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Abstract

Active contour and active polygon models have been
used widely for image segmentation. In some applications,
the topology of the object(s) to be detected from an image is
known a priori, despite an unknown complex geometry, and
it is important that the active contour or polygon maintain
the desired topology. In this work, we construct a novel ge-
ometric flow that can be added to image based evolutions of
active contours and polygons so that the topology of the ini-
tial contour or polygon is preserved. Indeed, the proposed
geometric flow ensures more than just correct topology; it
ensures that the active contour or polygon is, in some sense,
kept far away from a topology change. Smoothness prop-
erties similar to curvature flow are also guaranteed by the
proposed geometric flow. The proposed topology preserving
geometric flow is the gradient flow arising from an energy
that is based on electrostatic principles. The evolution of a
single point on the contour depends on all other points of
the contour, which is different from traditional curve evolu-
tions in computer vision literature.

1. Introduction
Active contours (see for example [14, 3, 15, 23, 4, 19])

and active polygons [2, 22], have been used widely for im-
age segmentation. Level set methods [18] for implementing
active contours have been praised for their ability to handle
topology changes. However in many applications, such as
brain cortex segmentation [11], [9] and dendrite segmenta-
tion [12], the topology of the object(s) to be segmented is
known a priori, and therefore there is a desire to maintain
the known topology throughout an evolution. In this work,
we derive a geometric flow that can be added to an exist-
ing image based curve or polygon evolution. The geometric
flow is derived by minimizing an energy that is similar to the
electrostatic potential energy of a curve or polygon with a
uniform charge distributed along its perimeter. Our geomet-
ric flow is guaranteed to preserve the topology of the initial

Figure 1. Two circles (left), two circles with
thin strip connecting them (right). The curves
that are boundaries of these regions on the
left and right have different topologies; how-
ever, the curves are “close”.

contour(s), while affecting the original image based evo-
lution strongly when the curve becomes close to topology
change. Note that although curvature flow keeps a curve,
which is homeomorphic to the circle, embedded [7, 8], i.e.,
prevents topology change, this is not the case when curva-
ture flow is combined with an image based term. Moreover
for multiple curves evolving under curvature flow, the result
of [7, 8] no longer holds.
Since topology is, in some sense, a weak property of

a curve, it is useful in applications that the segmentation
method does more than just ensure correct topology. To get
a sense of what we mean by topology being a weak prop-
erty, consider Fig. 1. The curves that are the boundaries of
the regions illustrated in Fig. 1 have different topologies;
however, they are in a certain sense very “close”. For ex-
ample, using the metric that is the Lebesgue measure of
the set-symmetric difference of the regions enclosed by the
contours, we can say that the curves in Fig. 1 are close. In
fact, one can say that with respect to this metric, the set of
curves with a fixed topology is a dense set in the set of all
curves. Thus, it is possible by just preserving topology, to
obtain a curve with correct topology but that looks close
to a curve with the wrong topology. We add that our pro-
posed flows go further than simply preserving topology. As
the active contour or polygon moves closer to a topology
change, there is an increasingly forceful term arising from
our proposed flow that gradually and gracefully moves the
curve away from topology change. This implies that the
curve, in some sense, remains far from topology change.
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We will make precise what is meant by close and far to a
topology change in Section 3.2. As we shall see in experi-
ments in Section 5, this property of our flow is particularly
useful. Another important property of our flows is that it
has smoothing properties similar to curvature flow; hence,
a curve is kept smooth and a polygon is kept regular.

2. Related Work
A topology preserving level set method is formulated in

the work of Han et al. [10]. In their work, the authors take
advantage of the fact that the active contours they consider
are evolving on a discrete grid, which is the domain of the
level set function. The idea of Han’s algorithm is to detect
the grid points of the level set function that will change sign
at each iteration of the level set function evolution. These
grid points are the only locations where a topology change
can occur. If a topology change will occur at one of these
grid points as a result of updating the level set function, then
the function value at this grid point is not changed. A condi-
tion for detecting topology change at a grid point is derived,
which is based on the configuration of the level set func-
tion in a small neighborhood of the grid point. Although
this method guarantees that the resulting segmentation has
the correct topology, there are some undesirable features of
this method. First, the method is highly dependent on the
grid spacing of the level set function. Thus, choosing a dif-
ferent grid spacing will result in a different segmentation.
Moreover, the authors state that different segmentations can
result as a consequence of the specific order that grid points
are visited. Next, the topology preservation is an abrupt,
discontinuous motion that is unnatural. Often times, as we
shall see in Section 5, one obtains an unnatural segmenta-
tion that is very close to self intersection, and is only sep-
arated by a minimal spacing that is determined by the grid
spacing. Finally, topology preservation is restricted to evo-
lutions that are implemented using level set methods. As we
shall see, our geometric flow has none of these undesirable
features.
Our work is motivated by the polygon regularizer devel-

