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Abstract

In this paper, we introduce the concept of Intrinsic Illumina-
tion Subspace which is based on the intrinsic images. This
intrinsic illumination subspace enables an analytic genera-
tion of the illumination images under varying lighting con-
ditions. When objects of the same class are concerned, our
method allows a class-based generic intrinsic illumination
subspace to be constructed in advance. We propose a light-
ing normalization method based on the generic intrinsic il-
lumination subspace, which is used as a bootstrap subspace
for novel images. Face recognition experiments are per-
formed to demonstrate the effectiveness of our method.

1. Introduction
Lighting variation is one of the most difficult problems for
vision applications. For face recognition, it has been ob-
served that the variations among images of the same face
due to illumination change are larger than image variations
due to change in face identity [1]. Recently, many algo-
rithms have been proposed to tackle lighting variations: Il-
lumination Cone [4, 5, 6], Quotient Image [16, 17], Spheri-
cal Harmonic Subspace [3, 13], and Intrinsic Images [2, 19].

The Illumination Cone method [4, 5, 6] gave a theoreti-
cal explanation that face images under varying lighting di-
rections form a convex polyhedral cone in the image space.
Basri et al [3] and Ramamoorthi et al [13] independently
developed the spherical harmonic representation, respec-
tively. Their representation explains why low dimensional
subspace can describe images of an object under varying
lighting conditions.

While the above two approaches assumed that each in-
dividual has a different 3D geometry and constructed one
subspace for each individual, the Quotient Image [16, 17],
i.e. image ratio between a test image and linear combina-
tion of three images illuminated by non-coplanar lights, is
a simple yet practical algorithm for extracting lighting in-
variant signatures. The quotient image depends only on the
albedo information that is illumination invariant.

Still another approach dealing with lighting problem is
from the intrinsic image viewpoint. Barrow and Tenen-

baum suggested that we take every appearance (retinal) im-
age as a composition of a set of latent images, which they
refered to as intrinsic images [2]. One type of the in-
trinsic images, R, represents the reflectance values of the
object, while the other type, L, represents the illumina-
tion intensities, and their relationship can be described by
I(x, y) = R(x, y)L(x, y). See Fig. 1 for example. Bar-
row and Tenenbaum argued that such a midlevel descrip-
tion, despite not making explicit all the physical causes of
image features, can be extremely useful for many visual in-
ferences.

However, recovering two intrinsic images, L and R,
from a single input image remains a difficult problem.
This is a classic ill-posed problem: the number of un-
knowns is twice the number of equations. Weiss proposed
a maximum-likelihood (ML) estimation method [19] for a
slightly easier version of this problem: a sequence of T im-
ages I(x, y, t) is given, in which the reflectance is constant
over time and only the illumination changes. He solved this
probelm based on an assumption that the convolutions of
images and derivative filters tend to be sparse [8] and de-
rived a single reflectance image R(x, y) and T illumination
images L(x, y, t) such that

I(x, y, t) = R(x, y)L(x, y, t). (1)

Nevertheless, this intrinsic image estimation method is
offline since this method requires taking the median over the
accumulated images to obtain the final intrinsic images. In
addition, multiple images of the same object under variant
lighting conditions were used, and thus the applicability of
this method is restricted.

In this paper, we propose a novel concept called the in-
trinsic illumination subspace, which is defined as the set of
illumination images (instead of appearance images used in
illumination cone method) of an object under all possible
lighting conditions. We analyze the intrinsic illumination
subspace in terms of Lambertian model and demonstrate its
relationship with the illumination cone and spherical har-
monic bases. Based on this intrinsic illumination subspace,
a lighting normalization method for a single input image
is derived. The effectiveness of our lighting normalization
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Appearance = Reflectance × Illumination
image image image

Figure 1: The intrinsic image decomposition.

method is demonstrated with face recognition experiments.
Our work shares similar motivations with that of Zhou

et al [20], but the formulations are quite different. They ex-
tended the photometric stereo algorithms to handle all the
appearances of all the objects in a class to derive albedo,
3D shape and lighting directions. To solve the highly ill-
posed photometric stereo problem, they relied on various
constraints, such as single light source, no shadow, sym-
metric and integrable surfaces. On the contrary, we don’t
impose these constraints and get significant rank reduction
owing to the intrinsic image representation.

