Recognizing Human Action Efforts: An Adaptive Three-Mode PCA Framewor k

James W. Davis

Hui Gao

Dept. Computer and Information Science
Ohio State University
Columbus OH 43210 USA
{jwdavis,gaoh}@cis.ohio-state.edu

Abstract

We present a computational framework capable of |abel-
ing the effort of an action corresponding to the perceived
level of exertion by the performer (low — high). The ap-
proach initially factorizes examples (at different efforts) of
an action into its three-mode principal components to re-
duce the dimensionality. Then a learning phase is intro-
duced to compute expressive-feature weights to adjust the
model’s estimation of effort to conform to given perceptual
labelsfor the examples. Experiments are demonstrated rec-
ognizing the efforts of a person carrying bags of different
weight and for multiple people walking at different paces.

1. Introduction

There are sub-categorical properties of human actions
that can be inferred by observation. For example people
can tell the gender of a walker [8], estimate the load of a
lifted box [11], and describe the emotional state of an action
[10] from looking at simple point-light displays. The hy-
pothesis is that regular visual cues (expressive features) in
movements enable observers to reliably recognize the target
properties. Our goal is to develop an efficient computational
framework that can learn the expressive features indicative
of the target property for recognition in accordance with hu-
man perceptual judgements of the actions. In this paper, we
focus our work on recognizing perceptually-based action €&f-
forts. We define effort as the “perceived amount of exer-
tion” by the performer, not the measured quantity of phys-
ical variables such as mass or speed. Therefore we wish to
recognize qualitative properties, such as the observed heav-
iness of carried packages, the leisureness in walking styles,
the strain in lifting, etc.

Models of action efforts are relevant to several domains
and applications. Automatic video annotation of pedestrian
walking pace and carrying load would provide more de-
scriptive information to surveillance systems. Ergonomics

could also benefit from effort analysis for evaluation and
recommendation therapy. Similarly, visual monitoring of
athletic training could help prevent costly sports injuries
by recognizing the onset of fatigue (through characteristic
changes in effort) during endurance workouts. A computer
model of performance efforts could also be used to “warp”
motion-capture animations into new efforts, and could po-
tentially be used for searching digital motion libraries to
find actions exhibiting a similar (or different) effort as the
query example.

We begin with a review of related work (Sect. 2). Next
we discuss the three-mode principal component analysis
(PCA) model (Sect. 3). A three-mode PCA factorizes the
action data (trajectories) across different efforts into a tri-
modal separation of pose, time, and effort basis sets. A
two-mode factorization with rasterized trajectory data how-
ever would only have two basis sets (pose-time, effort). The
tri-modal basis enables us to easily emphasize certain tra-
jectories (expressive features) to compute effort values that
conform to labeled training data.

We then present an augmented three-mode model with
expressive weights and a complementary learning algorithm
using training data (Sect. 4). To collect the labeled training
data, we introduce a perceptual matching task to measure
the perceptual judgements for different action efforts (Sect.
5). We present experimental results recognizing the carry-
ing efforts of a person and the walking paces for multiple
people (Sect. 6), showing the advantage of the method over
standard sum-of-squared error (SSE) matching. Lastly, we
conclude with a summary of the research (Sect. 7).

2. Related Work

There has been much recent work in computer vision on
detecting, tracking, and recognizing human actions. With
regards to effort and style variation, a Parameterized-HMM
was used by [18] to model spatial pointing gestures by
adding a global variation parameter in the output proba-
bilities of the HMM states. A bilinear model was used in
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[12] for separating perceptual content and style parameters
of non-action data. In [6], an approach to discriminate chil-
dren from adults based on variations in relative stride length
and stride frequency over various walking speeds was pre-
sented. Additionally, in [5] the motion regularities of walk-
ing motions of several people at different speeds were used
to classify typical from atypical gaits. A two-mode PCA
framework was described in [13] to linearly classify male
and female walkers. Morphable models were employed in
[7] to represent complex motion patterns by linear combina-
tions of prototype sequences and used for movement analy-
sis and synthesis. A method for recognizing skill was pre-
sented in [19] to determine the performance-level of skiers
by ranking properties such as synchronous and smooth mo-
tion.