oped in the work of Unal et al. [22]. Unal assumes that
an active polygon has a uniform charge distributed along
its perimeter. The polygon moves in response to the elec-
trostatic force and an image based term. The electrostatic
force at each vertex is infinite due to the near neighbor ef-
fects of the adjacent segments to a vertex. To deal with the
numerical problems associated with the computation of the
electrostatic force, the near neighbor effects are simply ig-
nored. Although, this method works in some cases, there
are cases when the method cannot prevent self intersection
of the polygon. We have also observed that as the num-
ber of vertices of the polygon becomes large, approaching
the continuum, the flow becomes unstable. Other works in
computer vision that use electrostatic principles for image

segmentation, but are not and cannot be used for topology
preservation are [5], [13].
The energies we consider in this paper are similar to en-

ergies introduced in the mathematical literature on knot en-
ergies [17], [6]. These energies are modifications of the
electrostatic potential energy. The purpose of knot energies
in [17] is to identify the knot type of a knot; a knot is an em-
bedding of the circle intoR

3. Gradient flows are not consid-
ered in these papers, and the particular energy we use, for a
reason we will mention in Section 3.2, is not considered in
knot energy literature.
Finally, we mention the work of Rochery et al. [20]

that considers a general class of double integral energies on
curves whose gradient flows are used to enforce prior shape
knowledge. Although at a first glance it may appear that the
energy we consider falls into the general class considered by
Rochery, this is not the case. First, the integrand of our en-
ergy is not a simple function of Euclidean distance, which
is the case for Rochery’s energies. Second, there is a dot
product of velocity vectors in the integrand of Rochery’s
energy that leads to “chaotic” behavior. In fact, it is this
phenomena that makes the model of Rochery unsuitable for
topology preservation.

3. Variational Approach
We shall first give a mathematical definition of the active

polygons and active contours that we consider in this pa-
per. Let the domain of the image we wish to segment with
a polygon or contour be denoted I, where I ⊂ R

2. An
active n-polygon is a polygon with vertices v0, . . . , vn−1,
where n ∈ {3, 4, . . .}, in I that move at each instant of time
according to the set of ordinary differential equations

dvk

dt
(t) = Ik(t) + αRk(t),where k ∈ Zn (1)

where Ik, Rk : R
+ → R

2, Zn = {0, 1, . . . , n − 1}, and
α ∈ R

+. Ik is the force derived from the image we wish to
segment, and Rk is a regularizing and topology preserving
force that is derived only from the geometry of the polygon.
We assume continuity and uniform boundedness of Ik, that
is,

sup
t∈R+,k=0,1,...,n−1

‖Ik(t)‖ < +∞, (2)

where ‖ · ‖ is the Euclidean norm of ·. An active contour
C is a twice differentiable curve in I that moves at each
instant of time according to the partial differential equation

∂C

∂t
(p, t) = i(p, t)N (p, t) + αR(p, t) (3)

where p ∈ [0, 1] denotes a parametrization of the curve C,
i : [0, 1] × R

+ → R, and R : [0, 1] × R
+ → R

2. The
image based force is the term iN , where N is the unit nor-
mal vector to the curve C. The regularizing and topology
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preserving term of the active contour isR. We make the as-
sumptions that i is continuous and uniformly bounded, i.e.,

sup
t∈R+,p∈[0,1]

|i(p, t)| < +∞. (4)

Note that our assumptions on Ik and i are not too restrictive,
and are typically true in practical applications. For example,
Mumford-Shah [16], Chan-Vese [4], and other region based
curve evolutions satisfy these conditions.
Our approach to derive Rk and R to preserve the topol-

ogy of the initial configurations is to minimize an energy.
The resulting gradient of this energy will correspond to Rk

andR. The gradient of the proposed energy approaches in-
finity as the curve approaches self intersection, and becomes
large when the curve is “irregular”. The intuition for our
approach is from electrostatics. We imagine that the curve
has a uniformly distributed charge along its perimeter, and
that the curve moves in response to the charge as well as its
original image based force. We expect that as the curve be-
comes close to self intersection, a repulsive force will arise
due to its charge distribution and prevent self intersection.
With this intuition, we propose the energy functional

