite-
ria are nearly equivalent, since such points, being gen-
erated by adding noise to a cone point, will be much
closer to L; than to Ly or vice-versa (unless the slope
is very large); in that case, one of the expressions
exp(—d®(q;, L1)), exp(—d®(q;, L2)) is much smaller with
respect to the other, hence the cost function will be well
represented by min{d?(q;, L1),d*(q;, L2)}. However, for
points near the apex, that is not the case. The power of the
ML method is that it does not “force” us to decide from
what part of the cone — Ly or Lo — the point came from;
both options are considered. Even in this simple case, the
ML method yields better results than the geometric method,
and both are far superior to the algebraic method — see Fig.
1. Note that there is no analog for the manifold’s boundary
in this simple case.

4. Experimental Results: Simulations

We performed several experiments to compare the ML
method to the geometric method. The pure translation case
as well as translation and rotation case (with known camera
calibration) were studied. The mathematical details for pure
translation and calibrated camera are in the same spirit as
those for the fundamental matrix and are omitted. The av-
erage results are presented in all cases — there were cases in
which the geometric method outperformed the ML method,
but the ML method won on the average.

The distribution of the noise is N (0, o). In each exper-
iment, 3D points were chosen at random in the common
field of view. In each set of experiments, the epipolar ge-
ometry (FOE or essential matrix) was estimated 100 times
with different instances of points and noise.

For each experiment sample the estimation error of the
epipole and the rotation angle were calculated. The estima-
tion error of the epipole was calculated as follows: Let v be

YF]',F.
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Figure 1: Simulation results of fitting a 1D cone to data gen-
erated by adding Gaussian noise of unit variance to a cone
of slope 2. The x-axis represents the data’s extent (meaning
that it ranged between —x and x), and the y-axis the average
estimate of the slope — upper graph shows the ML results,
middle graph the geometric method results, and lower graph
the algebraic method results. When the extent of the data
reaches 3.4 (which means that there are more data points
away from the apex), both the ML and geometric methods
converge to the correct slope, but for smaller extent of the
data ML consistently performs better than geometric. The
algebraic method performs very poorly. In all experiments,
the same number of data points were used and the distribu-
tion was the same for the y = x and y = —a branches.

the “real” epipole point in the simulation and let v be the
estimated epipole. Let T = (vg, vy, f) and 0 = (Uy, Uy, f),
where f is the focal length. The estimation error is the angle
Verr between these two vectors. i.e., Ve, = arccos(—22-).

v||v
The estimation error of the rotation angle is the rotati(l)rl‘aln-
gle corresponding to the rotation matrix R¢p, = R_IR,
where R is the “real” rotation matrix in the simulation and
R is the estimated rotation matrix. The average errors are

shown.

The numerical parameters we used in the simulations
were as follows: The image size was 600 x 800 pixels, and
the internal calibration matrix was

1000 0 O
K = 0 1000 O
0 0 1

80

40

Figure 2: Likelihood function for the geometric method,
100 point correspondence. The correct FOE is at (5, 5).

4.1. Pure Trandation

First, the likelihood functions of the ML and geometric
methods are compared. In this simulation there are 100
point correspondences, and a very small translation, result-
ing in a disparity of 1.8 pixels on the average. The simulated
motion was nearly forward, with the (normalized) motion
vector being equal to (0.086,0.086,0.992). The noise was
Gaussian with standard deviation 1. The likelihood func-
tions are shown in Figs. 2-3 as contour maps.  In Figs.
4-5 the parameters are similar to those in Figs. 2-3, but the
motion has a stronger sideways component, and the correct
FOE is at (60, 5). As in the other simulation, the ML like-
lihood function is more stable and the location of its global
minimum is closer to the correct location. Next, the esti-
mates of the geometric and ML methods for the parameters
corresponding to Figs. 2-3 are compared; the results are
shown in Fig. 6, with the average error plotted as a func-
tion of the disparity between corresponding points. The ML
method performs better, especially for small translations.
The error is given in terms of the angle between the correct
and estimated normalized translation vectors.