In relation to computer animation, a Fourier-based ap-
proach was used in [15] to generate human motion with
emotional properties (e.g., a happy walk). An HMM with
entropy minimization was used by [1] to generate differ-
ent state-based animation styles. A factorization of motion-
capture data for extracting person-specific motion signa-
tures was described in [17]. A movement exaggeration
model using measurements of the observability and pre-
dictability of joint angle trajectories was presented in [4].
In [3], the EMOTE character animation system using effort
(and other) qualities was employed to generate natural syn-
thetic gestures.

3. Three-M ode Action Factorization

Actions can be described as the changing body pose
(mode 1) over time (mode 2). When considering dynamic
actions, we have a third mode corresponding to the effort
(mode 3)'. The motion data (trajectories) for multiple ef-
fort examples of an action can be organized into a cube Z
(see Fig. 1.a), with the rows in each frontal plane Z}, cor-
responding to the motion trajectories for a particular effort
(indexed by k).

Many times it is preferable to reduce the dimensionality
of large data sets for ease of analysis (or recognition) by de-
scribing the data as linear combinations of a smaller number
of latent, or hidden, prototypes. Singular value decomposi-
tion (SVD) and principal components analysis (PCA) are
standard two-mode methods for achieving this data reduc-
tion. Three-mode factorization [14] is an extension of these
traditional two-mode methods and offers a framework suit-
able to incorporating expressive weights on trajectories for
efficient, perceptually-driven recognition of action efforts in
a low-dimensional space.

The three-mode factorization of Z decomposes it into
three orthonormal matrices G, H, and E that span the col-
umn (pose), row (time), and slice (effort) spaces (see Fig.

'One could easily argue for additional modes spanning gender, age, etc.
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Figure 1. (a) Three-mode arrangement of data
for an action at different efforts. (b) Three-
mode factorization of the data.

1.b). Following a similar tensor-based method as described
in [16], the three bases can be solved using three different
flattening arrangements of Z (after 7j-centering)

G = AMZi|Zy| - | Zn] ()
H = AZ{|Zy |- | 2] )
E = A[Z|Za| | Zn]" 3)

where Z, & 1s the rasterized column vector of matrix Z;,, and
A is the column space operator. The desired column spaces
in Eqgns. 1-3 can be found using SVD. Typically, each mode
needs only to retain its first few components (meeting some
variance criteria) to capture most of the fit to Z.

The core C has three dimensions and represents the rela-
tionships of the components in G, H, and FE for reconstruct-
ing Z. The three-mode factorization of Z can be concisely
written as Z = GC(ET ® HT), or in flattened matrix form
as

[Zy] - | Za]=G[C1 ] - | CuJ(BET @ HT) (4)

where ® is the Kronecker product. The core C' (flattened)
can be solved by re-arranging Eqn. 4 as

[Cr] - [Cu]=GT[Z1] - | Zo)(ET@HT)T (5)

The three-mode core C' need not be diagonal, as is required
in two-mode SVD. An additional method for solving the
three-mode factorization using an alternating least-squares
algorithm is described in [9].

Any frontal plane Zj, (action at a particular effort) can be
reconstructed as

Zv=G (Z ekrcr> HT (©)
r=1

Therefore, we can recover each training example by choos-
ing the correct ey, component loadings from the effort
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mode E. When recognizing the effort for an action, these
effort loadings are what must be estimated.

If we consider only two efforts examples for an action
(Z1, Z>), the effort mode reduces to a single component
E = [-1 1]7/v/2. The two effort examples Z; and Z
therefore differ only in a single effort parameter e, and thus
Eqn. 6 is reduced to

Zk = ekGCHT (7)

As human movements exhibit smooth and predictable
regularity across increasing/decreasing efforts, only two di-
verse (or extreme) effort examples may be all that is re-
quired to successfully model the in-between range of ef-
forts for the action. Hence, additional effort examples will
be constrained to have effort values along this 1-D effort
continuum. This reduced model with a single effort param-
eter will be used to simplify the algorithm for learning the
expressive features.

