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Abstract

We present an approach for inferring the topology of a cam-
era network by measuring statistical dependence between
observations in different cameras. Two cameras are con-
sidered connected if objects seen departing in one camera
are seen arriving in the other. This is captured by the degree
of statistical dependence between the cameras. The nature
of dependence is characterized by the distribution of obser-
vation transformations between cameras, such as departure
to arrival transition times, and color appearance.

We show how to measure statistical dependence when the
correspondence between observations in different cameras
is unknown. This is accomplished by non-parametric es-
timates of statistical dependence and Bayesian integration
of the unknown correspondence. Our approach generalizes
previous work which assumed restricted parametric tran-
sition distributions and only implicitly dealt with unknown
correspondence. Results are shown on simulated and real
data. We also describe a technique for learning the abso-
lute locations of the cameras with Global Positioning Sys-
tem (GPS) side information.

1. Introduction

Consider the problem of wide-area surveillance, such as
traffic monitoring and activity classification around critical
assets (e.g., an embassy, a troop base, critical infrastruc-
ture facilities such as oil depots, port facilities, airfield tar-
macs). We wish to monitor the flow of movement in such
settings from a large number of cameras, typically with non-
overlapping fields of view. To coordinate observations in
these distributed cameras, we need to know the connectiv-
ity of movement between fields of view (i.e., when an object
leaves one camera, it is likely to appear in a small number
of other cameras with some probability). A simple example
with two cameras imaging the upstream and downstream
sections of a road is shown in Figure 1. We want to infer
that objects leaving the upstream view are likely to tran-

upstream downstream

Figure 1:Upstream to downstream movement of objects.

sition to the downstream view. We also want to infer the
distribution of transition times between the two views.

In some instances, one can carefully site and calibrate the
cameras so that observations are more easily coordinated.
However even with calibrated cameras, the departure/arrival
locations, connectivity, and transition time distribution still
have to be learned. In many cases, cameras must be rapidly
deployed and may not last for long periods of time. Hence
we seek a passive way of determining the topology of the
camera network. That is, we want to determine the net-
work structure relating cameras, and the typical transitions
between cameras, based on noisy observations of moving
objects in the cameras. Departure and arrival locations in
each camera view are nodes in the network. An arc between
a departure node and an arrival node denotes connectivity
(likely transition). We want to infer both the topology (i.e.,
which arcs exist) and the transition times. For the example
in Figure 1 we want to infer that the views are connected
and estimate the transition time distribution.

If we could identify the same object in different cam-
eras (e.g., using a license plate reader or face recognition
system), then learning the topology and transitions would
be easy. In practice, in wide-area surveillance, the corre-
spondence between observations in different cameras is dif-
ficult to obtain because cameras may be widely separated
and the observations may occupy only a few pixels. A key
feature we can exploit is time of arrival and departure. It can
be measured accurately by tracking in individual cameras.
Other features such as object appearance can also be used.
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In this paper, we hypothesize that given the correspon-
dence, the transition time distribution is highly structured
(i.e., has low entropy). For example, we expect different
modes in the transition time distribution for vehicles and
pedestrians with possibly some outliers. The contributions
of this paper are a formal definition of connectivity in terms
of statistical dependence and an algorithm for integrating
out the unknown correspondence. We show encouraging
results on synthetic and real data.

2. Previous Work

Previous work on tracking across multiple cameras gener-
ally either assumed known camera topology or known cor-
respondence. Methods which use assignment algorithms
for tracking across multiple cameras such as [7, 9, 8] as-
sume the transition models are known or fit them with hand-
labeled correspondences. Other work [3, 14] for calibration
also assume known correspondence.

Makriset al.[11] have tackled the problem of estimating
a multi-camera topology from observations. They assume a
single mode transition distribution and exhaustively search
for the location of the mode. Their method assumes all de-
parture and arrival pairs within a time window are implicitly
corresponding. The distribution of transition times obtained
from this correspondence is examined for a peak by thresh-
olding based on the mean and standard deviation. Essen-
tially the correlation between arrival and departure times is
computed using a loose, implicit notion of correspondence.
They show promising results using this method.