4.2. Calibrated Translation and Rotation

In this experiment the ML and geometric method were com-
pared for translation and rotation (essential matrix recov-
ery). There were 10 point correspondences. The translation
was such that the mean disparity between the corresponding
points, due to the translation alone, was 8 pixels. The rota-
tion angle was 3 degrees. The results are presented in Figs.
7,8. As for the translation only case, the ML method out-
performs the geometric method, especially when the noise

YF]',F.
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Figure 3: ML likelihood function for the scenario corre-
sponding to Fig. 2. The function is much more stable and
obtains its global minimum close to the correct location,

(5,5).

80

60

20

-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 4: Likelihood function for the geometric method,
with parameters similar to those in Fig. 2, except that the
motion has a stronger sideways component and the correct
FOE is at (60, 5).
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Figure 5: ML likelihood function for the scenario corre-
sponding to Fig. 4. The function is much more stable and
obtains its global minimum close to the correct location,
(60, 5).

T T
—&- Geometric Method
—©- ML Method

Mean error (Degree)

I I I I
1.6 1.7 1.8 1.9 2 21 22
Mean distance between points (Pixels)

Figure 6: Performance of the ML and geometric methods
for pure translation.
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increases.

The ML method becomes more significant in the essen-
tial matrix case. It gives superior results also in configura-
tions in which the noise is relatively small and translation is
relatively large. In such configurations in the pure transla-
tion case the geometric and ML methods yield very similar
results.

12

—*— Geometric Method
—%— ML Method

Mean error (Degree)

0 I I I
0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5
Sigma

Figure 7: Results for the FOE in the calibrated rotation
and translation case. Sigma is the standard deviation of the
noise.

—— Geometric Method
—#= ML Method

0.35

Mean error (Degree)
°

0.15

0.05 L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Sigma

Figure 8: Results for the rotation angle in the calibrated ro-
tation and translation case. Sigma is the standard deviation
of the noise.

5. Experimental Results. Real Images

Due to space limitations, we show only one pair of real im-
ages. The image pair consists of two images of an office
scene shown in Figs. 9,10. The camera motion was very
small (a few centimeters), and the rotation angle 1 degree.

The corners were recovered using the Harris corner detector
[4].

When taking the entire field of view, and using 120
point correspondences, an accurate estimation to the cam-
era motion was found using the geometric method, using the
Nelder-Mead optimization method [10]; this was regarded
as the ground truth. Then, the performance of the ML and
geometric methods were tested on small random subsets of
the matched pairs.  Figs. 11,12 show the superior results

200 400 600 800 1000 1200

Figure 9: First picture of office scene, with matching points
marked.

200 400 600 800 1000 1200

Figure 10: Second picture.

achieved by the ML method for sets of corresponding pairs
of sizes between 10 to 30.

6. Summary and Conclusions

If the camera motion is small, and/or the objects are small
relative to their distance from the camera, the ML method

YFF.F.
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Number of correspondence

Figure 11: Error in FOE for ML and geometric methods,
vs. the number of point correspondences.

0.26 T

—&- Geometric Distance
- ML

0.2

Mean error (Degree)
° ° °
= > >

4
~

°

. . . . . . .
10 12 14 16 18 20 22 24 26 28 30
Number of correspondence

0.08 L L

Figure 12: Error in rotation for ML and geometric methods,
vs. the number of point correspondences.

has the potential to significantly improve on the geomet-
ric method. This is because the variety which represents
the epipolar geometry has a singularity, and it is a manifold
with boundary; hence the local linearity assumption, under
which the geometric method is a reasonable approximation,
may well be violated — since the points may in these cases
be close to the singularity and to the manifold’s boundary.
The ML method can handle these situations better than the
geometric method.

Planned future work includes further developing the nu-
merical integration and optimization techniques, as well as
extending the ideas presented here to the trilinear tensor.
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