
A New Framework for Approximate Labeling via Graph Cuts

Nikos Komodakis, Georgios Tziritas
Computer Science Department, University of Crete

E-mails:{komod, tziritas}@csd.uoc.gr

Abstract
A new framework is presented that uses tools from dual-

ity theory of linear programming to derive graph-cut based
combinatorial algorithms for approximating NP-hard clas-
sification problems. The derived algorithms include α-
expansion graph cut techniques merely as a special case,
have guaranteed optimality properties even in cases where
α-expansion techniques fail to do so and can provide very
tight per-instance suboptimality bounds in all occasions.

1 Introduction
The Metric Labeling Problem (ML) [3] can capture a

broad range of classification problems that arise in early vi-
sion (e.g. image restoration, stereo matching etc.). Given
a set V of objects and a set L of labels the goal is to find
a labeling f : V → L with a minimum cost C(f). The
cost C(f) =

∑
p∈V cp,f(p) +

∑
(p,q)∈E wpqdf(p)f(q) con-

sists of 2 parts. On one hand, for each p ∈ V there is a
label cost cp,f(p) ≥ 0 for assigning label f(p) to p. On the
other hand, for each pair of objects p, q that are adjacent in
a graph G = (V,E) there is a so-called separation cost for
assigning labels a = f(p), b = f(q) to them. This separa-
tion cost equals to wpqdab where wpq is the weight of edge
(p, q) ∈ E and represents the strength of similarity between
p, q while dab is a metric1 distance between labels.

One class of approximation algorithms [3, 2] solves the
ML problem by formulating it as the Linear Programming
relaxation of an integer program. However these methods
require the solution of a very large linear program and are
therefore impractical to use. On the other hand, a variety
of combinatorial algorithms based on graph cuts [1, 8, 4, 9]
have been developed which are fast but that have been in-
terpreted only as greedy local search techniques up to now.

The framework presented in this paper bridges the gap
between these two classes of algorithms and makes use of
the primal-dual schema of linear programming to derive
combinatorial approximation algorithms for the ML prob-
lem. Its major contributions are: 1) The derived algorithms
have (for the first time) guaranteed optimality properties
even in the more general case where dab is merely a semi-
metric2, a case which is often encountered in problems of

1i.e. dab = 0 ⇔ a = b, dab = dba ≥ 0, dab ≤ dac + dcb
2i.e. dab = 0 ⇔ a = b, dab = dba ≥ 0

early vision. 2) Besides these theoretical optimality prop-
erties, the considered algorithms also provide per-instance
suboptimality bounds that prove to be much tighter in prac-
tice, thus showing that a nearly optimal solution is always
obtained. 3) α-expansion graph cut techniques [1] are in-
cluded merely as a special case of our framework. This fact
along with the previous remark explains the great success
these techniques exhibit in practice. Furthermore, for the
first time these (state-of-the-art) expansion techniques are
interpreted not merely as greedy local search but in terms
of principles drawn from the theory of linear programming.

We describe our algorithms in sections 2-5 while we
show experimental results in section 6.

2 The primal-dual schema
Consider the primal-dual pair of linear programs:

PRIMAL: min cT x DUAL: max bT y
s.t. Ax = b, x ≥ 0 s.t. AT y ≤ c

where A = [aij] is an m × n matrix and b, c are vectors of
size m,n respectively. We want to find an optimal integral
solution to the primal program but since this is in general
an NP-complete problem we must settle with estimating ap-
proximate solutions. A primal-dual f -approximation algo-
rithm achieves that by use of the following principle [7]:
Theorem (Relaxed Complementary Slackness). If the
pair (x, y) of integral-primal and dual feasible solutions
satisfies the so-called relaxed primal complementary slack-
ness conditions: ∀ xj > 0 ⇒ ∑m

i=1 aijyi ≥ cj/fj

then x is an f -approximation to the optimal integral solu-
tion x∗ (i.e. cT x ≤ f · cT x∗) with f = maxj fj .

Based on this theorem, a primal-dual f -approximation
algorithm usually exploits the following iterative schema:
Primal-Dual Schema. Keep generating pairs of integral-
primal, dual solutions {(xk, yk)}t

k=1 until the elements xt,
yt of the last pair are both feasible and satisfy the relaxed
primal complementary slackness conditions.

2.1 Metric Labeling as a linear program
Here we will use the following integer programming for-

mulation of the ML problem, introduced in [2]:

min
∑

p∈V,a∈L

cp,axp,a +
∑

(p,q)∈E

wpq

∑
a,b∈L

dabxpq,ab (1)

s.t.
∑

a
xp,a = 1 ∀ p ∈ V (2)∑

a
xpq,ab = xq,b ∀ b ∈ L, (p, q) ∈ E (3)∑

b
xpq,ab = xp,a ∀ a ∈ L, (p, q) ∈ E (4)

xp,a, xpq,ab ∈ {0, 1} ∀ p ∈ V, (p, q) ∈ E, a, b ∈ L

The {0, 1}-variable xp,a indicates that vertex p is assigned
label a while the {0, 1}-variable xpq,ab indicates that ver-
tex p is labeled a and vertex q is labeled b. The variables
xpq,ab, xqp,ba therefore indicate the same thing. So, in or-
der to eliminate one of them and reduce the number of vari-
ables in the primal problem, we assume w.l.o.g. that only
one of (p, q), (q, p) belongs to E for any neighbors p, q.
The notation “p ∼ q” will hereafter denote that p, q are
neighbors i.e. “either (p, q)∈ E or (q, p)∈ E”. The first
constraints (2) simply express the fact that each vertex must
receive a label while constraints (3), (4) maintain consis-
tency between variables xp,a, xq,b and xpq,ab in the sense
that if xp,a = 1, xq,b = 1 they force xpq,ab = 1 as well.