Correlation is effective for monotonic relationships in
general, but is not flexible enough to handle multi-modal
distributions. Makriset al. [11] have acknowledged this
fact, which can occur when both cars and pedestrians are
part of the observations. Their approach essentially assumes
a Gaussian transition distribution and implicit true corre-
spondences within a chosen time window. However for a
given departure observation, the true correspondence is a
single arrival observation. So for all observations within a
time window, the true and false correspondences generate a
mixture of the true and false transition distribution. The
time window size and distribution of observations deter-
mines the number of false correspondences versus the single
true correspondence. In general the more dense the obser-
vations and the longer the transition time, the more false
correspondences. Thus their method suffers from assum-
ing a unimodal transition distribution, and only implicitly
dealing with correspondence.

Our method generalizes their approach to more flexible,
multi-modal transition distributions, and explicitly handles
correspondence. This is accomplished by using a more
general information theoretic notion of statistical depen-
dence, and integrating out the uncertain correspondence in
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Y
n

T

Figure 2:Graphical model of departuresX, arrivalsY , and trans-
formationT parameterized byθ.

a Bayesian manner. Our approach makes very few assump-
tions and does not require supervision.

3. Problem Formulation
To infer the topology of a camera network, assume we have
identified arrival and departure locations and observations
in each camera. For example, this can be done with a blob-
based tracker in each camera separately [16]. For each pair
of cameras, we want to infer whether they are connected
and the distribution of transition times. Recall that this is
made more difficult because the correspondence between
observations in different cameras is unknown.

Suppose we are given observations of departurex1, .., xn

and arrivaly1, .., yn times in two connected cameras, re-
spectively. Also, assume that the correspondence between
the observations is given by a permutationπ of the indices
such that(xi, yπ(i)) is a corresponding pair. We formalize
this by writing

yπ(i) = ti(xi), (1)

where the distribution of transformationti is parameterized
by θ. This is illustrated in the graphical model shown in Fig-
ure 2. Shaded vertices are observed, plates (boxes) denote
repetitive structure. Solid arrows denote direct probabilis-
tic dependence, while dashed arrows denote direct func-
tional dependence. Note that each observed pair(xi, yπ(i))
is associated with its own hidden transformationti. In this
model, a fixed transformation distribution is chosen by sam-
pling aθ. Then,n observations are generated by repeatedly
sampling anxi, ati given the chosenθ, and finally generat-
ing yπ(i) as function ofxi and ti. Given true correspon-
dences we would know that two cameras are dependent.
Thus with unknown correspondence, strength of statistical
dependency is a good measure for jointly inferring corre-
spondence and camera connectivity.

For departure and arrival time observationsX and Y ,
the transformationT is an additive transition time between
cameras:Y = X + T . Our formulation also captures other
transformations such as color variations between cameras.
We will show this in the experiments. Based on our formu-
lation, both the degree and nature of dependence is deter-
mined by the distribution ofT , which is determined byθ.
BasicallyT tells us howX andY are related, and the ran-
domness inT indicates strength of dependence. In particu-
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lar, strong dependence means that observationsy are highly
predictable givenx. This will be reflected by low entropy
in the distribution ofT . So the degree of statistical depen-
dence measures how connected two cameras are, and the
nature of this dependency is encoded in the corresponding
distribution of transition times.

3.1. Mutual Information as a Measure of De-
pendence

Recall that our problem is to measure the degree and na-
ture of statistical dependence between observations in two
cameras. The mutual information (MI) [15, 18]

I(X; Y ) =

Z Z
p(x, y) log

p(x, y)

p(x)p(y)
dxdy. (2)

between two random variablesX andY is a natural mea-
sure of dependence. It is the average log likelihood ratio be-
tween the joint distribution (dependent case) and the prod-
uct of marginal distributions (independent case). Wolf [19]
has shown that MI is the dominating term in a Bayesian
measure of independence. When the joint distribution is
very different from the independent distribution, there is a
strong dependence betweenX andY , andI(X;Y ) is large.