4. Expressive Three-Mode M odel

The reduced three-mode factorization (Eqn. 7) can be
expanded for each data element z;;;, of Z as a summation
of three-mode elements, where the effort parameter can be
isolated from the remaining factored terms as

s t
Zijk = €k Z Z GiphjqCpg = eraiij (8)
p=1g¢=1

Note that «;; is pre-computable, and for a nearly di-
agonal core, it can be further reduced to a;; =

min(s,t) h
Zp:l Gip"jpCpp-

To solve for the effort parameter of an unknown test in-
put Z i» an SSE error function F of the form

F =z, —eGCHT|? =33 (zij —e-ai)” (9
(2]

can be minimized. Traditional squared-error techniques
place equal prior emphasis on the different terms dur-
ing minimization. But all trajectories may not have the
same discrimination power with respect to the action effort.
Given training data of different effort examples labeled ac-
cording to some criteria (e.g., perceptual judgements of the
effort), certain features (of motion and/or pose) will likely
be more informative of the effort than others. Therefore we
would like to place more emphasis on those expressive fea-
tures (position trajectories) during the effort estimation pro-
cess to produce results that most closely match the recogni-
tion criteria.

Following this concept, we augment F with expressibil-
ity weights &; on each trajectory

F=3 & (5—e ay) (10)
i

To minimize F for estimating the target effort parameter,
we set % = 0 and re-arrange it to produce

i €i 2o %ijij
Zi & Zj a?j

Setting the expressive weights & = 1 in Eqn. 11 yields the
a standard SSE (least-squares) estimation of effort. This is
also equivalent to using standard two-mode PCA with ras-
terized (rank-1 tensor) data to recover the effort parame-
ter (projection coefficient). With non-uniform expressive
weights, the approach can adapt to the specifics of labeled
training data.

e =

Y

4.1. Learning

The next task is to learn appropriate values for the ex-
pressive feature weights to compute efforts that correspond
to the effort values assigned to the training data. Given a set
of K training effort examples, we first use the two extreme
efforts to construct the reduced three-mode model. Then we
define the matching error of the training labels ej, with the
computed expressive model efforts é;, as

J o= Y (en—é)’ (12)
k
DT Zijkaij>2
gp — Lty Y (13)
Xk: ( ’ 2ol
> &'Bik>2
= & — 2o (14)
Xk: < 2 Eidi

The non-linear arrangement of the expressive weights in
Eqn. 14 can be solved using a fast iterative gradient descent
algorithm [2] of the form

~oJ
0&;

Ei(n+1) = &(n) —n(n) (15)
with the gradients % computed over the K training exam-
ples as

E;B;
or - _ 2} o — 2y b0
aE; . S, 64,
Ai Z] ngjk — sz EJ ng]'
’ 2
(ngjAj)

The learning rate 7 is re-computed at each iteration to yield
the best incremental update. The expressive weights are ini-
tialized to & = 1 (SSE formulation) and confined to be pos-
itive. Following convergence of Eqn. 15, effort values for
new examples can now be estimated with Eqn. 11 using the
learned expressive weights.

(16)
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—— Linear effort interpolations — —

High Effort
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Figure 2. Walking poses at frame #1 in a series of synthetic motions created with different effort
values. Increasing arm swing and stride are visible across the increasing walking pace.

5. Perceptually-L abeled Training Data

To label the efforts of the training data for learning the
expressive weights, we conducted a series of perceptual
tests with stick-figure motions in which people were asked
to match different effort examples to synthetic motions with
known effort values. The synthetic motions were produced
by linearly interpolating/extrapolating the two extreme ef-
fort examples used to create the reduced three-mode model
(see Fig. 2). The synthetic motions were used as a linear
“ruler” to label the efforts for the training data.

A screen-shot of the computer display for the matching
task is shown in Fig. 3, with one unlabeled effort exam-
ple on the left and one synthetic (labeled) example on the
right. By using the left and right arrow keys on the key-
board, the user is asked to seek through the synthetics to find
the best example that gives a similar overall feeling of the
effort shown in the unlabeled example on the left. After the
user confirms the choice, the program records the matching
result and loads the next example. The unlabeled examples
were presented in random order and looped in synchroniza-
tion with the displayed synthetic example. No time restric-
tion was enforced during the matching task.