By relaxing the {0, 1} constraints to xp,a ≥ 0, xpq,ab ≥
0 we get a linear program. Its dual has the following form:

max
∑

p
yp

s.t. yp ≤ htyp,a ∀p ∈ V, a ∈ L (5)

ypq,a + yqp,b ≤ wpqdab ∀a, b ∈ L, (p, q) ∈ E (6)

where: htyp,a ≡ cp,a +
∑

q:q∼p
ypq,a (7)

To each vertex p, there corresponds one dual variable yp.
Also, to each edge (p, q) ∈ E (and any label a), there cor-
respond 2 dual variables ypq,a and yqp,a. All the dual vari-
ables ypq,a, yqp,a will be called “balance variables” here-
after and we will also say that ypq,a is the conjugate balance
variable of yqp,a (and vice versa). The auxiliary variables
htyp,a will be called “height variables”. The reason for this
as well as for introducing these redundant variables will be-
come clear in the sections that are following. For defining a
dual solution, only the balance variables ypq,a as well as the
yp variables must be specified. The height variables htyp,a

are then computed by (7).
Since we will be considering only feasible {0, 1}-primal

solutions, a primal solution x will hereafter refer to a set
of labels {xp}p∈V where xp denotes the label assigned to
vertex p. Under this notation, xp,a = 1 is equivalent to xp =
a and so it is not difficult to see that the relaxed slackness
conditions related to the xp,a variables are reduced to:

yp ≥ cp,xp
/f1 +

∑
q:q∼p

ypq,xp
(8)

while the slackness conditions of the xpq,ab variables are:

xp 	= xq ⇒ ypq,xp
+ yqp,xq

≥ wpqdxpxq
/f2 (9)

xp = xq = a ⇒ ypq,a + yqp,a = 0 (10)

where we consider the cases a 	= b and a = b separately.

ypq,c

yqp,c

α=xq

α=xp

c

b

p q
wpq

c
b

y
apht ,

y
cpht ,

y
bpht ,

y
aqht ,

y
bqht ,

y
cqht ,

reference plane

Fig. 1: Visualization of the dual for a graph G consisting of just 2
neighbors p, q while L = {a, b, c}. Each vertex holds a copy of all
labels in L and all these labels are represented by circles which are
located at certain heights specified by the ht variables. Label c at p
is pulled up due to the increase of the balance variable ypq,c and so
the corresponding label at neighboring vertex q is pulled down due
to the decrease of the conjugate variable yqp,c. The active labels
of p, q are drawn with a thicker line.

Our objective will therefore be to find feasible solutions
x, y satisfying the above conditions (8), (9) and (10). Con-
ditions (10) simply say that conjugate balance variables are
opposite to each other. For this reason we set by definition:

yqp,a ≡ −ypq,a ∀ (p, q) ∈ E, a ∈ L (11)

and so no worry about conditions (10) is needed hereafter.
2.2 An intuitive view of the dual variables

A way of viewing/visualizing the dual variables, that will
prove useful when later designing our approximation algo-
rithms, is the following: for each vertex p, we consider a
separate copy of the complete set of labels L. It is then as-
sumed that all of these labels are objects which are located
at certain heights relative to a common reference plane (see
Fig. 1). The height of label a at vertex p is given by the dual
variable htyp,a. Expressions like “label a at p is below/above
label b” imply htyp,a ≶ htyp,b. The role of the balance vari-
ables is to contribute to the increase or decrease of a vertex’s
height. In particular, due to (7), the height of a label a at p
can be altered only if at least one of the balance variables
{ypq,a}q:q∼p is altered as well. In addition, due to the fact
that conjugate balance variables are opposite to each other
(see (11)), changes in the height of label a at p also affect
the height of that label at a neighboring vertex. In Fig. 1,
for example, each time we increase the height of label c at
p, say by increasing balance variable ypq,c, the height of c at
the neighboring vertex q is decreased by the same amount
due to the decrease of the conjugate variable yqp,c.

Before proceeding let us also define some terminology.
Let x, y be any pair of integral-primal, dual solutions. We
will call the label assigned to p by x (i.e. xp) the active
label at p. We will also refer to the height of the active label
at p (i.e. htyp,xp

) as merely the height of p. We will call the
sum of the heights of all vertices the “Approximate Primal
Function” (or APF for short) i.e. APF x,y =

∑
p htyp,xp

.
This function’s name comes from the fact that if x, y satisfy
the relaxed slackness conditions then it is easy to prove that
APF approximates the primal objective function.

Also, any balance variable in the set {ypq,xp
}q:q∼p (i.e.

any balance variable of the form ypq,xp
with q adjacent to

1: k ← 1; xk ←INIT PRIMALS(); yk ←INIT DUALS();
2: LabelChange ← 0
3: for each label c in L do
4: ȳk ← PREEDIT DUALS(c, xk, yk);
5: [xk+1, ȳk+1] ←UPDATE DUALS PRIMALS(c, xk, ȳk);
6: yk+1 ←POSTEDIT DUALS(c, xk+1, ȳk+1);
7: if xk+1 �= xk then LabelChange ← 1
8: k++;
9: end for

10: if LabelChange = 1 then goto 2;

11: if algorithm �= PD1 then yfit ←DUAL FIT(yk);

Fig. 2: The basic structure of the algorithms PD1, PD2 and PD3.