This paper is organized as follows: Section 2 depicts the
concept of intrinsic illumination subspace. The proposed
lighting normalization method is described in Section 3.
Section 4 shows experiment results and conclusion is made
in Section 5.

2. Intrinsic Illumination Subspace
We assume that the surface of a convex object has Lam-
bertian reflectance. The only parameter of this model is the
albedo at each point on the object, which describes the frac-
tion of the light reflected. We also assume the convex ob-
ject is illuminated by distant light sources. What we mean
by “distant” is that the directions and intensities of light
sources are the same for all points of this object.

2.1. Definition of Intrinsic Illumination Sub-
space

According to Lambertian reflectance function, if a distant
light source l reaches a surface point with albedo R and
normal direction n, then the intensity, I , reflected by the
point due to this light is given by

I(x, y) = R(x, y)n(x, y) · l. (2)

When an object is illuminated by k lights instead of only
one, the image is given by the sum of the contribution of
each light as follows:

I(x, y) = R(x, y)
k∑

i=1

n(x, y) · li, (3)

where li denotes the intensity and direction of each light
source.

Lambertian reflectance function can be thought as a spe-
cial version of intrinsic images, where R stands for a view-
independent reflectance (albedo) value, and L is the shading
of a Lambertian surface:

L(x, y) =
k∑

i=1

n(x, y) · li. (4)

Note that when no part of the surface is shadowed, it is
obvious that L lies in a 3D illumination subspace. When
attached shadows are considered, the illumination image L
is given by:

L(x, y) =
k∑

i=1

max(n(x, y) · li, 0) (5)

We define the intrinsic illumination subspace as the set
L of illumination images of a convex Lambertian surface
created by varying the directions and intensities of multiple
distant light sources:

L = { L |L(x, y) =
k∑

i=1

max(n(x, y) · li, 0),

∀li ∈ R3,∀k ∈ Z+}, (6)

where Z+ is the set of positive integers.
Previous works [4, 5, 6] have shown that the set of ap-

pearance images of an object under all possible lighting
conditions forms a convex polyhedral cone in the image
space. Therefore a question arises that: What is the shape
of L that consists of illumination images of a convex object
under all lighting conditions?

Note that the definition of L is similar to that of the il-
lumination cone [4]. In fact, there is a linear relationship
between the illumination cone and the intrinsic illumination
subspace. Let C and L be the illumination cone and intrin-
sic illumination subspace of the same convex Lambertian
object, respectively, then

C = {R � L : L ∈ L} (7)

L = {R−1 � I : I ∈ C}, (8)

where R is the reflectance of the object, R−1(x, y) =
1/R(x, y), and � indicates element-by-element multiplica-
tion.

With this linear relationship, the intrinsic illumination
subspace shares all the properties of the illumination cone.
Since the linear transformation of a convex cone is itself a
convex cone, the intrinsic illumination subspace also forms
a convex polyhedral cone in the image space. The dimen-
sionality, n, of the intrinsic illumination subspace equals to
the number of distinct surface normals.
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Although the intrinsic illumination subspace, L, can
span n dimensions if there are n distinct surface normals,
previous empirical observations and analytical predictions
have shown that appearance images of largely diffuse ob-
jects actually lie very close to a low dimensional subspace.
Their results can also apply to our intrinsic illumination sub-
space as explained as follows.

According to the spherical harmonic representation in [3,
13], an image I of an object can be represented by

I = R � (Y l), (9)

where R is the reflectance matrix, Y = [y1, y2, . . . , yn] is
the spherical harmonic bases, and l is the harmonic light.
According to their finding, the first 9 harmonic bases can
well describe the images of a diffuse object under different
lighting conditions. It follows that the illumination image L
can be well represented by the first 9 harmonic bases:

L = Y l. (10)

Because these bases must be calculated with known 3D
geometry, the application range of this representation is lim-
ited. According to Ramamoorthi’s analysis [14], there is
linear relationship between PCA eigenvectors and spherical
harmonic bases. We note that the bases, B, of the illumi-
nation images of an object under all lighting conditions can
also be described as:

B = Y T, (11)

where T is a n × n transformation matrix.
Then equation (10) can be written as

L = Y l = Bs, (12)

where s is the projected coefficients and s = T−1l.
Hence, the intrinsic illumination subspace of an object

can be well approximated by a low dimensional linear sub-
space. If we have a densely sampled illumination images
under varying lighting conditions, we can get well approx-
imated linearly-transferred spherical harmonic bases, B,
without estimating the 3D geometry of this object.