We can write MI in terms of entropy,

I(X; Y ) = h(Y )− h(Y |X), (3)

where entropies are defined as

h(Y ) = −EY [log p(Y )] (4)

h(Y |X) = −EX{EY [log p(Y |X)]}. (5)

Thus MI is a measure of the reduction in uncertainty of one
random variable given knowledge of another.

We can use equation (3) to compute MI between the ob-
servations in two cameras. We can relateh(Y |X) to the en-
tropy ofT by recalling the graphical model shown in Figure
2. Then using the chain rule for entropy,

h(Y, T |X) = h(T |X) + h(Y |T, X) (6)

= h(T ) + h(Y |T, X) (7)

becauseX is independent ofT , and

h(Y, T |X) = h(Y |X) + h(T |Y, X). (8)

Assume thatY = T (X) can be determined givenX and
T up to fidelityε > 0, and thatT can be determined given
X andY also up to fidelityε [15]. Combining the above
yields

h(Y |X) = h(T ), (9)

I(X; Y ) = h(Y )− h(T ). (10)

So as previously asserted, the degree and nature of de-
pendence betweenX andY is governed by the distribution
of transformationsT , which for our model depends on the
hidden parameterθ.

3.2. Entropy Estimation
To computeI(X;Y ) we need to computeh(Y ) andh(T ).
We use the Parzen density estimator [12] to compute en-
tropy from samples. We show this forT ; it similarly applies
to Y . The Parzen density estimate is

p̂(t) =
1

n

nX
i=1

K

„
t− ti

σ

«
(11)

whereσ is the bandwidth,K is the kernel, andt1, ..., tn ∈
Rd are iid samples. The Gaussian function makes a conve-
nient kernel. Parzen density estimators are simple yet flexi-
ble enough to fit densities with multiple modes.

We can approximate the entropy

h(T ) = −E[log p(T )] ≈ − 1

n

nX
i=1

log p̂(ti). (12)

This is just the negative of the average log likelihood of a set
of samples. It shows how the entropy of the transformation
is related to their likelihood which in turn determines the
degree of statistical dependence in our model.

For uni-dimensional data we use the fasterm-spacings
estimate [17, 10]. The estimate is

h(T ) ≈ 1

n

n−mX
i=1

log
“ n

m
(ti+m − ti)

”
(13)

where the subscripts fort denote ordering. The primary
computation is sorting the data to obtain order statistics.

3.3. Posterior Expectation
Now we know how to compute statistical dependence in
terms of MI and entropies. Given observationsO =
{xi, yi} we write the posterior expectation as

Eθ[I(X; Y )] =

Z
θ′
{h(Y )− h[T |θ′]}p(θ′|O)dθ′ (14)

= h(Y )−
Z

θ′
h[p(T |θ′)]p(O|θ′)p(θ′)

p(O)
dθ′ (15)

= h(Y )−
Z

θ′
h[p(T |θ′)] (16)

nY
i=1

R
ti

p(xi, yi, ti|θ′)p(θ′)dti

p(O)
dθ′. (17)

Note that the dependence integrates over all transforma-
tions and all transformation distributions. We can choose
the maximum a posteriori(MAP) θ∗ and t∗ given θ∗ as
the representative dependence and transformation. This is
reasonable if the posterior distribution ofθ and p(T |θ∗)
is unimodal and sharply peaked. We expect this to be the
case for simple transformations such as transition time. We
could also sample transformation distributions and transfor-
mations from the posterior distribution ofθ andp(T |θ) and
compute their resulting statistical dependence. In practice,
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we represent the MAPθ∗ implicitly by modeling the dis-
tribution of T nonparametrically. The assumed functional
relationship betweenX, Y , andT also simplifies the inte-
gral with respect toT to a single term. So the computation
of I(X;Y ) only requires computingh(Y ) andh(T ).