p) will be called an active balance variable at vertex p. An-
other important quantity is the load between two neighbors
p, q (loadx,y

pq) which is defined as the sum of the 2 active bal-
ance variables ypq,xp

, yqp,xq
i.e. loadx,y

pq = ypq,xp
+ yqp,xq

.
If relaxed slackness conditions (9) hold, then due to (9) and
(6) it is easy to see that the load between p, q can be thought
of as a virtual separation cost which approximates the actual
separation cost wpqdxpxq

between p, q.
2.3 Applying the primal-dual schema to ML

Most of our approximation algorithms can achieve an
approximation factor of fapp = 2dmax

dmin
with dmin ≡

mina�=bdab and dmax ≡ maxa�=bdab. Their basic struc-
ture can be seen in Fig. 2. The initial primal-dual solutions
are generated inside INIT PRIMALS and INIT DUALS. Dur-
ing an inner iteration (lines 4-8 in Fig. 2) a label c is se-
lected and a new primal-dual pair of solutions (xk+1, yk+1)
is generated by updating the current pair (xk, yk). Dur-
ing this iteration, among all balance variables of yk (i.e.
{yk

pq,a}a∈L
p,q:p∼q) only the balance variables of the c labels

(i.e. {yk
pq,c}p,q:p∼q) are modified. We call this a c-iteration

of the algorithm. |L| such iterations (one c-iteration for each
label c in the set L) make up an outer iteration (lines 2-9 in
Fig. 2) and the algorithm terminates if no vertex changes its
label during the current outer iteration.

During an inner iteration the main update of the
primal and dual variables takes place inside UP-
DATE DUALS PRIMALS while PREEDIT DUALS and
POSTEDIT DUALS modify the dual variables before and
after the main update. The algorithms to be considered are
named PD1, PD2, PD3 and the DUAL FIT routine, which is
used only in the last two of them, serves only the purpose
of applying a scaling operation to the last dual solution.

3 The PD1 algorithm
During this section we will assume that dab is a semi-

metric. In the case of the PD1 algorithm our goal will be
to find feasible x, y satisfying slackness conditions (8), (9)
with f1 = 1 and f2 = fapp. By replacing f1 = 1 in (8) that
condition becomes yp ≥ htyp,xp

. Since it also holds that
yp ≤ mina htyp,a (by the dual constraints (5)), it is easy to
see that (8) reduces to the following 2 equations:

yp = min
a

htyp,a (12)

htyp,xp
= min

a
htyp,a (13)

In addition, loadx,y
pq = ypq,xp

+ yqp,xq
(by definition) and

so by replacing f2 = fapp in (9) that condition reduces to:

xp 	= xq ⇒ loadx,y
pq ≥ wpqdxpxq

/fapp (14)

Therefore the objective of PD1 is to find feasible x, y sat-
isfying conditions (12)-(14) and for this, PD1 uses the fol-
lowing strategy: At each iteration it makes sure that condi-
tions (12) and (14) are automatically satisfied by the current
primal-dual pair. In addition, it makes sure that the cur-
rent dual solution is feasible (primal solutions are always
integral-feasible by construction). To this end it always im-
poses the following constraints to the current dual solution:

ypq,a ≤ wpqdmin/2 ∀ a ∈ L, p ∼ q (15)

To see that (15) ensures feasibility, it is enough to observe
that due to this constraint the following inequality can be de-
rived: ypq,a + yqp,b ≤ 2wpqdmin/2 = wpqdmin ≤ wpqdab

and so the dual constraints (6) hold true. This implies that
solution y is indeed feasible since the other dual constraints
(5) already hold true due to condition (12).

All that remains then for PD1 to achieve its goal is just to
ensure that after a finite number of iterations slackness con-
ditions (13) are satisfied as well. These conditions simply
require that the active label of any vertex must be “lower”
than all other labels at that vertex. So assuming that at the
start of an outer iteration all conditions (12)-(15) except for
(13) are satisfied, the update of the primal and dual variables
roughly proceeds as follows:
DUAL VARIABLES UPDATE: Given the current primal so-
lution (i.e. the current label assignment), we try to update
the balance variables so that for each vertex its active label
stays at the same height while the rest of the labels at that
vertex are raised above the vertex’s active label. Since we
must also ensure that the balance variables do not increase
too much (or else constraints (15) would become violated),
this cannot be achieved for all vertices.
PRIMAL VARIABLES UPDATE: This implies that after the
rearrangement of the labels’ heights, there might still be
some vertices violating condition (13). We select a suit-
able subset of these vertices and assign to them new active
labels with lower heights so that the resulting primal solu-
tion is taken closer to satisfying (13). The reason we may
not be able to do that for all the vertices is that we must still
take care that conditions (14) are maintained as well.

However, by keep repeating this procedure, the number
of vertices violating (13) decreases per iteration and so in
the end all conditions (12)-(15) will hold true. It should be
noted that it is always trivial to enforce conditions (12) (we
simply set each dual variable yp equal to mina htyp,a).

The rearrangement of the labels’ heights takes place in
groups, one group per inner iteration. In particular, dur-
ing a c-iteration only the heights of the c labels are rear-
ranged so that as many of these labels as possible are raised

fpq--fqp

fqp -fpqa=xp

c

c=xr

c

p q r
wpq wqr

a=xq

a
y

xp p
ht ,

y
cpht ,

y
cqht ,

y
xq q

ht ,

y
xr r

ht ,

y
arht ,

(a)

p q r

s (source)

t (sink)

fpq fqp

fp

fr

fq

fqr frq

y
xq

y
cqqt q

hthtcap ,, −=

0=qrcap

cqppqqp ydwcap ,min 2 −=

cpqpqpq ydwcap ,min 2 −=

y
cp

y
xpsp hthtcap

p ,, −=

0=rqcap

1=srcap

(b)