The mean and standard deviation of the assigned effort
values for the unlabeled examples were then computed from
the matching results of multiple people who took the test.
We set the effort label ej, to the (perceptual) mean of the
synthetic effort values chosen for training example k. We
also computed an influence factor w(oy,) to give more im-
portance in the learning algorithm to those examples hav-
ing smaller standard deviations in the perceived effort (i.e.,
having more consistent choices across people). The new
matching error function is

EBir\°
Zw(w)-(@—%) (17

k

J =

with the influence factor w(oy) = exp(—o3/.25).

Reference Synthetic

T

Figure 3. Perceptual matching task display.

Progress: 2/9

6. Experiments

We demonstrate the potential of our framework with ex-
periments modeling and recognizing the carrying effort of a
person and the walking pace of multiple people.

As the focus of this work is a representation for mo-
tion recognition, we tested the approach with trajectories at-
tained from a Vicon-8 motion-capture system (future work
will incorporate a video-based human body tracker). A lim-
ited skeleton with 15 joint positions was generated (see Fig.
3). Two cycles for each action effort were automatically
extracted (using trajectory curvature peaks), averaged, and
time-normalized to a fixed duration using spline interpola-
tion (42 frames for carrying, 50 frames for walking). Time-
normalization is required by PCA and does not affect our
approach (i.e., we are not measuring absolute speeds).

The 3-D motion trajectories were rendered in 2-D at 30
Hz for the perceptual matching task. All motions were
viewed from a 45 degree orthographic camera. For train-
ing and recognition, the 2-D trajectories were automatically
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Figure 4. Carry results. (a) Learned expres-
sive weights (normalized). (b) Perceptual
(mean + 1 SD), SSE, and expressive effort
estimations.

converted into Local-Position-Space (LPS) trajectories to
achieve certain view invariants. Each 2-D joint position
(e.g., r-hand) was converted by 1) setting the local axis ori-
gin at its parent joint (r-elbow), 2) placing the “up” direction

of local Y axis along the parent’s link (r-elbow:r-shoulder),
and 3) scaling the joint position by a body-centric factor
(e.g., torso length). LPS is a simple 2-D hierarchical rep-
resentation with local rotation invariance, tolerance to dif-
ferent body scales, and use of spatial coordinates. In this
work, we examined 20 x-y LPS trajectories (from 10 limb
and torso joints).

6.1. Carrying Effort

Our first experiment was to model the visual effort of
a person carrying packages of different weight. The mo-

tions were captured of the person walking on a treadmill at
a constant speed (1.4 mph) while carrying (in one hand) 9
differently loaded bags (0 — 40 lbs).

Ten subjects participated in the perceptual matching
task. The average correlation coefficient of the example-to-
synthetic perceptual mappings (all pairwise combinations
of subjects) was r = .8 (SD .1). When building the three-
mode model of Z.qrry (20 X 42 X 2 cube of LPS trajec-
tories of the lightest and heaviest carry) with an 85% vari-
ance criterion in each mode, G, H, and F had 4, 4, and 1
components respectively. This basis captured 99% of the
overall data variance. The learning algorithm (after 1500
iterations) produced non-zero expressive weights for trajec-
tories in the right-knee, head, left-elbow, right-elbow, and
right-hand (nearly zero). Several trajectory weights (15/20)
were set to zero and therefore were not considered as infor-
mative of the effort (see Fig. 4.a).

In Fig. 4.b, we show the effort matches between the 9
unlabeled training examples and the synthetic motions us-
ing the perceptual effort means, standard SSE effort estima-
tions, and expressive effort computations. We again men-
tion that the non-expressive SSE result is the same as a two-
mode PCA projection using rasterized motion data. The
results show a noticeable difference mainly at examples #6
and #7. Upon inspection, the counter-balancing left-arm
was basically ignored in the perceptual match to the synthet-
ics, even though the arm had considerable deviation across
effort. The perceptual matching process is willing to sacri-
fice certain joint motions in order to attain a more “global”
alignment of two movements. As a result of the learning al-
gorithm, the expressive matches closely resembled the per-
ceptual choices (see Fig. 4.b).