To verify this, Fig. 2a shows 64 illumination images
of one person from Yale Face Database B, where the il-
lumination images are derived by Weiss’s ML estimation
method [19]. The eigen bases and cumulative eigen ratio
are shown in Fig. 2b and 2c. In practices, the first 9 eigen-
vectors can not carried over 95% of image energy for a non-
convex face object because there are obvious cast shadows
in non-frontally illuminated images. Therefore more eigen-
vectos are needed for the implementation. In this case, the
eigen ratio is 95.27% when 12 eigenvectors are used.

(a) Appearance subspaces (b) Illumination subspaces

Figure 3: 3D example of generic intrinsic illumination sub-
space.

2.2. Generic Intrinsic Illumination Subspace
The previous subsection gives the analysis of the intrinsic
illumination subspace of one object. We will extend this
concept to generic intrinsic illumination subspace of multi-
ple objects of the same class, such as human faces.

It is very difficult to model lighting variations for gen-
eral objects. However, for many vision applications, only
objects of the same class are concerned. In this case,
some class-based information can be utilized to simplify
this problem. Shashua [16, 17] defined an ideal class to be
a collection of 3D objects that have the same shape but dif-
fer in the surface albedo function. So the appearance image
space of such a class is represented by:

Ri(x, y)
k∑

i=1

max(n(x, y) · li, 0), (13)

where Ri is the reflectance of object i of this class, and
n(x, y) is the surface normal of the object (the same for all
objects of this class).

Objects of a class have different albedo functions, so
that they span different linear subspaces in the image space
(Fig. 3a). However, by removing the reflectance factor from
(13), the resulting illumination images only depend on sur-
face normals and lighting conditions. This implies that,
given the ideal class assumption, all objects of the same
ideal class shares the same generic intrinsic illumination
subspace (Fig. 3b).

In practice, objects of a class do have shape variations,
although the shape is similar at some coarse level or we
would not refer to them as a “class.” The ideal class could be
satisfied if we perform pixel-wise dense correspondence be-
tween images. The question is what the degree of sensitivity
of our approach to deviations from the ideal class assump-
tion is. Results demonstrate that one can withstand shape
changes without noticeable degradation in performance. So
there is no need to establish any dense alignment among
the images beyond the alignment of the center of mass and
scale.

To verify this assumption, we conducted another exper-
iment. We decompose 64 appearance images of each of
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Figure 2: Intrinsic illumination subspace of one person from Yale Face Database B.
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Figure 4: Generic intrinsic illumination subspace of 10 people from Yale Face Database B

the 10 subjects from Yale Face Database B into a single
reflectance and 64 illumination images. Then SVD is per-
formed to all 640 appearance images and 640 illumination
images respectively. Fig. 4a shows 7 of 64 illumination im-
ages of each subject. The resulting generic eigen bases of
illumination images are shown in Fig. 4b. Fig. 4c shows the
cumulative eigen ratio for both the appearance and illumi-
nation image sets.

We note that even there are shape variations among these
10 subjects, 12 dimensions can capture 90.7% of energy of
640 illumination images. But 35 dimensions are needed to
achieve the same eigen ratio for appearance images. This
result indicates that by removing reflectance from appear-
ance images, the resulting illumination images exhibit much
less variation among different people. So a low dimensional
linear subspace is capable of modeling the generic illumina-
tion subspace of human faces. On the other hand, a much
higher dimensional subspace is required for appearance im-
ages.

2.3. Enforcing Non-negative Light with NMF

When we take arbitary linear combinations of the basis im-
ages, such as PCA, we may obtain images that are not phys-

ically realizable. The is because the corresponding linear
combaination of the basis images may contain negative val-
ues. That is, rendering these images may require negative
“light,” which is realistically impossible. In our approach,
we use non-negative matrix factorization (NMF) to enforce
the constraint of non-negative light.