Fig. 3: (a) A arrangement of labels (represented by circles) for
a graph G with 3 vertices p, q, r and 2 edges pq, qr of weights
wpq, wqr . The label set is L = {a, c}. The circles with the thicker
line represent the active labels. Also, the red arrows indicate how
the c labels will move in respond to the update of the dual vari-
ables while the circles with the dashed line show the final posi-
tion of those labels after the update. (b) The corresponding graph
Gx,y

c that will be used for the update of the dual variables. Inte-
rior/exterior edges are drawn with solid/dashed lines respectively.

above the corresponding active labels. To this end solu-
tion y is changed into solution y′ by changing only vari-
ables {ypq,c}p,q:p∼q (i.e. the balance variables of all c la-
bels) into {y′

pq,c}p,q:p∼q. The new heights will therefore be

hty
′

p,c. We must be careful, though, during this update of the
c-heights. For example, in Fig. 3(a), if we try to raise c at
vertex p (by increasing ypq,c) so as to reach xp then label
c at q may go below xq due to the decrease of the conju-
gate variable yqp,c, thus breaking condition (13) for q. It
turns out that the optimal update can be simulated by push-
ing the maximum amount of flow through a directed graph
Gx,y

c = (V x,y
c , Ex,y

c , Cx,y
c) with capacities Cx,y

c where x, y
are the primal-dual solutions at the start of the c-iteration
(see Fig. 3(b) for an example of such a graph).

The nodes V x,y
c of Gx,y

c consist of all the nodes of graph
G (these are the internal nodes) plus two special external
nodes the source s and the sink t. The nodes of Gx,y

c are
connected by two types of edges: interior and exterior edges
(drawn with solid/dashed lines respectively in Fig. 3(b)).
Interior edges: For each edge (p, q) ∈ G, we insert 2 di-

rected interior edges pq and qp in graph Gx,y
c . The amount

of flow fpq coming out of p through pq represents the in-
crease of the balance variable ypq,c while the reverse flow
fqp represents the decrease of the same variable ypq,c. The
total change of ypq,c will therefore be:

y′
pq,c = ypq,c + fpq − fqp (16)

The total change in yqp,c is defined symmetrically (since
any flow coming out of p through pq will enter q and vice
versa) and so y′

pq,c = −y′
qp,c i.e. conjugate balance vari-

ables remain opposite to each other as they should.

Based on (16), it is obvious that the capacity cappq of
edge pq represents the maximum allowed increase of ypq,c

(attained if fpq = cappq, fqp = 0) while a similar con-
clusion holds for capqp. Based on this observation cappq,
capqp are assigned as follows: if the active label of p (or q)
is equal to c then the height of c at p (or q) must stay fixed
at this iteration and so we want no increase in ypq,c, yqp,c:

xp = c or xq = c ⇒ cappq = capqp = 0 (17)

Otherwise (i.e. xp 	= c, xq 	= c), we set cappq , capqp so
that the values of the new balance variables y′

pq,c, y′
qp,c can

never exceed wpqdmin/2 and feasibility conditions (15) are
therefore maintained for the new dual solution y′ i.e.:

ypq,c + cappq = wpqdmin/2 = yqp,c + capqp (18)

Capacities of blue/red edges in Fig.3(b) are set by (17)/ (18).
Exterior edges: Each internal node p connects to either

the source node s or the sink node t (but not to both of them)
through an exterior edge. There are 3 possible cases:

Case 1: If c is “below” xp (i.e. htyp,c < htyp,xp
) then we

would like to raise label c by exactly as much as needed so
that it reaches label xp. To this end, we connect the source
node s to node p through a directed edge sp. The flow fp

passing through that edge represents the total increase in the
height of label c i.e.:

hty
′

p,c = htyp,c + fp (19)
To verify this, it suffices to combine the flow conserva-
tion at node p which can be easily seen to reduce to fp =∑

q:q∼p

(
fpq−fqp

)
and the fact that fpq−fqp represents the

total change of the balance variable ypq,c i.e. fpq − fqp =
y′

pq,c − ypq,c (see (16)). Based on (19), the capacity capsp

of the edge sp represents the maximum allowed raise in the
height of c. Since we need to raise c only as high as the cur-
rent active label of p but not higher than that, we therefore
set: capsp = htyp,xp

− htyp,c (see edge sp in Fig. 3(b)).
Case 2: If c is not “below” xp (i.e. htyp,c ≥ htyp,xp

) and is
also not the active label of p (i.e. c 	= xp) then we can afford
a decrease in the height of c as long as c remains “above”
xp. To this end, we connect p to sink node t through directed
edge pt. This time the flow fp through edge pt equals the
total decrease in the height of c i.e. hty

′
p,c = htyp,c − fp and

so cappt represents the maximum decrease. We therefore
set: cappt = htyp,c − htyp,xp

(see edge qt in Fig. 3(b)).
Case 3: Finally, if c is the active label of p (i.e. c = xp)

then we want to keep the height of c fixed at the current
iteration. As in case 1, we again connect the source node s
to p through directed edge sp. This time, however, no flow
passes through any interior edge incident to p (due to (17)).
So fp = 0 (due to the flow conservation at p) and the height
of label c will not change (see (19)), as was intended. By
convention we set: capsp = 1 (see edge sr in Fig. 3(b)).

3.1 Update of the primal and dual variables
We are now ready to describe what actions are performed

by each of the main routines of PD1 during a c-iteration.

PREEDIT DUALS(c, xk, yk): For all of the considered al-
gorithms this routine’s role is to edit current solution yk into
solution ȳk that will be used (along with xk) as input for the
construction of the graph Gxk,ȳk

c of the previous section. No
editing is needed in the case of PD1 and so ȳk = yk.