6.2. Walking Pace of Multiple People

We next demonstrated the framework using the efforts
of multiple people. Our goal was to recognize the quali-
tative walking pace (leisurely — quickly) rather than abso-
lute speed”. The training set was comprised of three peo-
ple, each with five different walking paces (recorded using
a treadmill at speeds ranging between 2.0 mph and each
person’s walk-run transition).

We first constructed low and high effort “prototypes” us-
ing the mean of the slowest walk and the mean of the fastest
walk of the three people (computed using a mean skeleton
with averaged joint-angle trajectories). Given these proto-
types, the perceptual matching task and the reduced three-
mode factorization can be performed as with the single per-
son case.

The same 10 people from the previous perceptual exper-
iment were asked to match all 15 walking examples to the

2 Actual speed is not a global indicator of walking pace for different
people (consider child vs. adult walking).
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synthetic walking motions generated from the two mean-
prototypes (see Fig. 2). The examples were automatically
scaled to a fixed height in the display to accommodate the
different person statures. The average correlation coeffi-
cient of the example-to-synthetic perceptual mappings was
again r = .8 (SD .1). With an 85% modal variance crite-
rion for Z,q11 (20 x 50 % 2 cube of LPS trajectories of the
two mean prototypes), G, H, and E had 5, 5, and 1 compo-
nents respectively. This basis captured 98% of the overall
data variance. The resulting non-zero expressive weights
from the learning algorithm corresponded to trajectories in
the left-knee, left-foot (nearly zero), right-foot, torso, left-
elbow, left-hand, and right-hand (nearly zero). Nearly half
of the expressive weights were zero (see Fig. 5).

We compared the results for each walker separately, ex-
amining the perceptual, SSE, and expressive efforts. For
Person-1, the perceptual and expressive efforts were very
similar but the SSE efforts were quite different from the per-
ceptual choices (see Fig. 6.a). The advantage of the expres-
sive model is well illustrated. For Person-2, all effort meth-
ods produced essentially the same results (see Fig. 6.b).
Lastly, the perceptual and expressive efforts for Person-3
were again similar, but the SSE results were somewhat dif-
ferent (see Fig. 6.c).

We also tested two additional walking motions from each
person (one at 1.6 mph and one midway between 2.0 mph
and the walk-run transition) to evaluate the expressive ef-
fort estimation for motions not included in the training
set. The expressive effort values for these motions closely
matched the perceptual results (see Fig. 6.d-f). For both
paces of Person-1 and the second pace of Person-2, the non-
expressive SSE effort estimation results were significantly
different from the desired perceptual choices.

7. Conclusion

We presented an approach for modeling and recogniz-
ing action efforts using an efficient three-mode PCA frame-
work that gives more influence to key expressive trajectories
learned from a perceptual effort-matching task.

The approach initially factorizes a set of low and high
effort examples of an action into its three-mode principal
components. We then augment the standard least-squares
estimation of effort within this basis to include expressive
weights (one for each trajectory) to bias the computations
with the trajectories most indicative of the effort. Labeled
training data were used in a gradient descent learning algo-
rithm to solve for the expressive weight values needed to
produce the desired effort estimations. To collect the effort-
labeled training data, a perceptual matching task was con-
ducted that mapped the efforts of synthetically-generated
data to real examples.

The approach was demonstrated with experiments ex-

0 2 4 6 8 10 12 14 16 18 20

Expressive weights

Figure 5. Learned expressive weights (nor-
malized) for walking pace.

amining the efforts of a person carrying bags of different
weight and for multiple people walking at different paces.
We showed that a standard SSE (two-mode PCA) method
does not always conform to human preferences in these ex-
amples, and that our three-mode model with the learned
expressive weights can be used to produce perceptually-
similar effort results.

In future work, we plan to incorporate a video-based
body tracking algorithm and broaden the range of actions
to include non-periodic activities (e.g., throwing, lifting,
jumping). We will also extend the framework to recognize
other sub-categorical properties (e.g., gender and emotion)
and build a higher-level action style analysis system. Lastly,
we are seeking to unify the three-mode model with an ac-
tion classification method to produce a single framework for
recognizing human actions and efforts.
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