4. Correspondence
So far we assume a known correspondenceπ between the
observationsX andY in both cameras. This allows us to
relate the nature of the statistical dependency betweenX
andY with the distribution of transformationsT . We define
statistical dependence as mutual informationI(X;Y ), and
compute it via the entropiesh(Y ) andh(T ).

In reality, the correspondenceπ is unknown so we must
integrate it out as a nuisance variable,

Eθ[I(X; Y )] = Eθ[Eπ{I(X; Yπ)}]. (18)

Using the single MAP correspondence to approximate the
expectation is problematic becauseI(X;Yπ), in general,
does not vary smoothly with permutationsπ. The MAP
correspondence may have incorrect correspondences which
can dramatically change the estimated transformationsT .
This is because of the discrete structure of permutations.
Thus the correspondence problem does not admit a simple
MAP approximation to the full Bayesian solution as for MI.

4.1. Markov Chain Monte Carlo
The combinatorial nature of permutations makes compu-
tation of the expectation (18) by direct enumeration in-
tractable. Markov Chain Monte Carlo (MCMC) [5, 13, 2, 4]
is a way to perform approximate inference in this case. We
want to approximate

Eθ[Eπ{I(X; Yπ}] ≈
1

n

nX
j=1

Eθ[I(X; Yπj )], (19)

which requires samples from the posterior distribution of
correspondencesp(π). We use the Metropolis-Hastings al-
gorithm [6] (see Algorithm 1) to do this. The initial sam-
ple is a random correspondence (permutation). New sam-
ples are obtained by conditionally sampling a new corre-
spondence given the current one via a proposal distribution
q(π′|πj). We use three different types of proposals for sam-
pling correspondences: (1) add a match, (2) delete a match,
(3) flip two matches. This allows the algorithm to sample
new correspondences by swapping matches. The ability to
add and delete matches handles missing correspondences
as described in next section. It also enables matches to be
swapped without generating samples with highly improba-
ble matches in the process. The proposals are simple to im-
plement and work well in our experience. The new sample
is accepted with probability proportional to the relative like-
lihood of the new sample vs. the current one. The likelihood

Algorithm 1 Metropolis-Hastings

1. Initialize π0; j = 0.
2. loop
3. Sampleπ′ from q(·|πj).
4. SampleU from U(0, 1).

5. Let α(πj , π
′) = min

“
1,

p(π′)q(πj |π′)
p(π)q(π′|πj)

”
.

6. if U ≤ α(πj , π
′) then

7. πj+1 = π′.
8. else
9. πj+1 = πj .

10. end if
11. j ← j + 1.
12. end loop

of a correspondence is proportional to the log probability of
the corresponding transformations, which we compute as
−h(T ) as described in the previous section. The algorithm
repeats this process for the desired number of samples. We
computeI(X;Yπj

) for each sampleπj and take the average
as the expected posterior MI.

4.2. Missing Correspondences
Recall that our goal is to compute the statistical dependence
between observations in two cameras. We have shown how
to do this by computing MI using nonparametric density es-
timation and integrating out the unknown correspondence
using MCMC. In real data, it is common for correspon-
dences to be missing betweenX andY . That is, somexi’s
may not have correspondingyπ(i)’s. This can occur because
some objects may move into a different camera view or be-
cause of tracking errors in either camera.