UPDATE DUALS PRIMALS(c, xk, ȳk): The primal-dual
pair xk+1, ȳk+1 is generated inside this routine. For the
generation of ȳk+1, the graph Gxk,ȳk

c is constructed and
a maximum flow algorithm is applied to it. The resulting
flows are used in updating only the balance variables of the
c labels as explained in the previous section (see (16)) i.e.:

ȳk+1
pq,c = ȳk

pq,c + fpq − fqp (20)

Therefore the heights of all c labels will also change as:

htȳ
k+1

p,c = htȳ
k

p,c +

{
fp if p is connected to node s

−fp if p is connected to node t
(21)

Based on the new heights, we now need to update xk

into xk+1 i.e. assign new labels to vertices. Since only the
heights of c labels have changed, this amounts to deciding
whether a vertex keeps its current active label or is assigned
label c. On one hand, this should depend on whether the c
label of a vertex managed to go “above” the active label at
the same vertex or not. On the other hand, we must also en-
sure that conditions (14) will still hold true for xk+1, ȳk+1.
It turns out that both criteria can be fulfilled by use of the
following rule:

REASSIGN RULE. Label c will be the new label of p (i.e.
xk+1

p = c) ⇔ ∃ unsaturated3 path between the source and
node p (otherwise p keeps its current label i.e. xk+1

p = xk
p).

Based on the reassign rule, the following properties can
be shown [5] to hold for the resulting solutions xk+1, ȳk+1:
(a) If at least one vertex changes its active label during a

c-iteration then APF xk+1,ȳk+1
<APF xk,ȳk

(b) htȳ
k+1

p,xk+1
p

≤ htȳ
k+1

p,c

(c) If c = xk+1
p 	= xk+1

q then ȳk+1
pq,c = ȳk

pq,c + cappq

The first property can be used to ensure the algorithm’s ter-
mination while the second one asserts that for any vertex
its new active label is always below its c label (as intended).
Furthermore, the last property can be used to prove that con-
ditions (14) remain true [5].

POSTEDIT DUALS(c, xk+1, ȳk+1): However, for main-
taining conditions (14) during the next iterations as well,
it turns out that POSTEDIT DUALS needs to change ȳk+1

into yk+1 so that all active balance variables of solution
yk+1 become nonnegative while also neither the APF nor
any of the loads are altered during this change. It can be
shown that in the case of PD1, the active balance variables
ȳk+1

pq,xk+1
p

, ȳk+1

qp,xk+1
q

may be negative during a c-iteration only

3A path is unsaturated if flow < capacity for all forward arcs and
flow > 0 for all backward arcs

INIT PRIMALS: initialize xk by a random label assignment

INIT DUALS

yk = 0
for each pair (p, q) ∈ E with xk

p �= xk
q do

yk
pq,xk

p
= −yk

qp,xk
p

= wpqdmin/2 = yk
qp,xk

q
= −yk

pq,xk
q

yk
p = mina hty

k

p,a ∀p ∈ V {imposes conditions (12)}

PREEDIT DUALS(c, xk, yk): ȳk = yk {generates ȳk}

UPDATE DUALS PRIMALS(c, xk, ȳk) {generates xk+1, ȳk+1}
xk+1 = xk, ȳk+1 = ȳk

Apply max-flow to Gxk,ȳk

c and compute flows fp, fpq

ȳk+1
pq,c = ȳk

pq,c + fpq − fqp ∀p, q : p ∼ q

∀p ∈ V xk+1
p = c ⇔ ∃ unsaturated path s � p in Gxk,ȳk

c

POSTEDIT DUALS(c, xk+1, ȳk+1) {generates yk+1}
yk+1 = ȳk+1

for each pair (p, q) ∈ E with xk+1
p = xk+1

q = c do
if ȳk+1

pq,c < 0 or ȳk+1
qp,c < 0 then yk+1

pq,c = yk+1
qp,c = 0

yk+1
p = mina hty

k+1

p,a ∀p ∈ V {imposes conditions (12)}

Fig. 4: Pseudocode for the PD1 algorithm.

if xk+1
p = xk+1

q = c. In this case POSTEDIT DUALS sim-
ply needs to set yk+1

pq,c = yk+1
qp,c = 0. No other differences

between ȳk+1, yk+1 exist.
PD1’s pseudocode is shown in Fig. 4. Based on this def-

inition the following theorem can be proved asserting that
PD1 always leads to an fapp-approximate solution [5]:

Theorem 3.1. The final primal-dual solutions generated by
PD1 satisfy all conditions (12) - (15) and so they also satisfy
the relaxed slackness conditions with f1 = 1, f2 = fapp.

4 The PD2 algorithm
Algorithm PD2 (unlike PD1) can be applied only if dab

is a metric. In fact, PD2 represents a family of algorithms
parameterized by a variable µ∈[1

fapp
1]. PD2µ will achieve

slackness conditions (8), (9) with f1=µfapp and f2=fapp.
The reason for µ≥ 1

fapp
is because f1 <1 can never hold.

A main difference between algorithms PD1 and PD2µ

is that the former is always generating a feasible dual so-
lution at any of its inner iterations while the latter will al-
low an intermediate dual solution of becoming infeasible.
However, PD2µ ensures that the (probably) infeasible dual
solutions are “not too far away” from feasibility. This prac-
tically means that if these solutions are divided by a suit-
able factor, they will become feasible again. This method
(i.e. turning an infeasible dual solution into a feasible one
by division) is also known as “dual-fitting” [7] in the linear
programming literature.