NMF is a subspace method proposed by Lee and Se-
ung [11], which has been used for image representation,
document analysis and clustering for its parts-based repre-
sentation property. Given a non-negative m × n matrix X ,
the NMF algorithms seek to find non-negative factors B and
H of X̃ such that:

X ≈ X̃ = BH, (14)

where B ∈ Rm×r, H ∈ Rr×n.
Intuitively, we think of B as the matrix containing the

NMF bases where all values are non-negative, and H as
the matrix containing the accompanying coefficients (non-
negative weights).

The non-negative B captures representative images un-
der certain lighting conditions and can be used as linear
bases to generate illumination images under all possible
lighting conditions. The non-negative constraint on B ex-
plicitly models that the observed intensities of an image can
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Figure 5: Generic NMF Bases.

not be negative. The non-negative restriction on the accom-
panying coefficients in H results in the additive and non-
negative nature of lighting.

Non-negative matrix factorizations can be very difficult
to compute. Lee and Seung [12] suggested an approach
similar to that used in Expectation-Maximization (EM) al-
gorithms to iteratively update the factorization based on a
given objective function. We adopt their method to con-
struct the generic intrinsic illumination subspace. Fig. 5
shows the resulting NMF bases of the generic intrinsic il-
lumination subspace from Yale Face Database B.

3. Lighting Normalization with Intrin-
sic Illumination Subspace

With the concept of the intrinsic illumination subspace, we
propose a lighting normalization method for a single input
image in Section 3.1. The basic idea is to estimate the intrin-
sic illumination image L of the input image I by the intrin-
sic illumination subspace, which can be a generic one con-
structed from a pre-collected database containing objects of
the same class. Then we can get an estimated reflectance
image by dividing the input image with the generated il-
lumination image: R = I/L. This estimated reflectance
image is much more illumination invariant than the original
input image, so it is more suitable for various vision appli-
cations.

3.1. The Proposed Lighting Normalization
Method

Some previous works [7, 9, 10] used the low frequency
component of the input image as the estimation of illumi-
nation variations and imposed various assumptions or con-
straints on L, or R to solve this ill-posed problem. Basri [3]
also gave a theoretical way of understanding the effects of
Lambertian reflectance as that of a low-pass filter on light-
ing.

In our approach, we use this low-frequency component

Figure 6: The input, reconstructed illumination, and esti-
mated reflectance images.

as our initialization:

L∗ = F � I, (15)

where I is the input image, F is the smoothing kernel (a
Gaussian smoothing kernel is used in our experiments), �
represents convolution, and L∗ is the smoothed version of
I .

This initial L∗ is used as a query. Best approximation
of the corresponding illumination image L is reconstructed
from the intrinsic illumination subspace according to the
Euclidean distance:

l = arg min
l

‖Bl − L∗‖
L = Bl (16)

where B is the basis matrix of the intrinsic illumination sub-
space.

Then lighting normalization is performed by dividing the
input image I with the reconstructed illumination image L,

R = I/L. (17)

Figure 6 shows the process of the proposed lighting normal-
ization method.

Our lighting normalization method shares some similar-
ities with Quotient Image method [16, 17]. Both methods
maintain a bootstrap set to estimate the illumination (light-
ing direction) of the input image and normalize the input
image according to the estimated result. But there are some
significant differences between our method and Quotient
Image:

1. The bootstrap set of Quotient Image consists of ap-
pearance images. Since there are large reflectance vari-
ations among different people, the estimation of light-
ing direction is affected by the reflectance variations.
Our method maintains illumination images instead of
appearance images, so that the estimation of illumina-
tion is expected to be more accurate since reflectance
variations are removed.

2. Quotient Image works under the assumption that face
image are illuminated with a single point light source
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(a) Subset 1

(b) Subset 2

(c) Subset 3

(d) Subset 4

Figure 7: Four Subset of Yale Face Database B.

and there is no shadow, while our method allows mul-
tiple light sources and attached shadows are explicitly
considered.

3. By collecting illumination images instead of appear-
ance images, our method allows a compact represen-
tation of the bootstrap set as a linear subspace for effi-
cient storage and fast computation.