We consider missing data as outliers, and model the dis-
tribution of transition times as a mixture of the true and out-
lier distributions. We can still use the fastm-spacings esti-
mate of entropy by minimizing an upper bound on the mix-
ture entropy. Letp1 = p(T |ω = missing), p2 = p(T |ω =
present) andλ = p(ω = missing). The joint entropy is

h(T, ω) = H(ω) + h(T |ω) (20)

= h(T ) + H(ω|T ), (21)

whereH denotes entropy for discrete variables. Thus,

h(T ) = H(ω) + h(T |ω)−H(ω|T ) (22)

= H(λ) + λh(p1) + (1− λ)h(p2)−H(ω|T ) (23)

≤ H(λ) + λh(p1) + (1− λ)h(p2) (24)

becauseH(ω|T ) ≥ 0. In our experiments we have used a
uniform outlier distribution.

In summary, our method relates statistical dependence
between two cameras with mutual information between ob-
servations at each camera. MI is computed by calculating
the entropy of the transition distribution. MCMC is used
to integrate over the unknown correspondence between the
observations, taking into account missing matches.
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Figure 3:Transition distributions obtained using correlation with
different time windows all fail to match the simulated multi-modal
distribution (dashed plot). In addition, there is no clear maximum
peak indicating statistical dependence.

5. Results

First, we show detailed results for a simulated and real
road. In both cases, two cameras are positioned at two non-
overlapping portions of the road. Finally, we show results
for a simulated and real traffic network of cameras.

5.1. Simulated Road

To study the differences between our approach and pre-
vious work we simulated a data set of 100 points
from a Poisson(0.1) departure process. The transition
distribution is a mixture ofGamma(16.67, 0.33) and
Gamma(266.67, 1.33). This generates a dense arrival pro-
cess and two transition time modes with different means
and identical variance. Real objects such as pedestrians and
vehicles often exhibit this type of process.

Recall that the correlation method matches all observa-
tions within a transition time window. These assumed cor-
respondences are used to estimate the distribution of transi-
tion times. Figure 3 shows the transition distributions esti-
mated using the correlation method with various time win-
dows. The number of false correspondences causes the tran-
sition distribution to differ greatly from the true distribu-
tion. It is difficult to choose a best correlation time window.
Also, correlation weakens with increasing distance between
the means of the mixture component distributions because
it assumes unimodality. Although the transition distribution
has low entropy, correlation fails to capture this.

Figure 4 shows our approach on the same data. Although
we do not recover the transition distribution exactly, it is
much closer in shape than the ones obtained from the corre-
lation method. The estimated MI of 2.47 is close to the true
value of 2.12. In general it is difficult to recover the true
transition distribution, however our algorithm does find dis-
tributions that are qualitatively similar in structure (multi-
modal) and quantitatively similar in MI. Departure and ar-
rival times alone may not be able to resolve the ambiguity
that can occur by correspondences which shift the modes of
the transition distribution.
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Figure 4:Our method on the simulated road. (a) Estimated tran-
sition distribution. (b) Samples from the posterior distribution of
correspondencesp(π) (true correspondence along the diagonal).
(c) Entropy of the transition distribution vs. MCMC iteration. (d)
Number of correspondences vs. MCMC iteration.

5.2. Single Road
Consider the two views shown in Figure 1 of upstream and
downstream portions of the same road. Cars and pedestri-
ans passing through the scene will appear in one view and
subsequently in the other. We hand-labeled 100 matches in
one day of tracking data obtained from a blob-tracker [16].
The data also contained about 25% unmatched outliers.

Figure 5 shows the transition distributions estimated us-
ing the correlation method. As in the case for the simulated
data, correlation cannot accurately recover the multi-modal
nature of the transitions. The also results in a higher entropy
distribution and less statistical dependence. Figure 6 shows
the results of our approach on this data. Note how the num-
ber of matches changes rapidly initially but eventually con-
verges. Our recovered transition distribution matches the
true distribution fairly well. The sharpness of the posterior
correspondences point to why we can recover the transition
distribution fairly accurately. Figure 7 shows a sample of
the correspondences we obtain from our method. In total,
14% of them were in error. This is using temporal infor-
mation alone. We expect that adding other features such as
color may improve the correspondences.