More specifically, the PD2µ algorithm generates a series
of intermediate pairs of primal-dual solutions with the fol-
lowing properties: all of them satisfy slackness condition
(9) as an equality with f2 = 1

µ i.e.:

xp 	= xq ⇒ loadx,y
pq = µwpqdxpxq

(22)

In addition, the last intermediate pair satisfies the exact (i.e.
f1 = 1) slackness condition (8) which, as explained in sec-
tion 3, reduces to:

yp = min
a

htyp,a (23)

htyp,xp
= min

a
htyp,a (24)

However, the dual solution of this last pair may be infeasible
since (although it satisfies dual constraints (5) due to (23))
in place of constraints (6) it can be shown to satisfy only:

ypq,a + yqp,b ≤ 2µwpqdmax ∀a, b∈L, (p, q)∈E (25)

Nevertheless these conditions ensure that the last dual
solution, say y, is not “too far away” from feasibility. This
means that by replacing y with yfit = y

µfapp
it takes only

elementary algebra to show that yfit is feasible and that the
primal-dual pair (x, yfit) (x being the last primal solution)
satisfies the relaxed slackness conditions (8), (9) with f1 =
µfapp and f2 = fapp, thus leading to an fapp-approximate
solution. This generation of yfit (given y) is exactly what
the DUAL FIT routine does.

The main routines of PD2µ are mostly similar to the ones
of PD1 with only minor differences (see [5] for more de-
tails). The most important difference lies in the assignment
of capacities to those interior edges pq, qp of Gxk,ȳk

c whose
endpoints p, q have labels 	= c at the start of the current c-
iteration i.e. xk

p = a 	= c and xk
q = b 	= c. Then, in place of

(18), we instead define:
cappq = µwpq(dac + dcb − dab) capqp = 0 (26)

This also explains why dab must be a metric (or cappq < 0).
It can then be shown that PD2µ indeed generates an fapp-

approximate solution [5]. Furthermore, it holds that all
PD2µ algorithms with µ < 1 are non-greedy algorithms
meaning that neither the primal (nor the dual) objective
function necessarily decreases (increases) per iteration. In-
stead, it is APF which constantly decreases but since APF
is always kept close to the primal function the decrease in
APF is finally reflected to the values of the primal function
as well. However, a notable thing happens if µ = 1. In that
case, due to (22), the load between any neighbors p, q equals
exactly their separation cost (i.e. loadxk,yk

pq = wpqdxk
pxk

q
)

and so it can be proved that APF coincides with the primal
function. In addition it can be shown that PD2µ=1 is ac-
tually equivalent to the c-expansion graph cut algorithm [1]
(that was interpreted only as a greedy local search technique
up to now). This is stated in the next theorem [5] :
Theorem 4.1. The label assignment xk+1 selected during a
c-iteration of PD2µ=1 has the minimum primal cost among
all label assignments resulting after a c-expansion of xk.

5 PD3: extending PD2 to the semimetric case
By modifying PD2µ, three different variations (PD3a,

PD3b, PD3c) may result that are applicable even if dab is a
semimetric. For simplicity we will consider only the µ = 1
case i.e. only variations of PD2µ=1. We also recall a fact

that will prove to be useful for explaining the rationale be-
hind the algorithms’ definition: (OPTIMALITY CRITERION)
the load between any p, q represents a virtual separation
cost which should be equal to the actual separation cost of
p, q if the current primal-dual solutions are optimal.

The main difficulty of extending PD2µ=1 to the case
of a semimetric relates to all edges pq with capacity de-
fined by (26) during a c-iteration i.e. all interior edges pq
whose endpoints p, q are currently assigned labels 	= c (i.e.
xk

p = a 	= c, xk
q = b 	= c) while in addition the following

inequality holds: dab > dac + dcb. Hereafter we will call
any such pair (p, q) a “conflicting pair” and the correspond-
ing labels (a, b, c) a “conflicting label-triplet”. Depending
on the way we deal with such a “conflicting pair” three dif-
ferent variations of PD2µ=1 may arise.

PD3a algorithm: We choose to set cappq = 0 in place
of (26). In this case it can be shown [5] that if the pair of la-
bels c, b is assigned to p, q (by xk+1) then the resulting load
of p, q is greater than the actual separation cost of p, q or
equivalently their virtual separation cost overestimates their
actual separation cost contrary to the OPTIMALITY CRITE-
RION above (in all other cases there is no such overestima-
tion). Therefore, in this case, POSTEDIT DUALS modifies
the dual variables so that the equality between load and sep-
aration cost is restored by the start of the next iteration. No
other differences between PD2µ=1 and PD3a exist.

One can prove that what PD3a actually does is to restore
the triangle inequality for the current “conflicting label-
triplet” by approximating d with d̄ where d̄cb = dab −
dac > dcb

4, d̄ab = dab and d̄ac = dac i.e. by overesti-
mating only the distance between labels c, b. It can also
be shown that the primal-dual solutions generated by both
PD3a and PD2µ=1 satisfy exactly the same conditions (22)-
(25) and so PD3a is always guaranteed to lead to an fapp-
approximate solution as well. Therefore PD3a directly gen-
eralizes PD2µ=1 to the case of a semimetric dab.

PD3b algorithm: We choose to set cappq = +∞ and no
further differences between PD3b and PD2µ=1 exist. This
has the following important result: the solution xk+1 pro-
duced at the current iteration can never assign the pair of
labels c, b to the vertices p, q respectively (due to this fact
we will call labels c, b the “excluded labels”). To prove
this, it suffices to recall the “reassign rule” and observe that
the directed edge pq can never become saturated by increas-
ing its flow (since cappq = +∞). Put otherwise, it is as if
an infinite overestimation of the distance dcb takes place by
the algorithm. The price for that is that no guarantees about
the algorithm’s optimality can be provided. The reason is
that the balance variables may now increase without bound
(since cappq = +∞) and so we cannot make sure that the
generated dual solutions satisfy a “not too far away from
feasibility” condition like (25). This in turn implies that no

4dab − dac > dcb holds since (a, b, c) is a “conflicting label-triplet”.

dual-fitting technique can be applied in this case.
However, PD3b has a nice interpretation in the primal

domain and can prove to be an excellent local minimizer
due to the next theorem (that generalizes theorem 4.1):
Theorem 5.1. [5] The solution xk+1 selected by PD3b dur-
ing a c-iteration has the minimum primal cost among all so-
lutions that result after a c-expansion of xk, except for those
that assign “excluded labels” to “conflicting pairs”.