3.2. Discussions
Specific or Generic: When multiple illumination images
of an object are available, our method can also construct the
specific intrinsic illumination subspace of this object. Nor-
malizing input images of this object with its own subspace
may yield better results. However, multiple illumination
images of the same object are not available in many cases.
At that time, a generic subspace can be constructed from a
database in advance and serves as a bootstrap subspace for a
single image of novel objects. We show in the experiments
that a generic subspace is valid for novel objects in our face
recognition experiments.
Cast Shadows: Cast shadows can be significant in many
vision applications. Most algorithms neglect them because
nonlocal interactions in non-convex regions make formal
analysis difficult. Ramamoorthi et al [15] took a first step
toward a formal analysis of cast shadows. They showed
that the result of cast shadows is a convolution of the light-
ing with Heaviside step function. The eigenvalues decay
as 1/k for Heaviside step function, which is relatively slow
comparing to 1/k2 for the clamped cosine function (Lam-
bertian reflectance). It suggests that it is possible to develop,

Figure 8: CMU PIE Database.

in a similar fashion, subspaces that encompass the effects of
cast shadows simply by considering more bases. This result
is also applicable to our approach.

4. Experiments
Experiments were performed to evaluate our method using
Yale Face Database B [6] and CMU PIE face database [18].
Frontal face images with lighting variations are selected
from these two databases. There are 640 images (10 sub-
jects with 64 images under different lighting conditions for
each) from Yale Face Database B. The images are divided
into 4 subsets of increasing illumination angles as shown in
Fig. 7. There are 68 subjects in CMU PIE and we select
frontal face images which are taken under 21 different il-
luminations without background lighting (Fig. 8). All the
images are aligned and cropped roughly by the positions of
eyes and mouths.

To construct the generic intrinsic illumination subspace,
we randomly select half of 64 images for each subject
from Yale Face Database B. These images are first decom-
posed into reflectance and illumination images by Weiss’s
method [19]. With all the illumination images, we con-
struct the generic intrinsic illumination subspaces by PCA
and NMF, respectively. We only use the first 3 PCA bases to
examine the effectiveness of our method. The dimensional-
ity of the NMF intrinsic illumination subspace is 12. The
more bases we use to construct the subspace, the better the
result is expected to be, but with more computation time.

We also implement the Quotient Image method for com-
parison. Three appearance images of each subject from Yale
Face Database B are selected as the bootstrap set for Quo-
tient Image. A simple recognition scheme, correlation, is
used in the following experiments, and only gray-level im-
ages are used. Both the template images and test images are
normalized by Quotient Image or our method described in
Section 3.1. The result of correlation with original appear-
ance images is also shown as the baseline for comparison.

We first perform recognition experiments on the Yale
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Figure 9: Recognition result for Yale Face Database B.

Method Recognition Rate
Appearance 55.9%

Quotient Image 65.71%
3D PCA 95.1%

12D NMF 97.0%

Figure 10: Recognition result for CMU PIE.

Face Database B. Only the frontal illuminated images are
labeled with the subject’s identity and used as templates.
Fig. 9 shows the recognition results of different subset.
Even with this simple correlation scheme, our lighting nor-
malization method improves the recognition rates signifi-
cantly. Note that only the first 3 bases of the PCA intrinsic
illumination subspace are used. The improvement is im-
pressive. It indicates that our PCA intrinsic illumination
subspace is suitable for real-time application because of its
simplicity and efficiency.

We then perform recognition experiments on CMU PIE
database. Note that the generic intrinsic illumination sub-
space constructed from Yale Face Database B is used in
order to verify its effectiveness for novel images from CMU
PIE. Only single frontal illuminated image for every subject
is labeled and used as templates. There are 68 templates
and 1360 test images. The recognition results are shown
in Fig. 10. We can see that although the generic intrinsic
illumination subspace is constructed from the 10 subjects
of Yale Face Database B, it is also valid for the 68 novel
subjects of CMU PIE.

5. Summary and Conclusions
The concept of intrinsic illumination subspace is presented.
The illumination images of an object in fixed pose but under
all lighting conditions forms a convex polyhedral cone in
the image space and can be well described by a low di-
mensional linear subspace. A single class-based generic
intrinsic illumination subspace can be constructed in ad-
vance when only objects of the same class are concerned.

This generic intrinsic illumination subspace can be used as
a bootstrap set by our lighting normalization method for a
single input image. Face recognition experiments were per-
formed to verify the effectiveness of our method. Experi-
mental results show that our lighting normalization method
improves the recognition rates significantly even when only
3 bases are used, and the generic intrinsic illumination sub-
space can be used for novel objects effectively.
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