5.3. Simulated Traffic Network
We built a traffic simulator to generate data for a simulated
network of cameras at intersections. The simulator was
based on a real road network, and took into account real
traffic patterns and vehicle dynamics. An example network
is shown in Figure 8. We simulated 1000 car trips using
shortest paths from start to end node with some noise in the
path. Departure and arrival times were recorded.

We computed MI for each pair of cameras. For each
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Figure 5:Transition distributions obtained using correlation with
different time windows on the road data. The dotted distribution is
the true one. The results vary widely for different time windows.
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Figure 6:Our method on the road data. (a) Estimated transition
distribution. (b) Samples from the posterior distribution of corre-
spondencesp(π|O) (true correspondence near the diagonal). (c)
Entropy of the transition distribution vs. MCMC iteration. (d)
Number of correspondences vs. MCMC iteration.

camera, edges with MI values above a fixed percentage of
all values were added. For a Markov chainX → Y →
Z, the data processing inequality guaranteesI(X;Y ) ≥
I(X;Z) andI(Z;Y ) ≥ I(Z;X) [1]. Thus directly con-
nected cameras have higher statistical dependence (assum-
ing roughly equal unconditional entropies). Examples of
learned graphs based on different percentage thresholds are
shown in Figure 8. In our experiments greedy selection
closely approximates the correct topology.

5.4. Real Traffic Network
We obtained data from a real traffic network of five cam-
eras, described in the next section. Once again we applied
our method as for the simulated traffic network. For this
experiment we also added color transformations from one
camera to another. This is commonplace because cameras
often have different sensor responses. In addition, for wide
area surveillance the lighting conditions for vary dramati-
cally across cameras. Color transformations are modeled
as flows in RGB space,cy = cx + ∆c, for an RGB vector
c. Figure 9 shows estimated color flows for a good corre-
spondence and an essentially random one. Note how the

Figure 7:Examples of objects matched by our method. The sec-
ond from the right has been considered an outlier by the algorithm.

corresponding color flow is essentially a brightening, while
the non-corresponding one is less unstructured. The total
transformation entropy is the sum of the temporal and color
transition entropies. In this case we had greater difficulty in-
ferring the camera transition topology. Many of the primary
transitions are recovered as shown in Figure 10. Weaker
second order connections also show up. We believe these
difficulties are primarily caused by the lack of data. Many
of the links between cameras had only about 30 correspon-
dences. In addition, accurate times of departure and arrivals
were only available at frame resolution. Adding other visual
features may help alleviate these problems.

6 Camera Location Learning

Thus far we have discussed a technique for learning the
topology and transition time distributions for a network of
cameras. A related problem is that of finding the geometry
of the network. Specifically, we are interested in learning
the actual geographic coordinates of the fields of view of
the cameras, using GPS side information. By doing so, ap-
plications can take advantage of semantic information such
as the relative locations of key protection assets and camera
views. We envision extending the topology learning frame-
work in the future to allow integrating the learning of ge-
ometry and topology jointly. In Figures 8 and 11, we would
like to be able to learn the locations of the cameras (blue
circles and red boxes, respectively).

One method is to manually obtain the world coordinates
of the camera fields of view at the original installation time.
Unfortunately, in many situations this is impractical or in-
sufficient. In some surveillance scenarios, rapid deployment
of cameras is necessary to limit danger to those installing
them. In a much wider set of long-term surveillance sce-
narios, cameras tend to get bumped out of calibration, new
cameras are periodically added, and old cameras fail.