Algorithm PD3c: PD3c first adjusts (if needed) the dual
solution yk so that for any 2 neighbors p, q: loadxk,yk

pq ≤
wpq(dac + dcb). After this initial adjustment the algorithm
then continues in exactly the same way as the PD2µ=1 al-
gorithm with the only difference being that dab in equa-
tion (26) is replaced with d̄ab which is defined as: d̄ab =
loadxk,yk

pq /wpq . Obviously d̄ab ≤ dac + dcb and so cappq in
(26) is valid i.e. cappq ≥ 0. No other differences exist.

It can be shown that d̄ab ≤ dab and so one can prove that
PD3c actually tries to restore the triangle inequality for the
current “conflicting label-triplet” by approximating d with d̄
where d̄ab ≤ dab, d̄ac = dac and d̄cb = dcb i.e. PD3c works
complementary to PD3a: to restore the triangle inequal-
ity it underestimates d̄ab instead of overestimating d̄cb (like
PD3a). It can then be proved that PD3c always leads to an
f ′

app-approximate solution where this time f ′
app = fapp · c0

with c0 = maxa�=b
dab

d̂ab
and d̂ab = minc∈L(dac + dcb).

Finally, it should be noted that if dab is a metric then all
algorithms PD3a, PD3b, PD3c reduce to algorithm PD2µ=1.

6 Experimental results
We have applied our algorithms to the stereo matching

problem. In this case the graph G reduces to the image grid
while the label cost for assigning disparity a to the image
pixel p is set as: cp,a = |Ir(p + a) − Il(p)| where Il, Ir are
the left and right images. We wanted to test how well our
algorithms can handle both metric and semimetric distances
dab. To this end we made use of the following property:

Given the pair of primal-dual programs in section 2, it
can be shown [7] that any ratio r = cT x/bT y (where x, y is
a pair of integral-primal, dual feasible solutions) provides a
suboptimality bound in the sense that x is guaranteed to be
an r-approximation to the optimal integral solution. This
fact proves to be very useful in practice: By considering
the minimum of all ratios {rk = cT xk/bT yk}t

k=1 obtained
throughout the primal-dual schema, a suboptimality bound
which is much tighter (i.e. much closer to 1) than the cor-
responding worst-case bound is usually obtained which al-
lows one to better judge the goodness of a solution.

This has been verified experimentally by using the well-
known Tsukuba data set [6] as input to the stereo match-
ing (see Fig. 5). No attempt has been made to model oc-
clusions during stereo matching and all edge weights wpq

have been set equal to each other instead of properly ad-
justing their values based on image intensity edges (which

(a) (b) (c)

Fig. 5: (a) An image from the Tsukuba data set. (b) Disparities
computed by algorithm PD1 (c) and PD2µ=1. 15 labels as well as
the Potts distance (a metric) have been used in this example and so
PD3a, PD3b, PD3c produce the same result with PD2µ=1.

would improve the results considerably for this specific ex-
ample). This is so because our main goal was not to produce
the best possible disparity by tweaking the input parameters
but to test the tightness of the suboptimality bounds i.e. to
test the effectiveness of these algorithms in minimizing the
objective function. To this end, 3 different distances dab

have been used during our experiments: the Potts distance
d1,ab = 1 ∀a 	= b (a metric), the truncated linear distance
dλ
2,ab = min(λ, |a − b|) (also a metric) and the truncated

quadratic distance dλ
3,ab = min(λ, |a − b|2) (a semimetric)

where λ denotes the maximum allowed distance.
Each experiment consisted of selecting one of our algo-

rithms and a distance function and then using them to com-
pute disparities for each of the Tsukuba stereo pairs. The
averages of the obtained suboptimality bounds are shown in
table 1. As can be seen from that table the per-instance sub-
optimality bounds are much tighter (i.e. much closer to 1)
than the worst-case bounds fapp predicted in theory. There-
fore the algorithms have computed a nearly optimal solu-
tion in all cases, meaning that they can handle both metric
and semimetric distances equally well. Furthermore, these
bounds explain in yet another way the great success that
a-expansion techniques exhibit in practice since, as it was
shown, the a-expansion algorithm is equivalent to PD2µ=1.

Besides testing the tightness of the per instance subop-
timality bounds, we also wanted to test their accuracy i.e.
how well they describe the true suboptimality of the gener-
ated solutions. To this end we applied our stereo matching
algorithms to one image scanline at a time (instead of the
whole image). In this case the graph G reduces to a chain
and the true optimum can be computed using dynamic pro-

Distance fPD1
app f

PD2µ=1
app fPD3a

app f
PD3b
app fPD3c

app fapp

Potts 1.0104 1.0058 1.0058 1.0058 1.0058 2

Trunc. Linearλ=5 1.0226 1.0104 1.0104 1.0104 1.0104 10

Trunc. Quad.λ=5 1.0280 - 1.0143 1.0158 1.0183 10

Table 1: Average suboptimality bounds (colums 2-6) obtained for
the Tsukuba data set. As expected they are much closer to 1 than
the theoretical suboptimality bounds fapp listed in the last column.
Therefore a nearly optimal solution is always obtained. Note that
PD2µ=1 can be applied only if dab is a metric and in that case
PD2µ=1, PD3a, PD3b and PD3c (as well as their bounds) coincide.