For our experiment, we assume that we have an in-
stalled network of cameras and at least one object mov-
ing through the surveillance area that is instrumented with
a GPS receiver. Note that we do not have correspondence
between the instrumented objects and camera observations,
e.g.when we see an object pass through a camera, we do not
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Figure 8: (a) The true simulated network of cameras. (b)-(d)
Examples of recovered graphs of the simulated traffic network for
different MI thresholds. Here the camera locations are assumed
known for visualization purposes, but our algorithm is agnostic to
this information.
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Figure 9: (a) Corresponding color flow. (b) Non-corresponding
color flow.

know to which, if any, instrumented object it corresponds.
Under this setup, we know the latitude and longitude of

each instrumented object at each point in time. We denote
this data as the set{(xvi, yvi, tvi)}, wherev indexes the
vehicle andi indexes time. We may estimate

p̂(x, y) ∝
NvX
v=1

NviX
i=1

δ(x, xvi)δ(y, yvi) (25)

whereδ(·, ·) is the Kronecker delta function (see Fig. 11a
for p̂(x, y) for the real traffic network we tested).

We separately have access to the recorded in-camera
tracking data,{(tcj)}, that reports when vehicles enter
and exit each camera’s field-of-view, wherec indexes the
camera number andj indexes the times reports occurred.
We seek to correlate the spatio-temporal GPS data with
the camera report times. To do so, we wish to estimate
p(x, y|c), the probability that a vehicle will be at location
(x, y) given that it is seen at the edge of camerac.

Although we cannot quite estimatep(x, y|c) directly, we

(a)

(b)

Figure 10:Links inferred for the real traffic network. Link width
is proportional to strength of statistical dependence. (a) low MI
threshold (b) high MI threshold.

can approximate it with the mixture distribution

p̃(x, y|c) ∝ p(x, y|c) + εp(x, y) (26)

∝
NvX
v=1

NviX
i=1

NcjX
j=1

δ(x, xvi)δ(y, yvi)δ(tcj , tvi) (27)

where ε indicates how well p̃(x, y|c) approximates
p(x, y|c). For our current implementation, we assume that
p(x, y|c) ≈ p̃(x, y|c) and do not attempt to removeεp(x, y).

To test this algorithm, we use a dataset of five cameras,
five instrumented vehicles following scripted behavior, and
approximately unplanned 17 vehicles that passed through
the cameras during the data collection period. In Fig. 11b
we showp̃(x, y|c) as green and black (bold) dots, compos-
ited from all cameras. We threshold̃p(x, y|c) and consider
high values to be candidate entry/exit locations for the cam-
eras. These are shown in the figure as large dark black dots.
For each camera, we find the bounding square of a fixed size
that contains the largest number of high values. We only
consider the high values generated for the particular camera
in question. The red bounding squares are our estimated
camera locations. Overlayed as well are dark red trape-
zoids indicating the manually-drawn approximate ground-
truth fields-of-view of the cameras. Note that with this data
we are able to correctly identify the camera locations.

7. Discussion
We presented an approach to infer the topology of a cam-
era network by measuring the degree and nature of statisti-
cal dependence between observations in different cameras.
Unlike previous work, our method explicitly considers the
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(a)

(b)

Figure 11:Camera Location Learning: (a) plot of all GPS co-
ordinates recorded for all vehicles using the real traffic network
(p̂(x, y)). (b) estimated camera locations, composited together
({p̃(x, y|c)}). Black (green) points are GPS coordinates of ve-
hicles judged to (not) correspond to an entry or exit from a cam-
era. Light red squares indicate the location of all automatically-
estimated camera locations. Dark red trapezoids indicate the
manually-estimated camera locations.

correspondence problem and handles general types of sta-
tistical dependence by using mutual information and non-
parametric density estimates. It also recovers the transition
distribution, not just an average transition time. We demon-
strated how our method outperforms previous work on sim-
ulated and real data. The computations are approximate but
give promising results and is relatively simple to implement.

Future work involves analyzing more than two cameras
at a time. Our results have only used time of departure
and arrival and color, but our approach is readily adapted
to other features. We hope to integrate the learning of met-
ric camera locations into our topology learning framework.
We can also take advantage of the following sources of in-
formation to further constrain the solution space: (1) mo-
tion direction and scene entry/exit information, (2) vehicles
in the scene that are not equipped with GPS devices, and (3)
transition times between cameras.
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