Distance fPD1
app fPD1

true fPD3a
app fPD3a

true fPD3c
app fPD3c

true

Potts 1.009 1.003 1.006 1.0004 1.006 1.0004

Trunc. Linearλ=5 1.020 1.010 1.011 1.002 1.011 1.002

Trunc. Quad.λ=5 1.025 1.013 1.013 1.001 1.016 1.003

Table 2: When applying stereo matching to one scanline at a time
the obtained average suboptimalities (columns 2-4-6) are close to
the true ones (columns 3-5-7) and can therefore be used for judg-
ing the goodness of generated solutions. Similar results also hold
for the other algorithms but are not shown due to space limitations.

gramming. This way table 2 has been constructed which
clearly shows that the per-instance bounds are relatively ac-
curate and therefore reliable for judging the goodness of a
generated solution. Furthermore, this way we can always
decide if a bad generated solution is the result of a bad min-
imization procedure or a bad modeling of the problem.

We have also applied our algorithms to image pairs from
the SRI tree image sequence (Fig. 6(a)). The selected
pairs had a maximum disparity of 11 pixels. Given our
algorithms’ ability to handle both metrics and semimetrics
equally well, the next semimetric has been used in this case:
dκ,λ
4,ab = |a − b| if |a − b| <= κ, otherwise dκ,λ

4,ab = λ. We
always assume κ < λ. In this specific example we used
(κ, λ) = (2, 10). The rationale behind this distance is that it
assigns a low penalty to small (i.e. ≤ κ) changes in dispar-
ity (thus allowing surfaces with smoothly varying disparity
like the slanted ground in the SRI image) but assigns a high
penalty λ to large disparity gaps. Despite the fact that dκ,λ

4,ab

is a semimetric our algorithms did not face any problem in
efficiently minimizing the corresponding objective function
and thus localizing the trees as well as the slanted ground
in the SRI image (Fig. 6(b)). The average running times
to convergence for the Tsukuba and SRI tree data sets have
been 46 and 33 secs respectively on a 2.4GHz CPU.

The efficiency of our algorithms in the case where dab

is a semimetric can be also illustrated by the synthetic ex-
ample of Fig. 6(c). Although PD3a, PD3b and PD3c are
able to locate the global minimum for this example, the a-b
swap algorithm of Boykov et al. [1] can get stuck at a local

(a) (b)

qp r
T0 T
0T T
22 0

α

b
c

bα c
T/20 T
0T/2 T/2

T/2T 0

α

b
c

α b c
p q r

c c c
Labeling A Labeling B

p q r

d
αbcpa

(c)

Fig. 6: (a) One SRI tree image. (b) Computed disparities (11

labels) when using PD3a and semimetric dκ,λ
4,ab with (κ, λ) =

(2, 10). (c) A synthetic ML example where the graph G has
3 vertices {p, q, r} and 2 edges {pq, qr} while the labels L are
{a, b, c}. Label costs cpa and the distance dab (a semimetric) are
shown. The a-b swap algorithm in [1] can get stuck in labeling
A whose cost is T i.e. arbitrarily larger than the minimum cost
which is 4 (labeling B). On the contrary PD3a, PD3b, PD3c

can always locate the optimal labeling. Example taken from [1].

(a) (b) (c)
Fig. 7: (a) Noisy image. (b) Restored image with semimetric

dκ,λ
4,ab, (κ, λ) = (2, 30) (c) and trunc. linear metric dλ

2,ab, λ=30.

minimum arbitrarily far away from the true minimum.
Furthermore, the example of Fig. 7 illustrates the im-

portance of using semimetric distances dab on the task of
image restoration. The original image consists of 2 iden-
tical patterns placed vertically. Each pattern’s intensity is
kept constant along the horizontal direction and increases
linearly with step 2 from top to bottom. The input image
is then formed by corrupting the original image with white
noise (Fig. 7(a)). Although our algorithms could restore the
original image with only a few errors by use of the dκ,λ

4,ab

semimetric (Fig. 7(b)), this was not the case when the trun-
cated linear metric dλ

2,ab (or the potts metric) has been used
despite the tweaking of the λ parameter. The best possi-
ble result with a metric is shown in Fig. 7(c). Analogous
examples can be constructed for the stereo matching case.

Finally, it should be noted that for certain special cases of
the ML problem our algorithms’ approximation factors co-
incide with the so-called integrality gap [7] which is essen-
tially the best possible approximation factor a primal-dual
algorithm may achieve. Such is the case with the Gener-
alized Potts model whose integrality gap is known to be 2
[3] i.e. equal to fapp. This explains in yet another way why
Graph-Cut techniques are so good in optimizing problems
related to the Potts energy. In conclusion, a new powerful
optimization tool has been added to the arsenal of computer
vision, capable of tackling a very wide class of problems.

References
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy

minimization via graph cuts. IEEE PAMI, Nov. 2001.
[2] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approximation

algorithms for the metric labeling problem via a new linear
programming formulation. In SODA, 2001.

[3] J. Kleinberg and E. Tardos. Approximation algorithms for
classification problems with pairwise relaionships: metric la-
beling and markov random fields. Journal of the ACM, 2002.

[4] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? In ECCV, 2002.

[5] N. Komodakis and G. Tziritas. Approximate labeling via the
primal-dual schema. Technical Report CSD-TR-05-01, Com-
puter Science Department, February 2005.

[6] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. IJCV,
47(1/2/3):7–42, April-June 2002.

[7] V. Vazirani. Approximation Algorithms. Springer, 2001.
[8] O. Veksler. Efficient graph-based energy minimization meth-

ods in computer vision. PhD thesis, Cornell University, 1999.
[9] R. Zabih and V. Kolmogorov. Spatially coherent clustering

using graph cuts. In CVPR, 2004.