E∞(C) =
1
2

∫∫
C×C

dŝds

‖C(ŝ) − C(s)‖ (5)

where C denotes a curve, and ds and dŝ are arc-length
measures. Each pair of points on the curve contributes an
amount inversely proportional to its distance to the total en-
ergy. Note that E∞ is just the electrostatic potential energy
of the charge configuration assuming a three dimensional
flux. Unfortunately, it is not hard to show that E∞ is infi-
nite for every curve. In the next sections, we define energies
similar to E∞ that are finite, and whose resulting gradient
flow preserves topology.

3.1. Active Polygons

We define an energy on n-polygons with ordered vertices
{vi : i ∈ Zn}, Ep : R

2n → R
+, as

Ep(v0, . . . , vn−1) = 2
∑
i∈Zn

(|Ci| ln |Ci| − |Ci|)

+
1
2

∑
(i,j)∈Zn×Zn,i �=j

∫∫
Ci×Cj

dŝds

‖Ci(s) − Cj(ŝ)‖ . (6)

We have used the notationCi to denote the edge of the poly-
gon connecting vi to vi+1, and |Ci| to denote the length of
Ci. Note that the terms where the integral in (5) diverges,
that is, the self-energies,

∫∫
Ci×Ci

dŝds
‖C(ŝ)−C(s)‖ , are replaced

by the first term of (6). It should be noted that the first
term in (6) arises from taking the “finite part” of the self-
energies, and discarding the “infinite component”. Another

way to interpret Ep is

Ep(C) =
∑
i �=j

E∞(Ci, Cj) + lim
ε→0

∑
i

Eε
∞(Ci) + 2L ln ε

where C represents a polygon, L is the total length of C,
E∞(Ci, Cj) =

∫∫
Ci×Cj

dŝds
‖Ci(s)−Ci(ŝ)‖ , and Eε

∞(Ci) =∫∫
|s−ŝ|>ε

dŝds
‖Ci(s)−Ci(ŝ)‖ . Thus, we are “subtracting out” the

infinity in E∞(C) with another infinity −2L ln ε, which di-
verges at the same rate as the self energies. The result is a
finite quantity.
The energy, Ep, is defined on R

2n and hence the gra-
dient of Ep is defined with respect to the inner prod-
uct on R

2n. Therefore, the gradient of Ep, is the vector
∇Ep(v0, . . . , vn−1) = (∂Ep/∂vk(v0, . . . , vn−1))n−1

k=0 . It
can be shown that

Fk = F self,k−1
k +F self,kk +

∑
i∈Zn\{k−1}

F k−1,i
k +

∑
i∈Zn\{k}

F k,i
k

(7)
where Fk := −∂Ep/∂vk,

F j,k
i = − ∂

∂vi

∫∫
Cj×Ck

dŝds

‖C(ŝ) − C(s)‖ ,

and

F self,j
i = −2 ln |Cj |

vi − v∗j
|Cj | for j = i − 1, i.

Note that v∗
j = vj when j = i − 1, and v∗

j = vj+1 when
j = i. The F ’s in the above expressions represent “forces”;
they get their name from the fact that they are the negative
gradient of some term of the energy, Ep. It is important
to note, however, that Fk is not the same as the electro-
static force, which is the negative gradient of the potential
integral, i.e., a single integral. Moreover, Fk is finite for
embedded polygons, but the electrostatic force is always in-
finite. We have derived closed form solutions for Fk; the
derivations are lengthy, and the expressions are too long to
write in this paper, and therefore, they are given in [21].
We now state the following conjecture that says Fk keeps

an active polygon embedded, i.e., the initial topology is pre-
served, in the presence of image based forces.

Conjecture 1 (Embeddedness of Active Polygon)
Suppose {v0

0 , v0
1 , . . . , v0

n−1} defines an n-polygon embed-
ded in I, Ik ∈ C(R+, R2) and Ik satisfies the condition
in (2). Consider the n-polygon evolving in time according
to the set of ODE defined in (1) with the initial conditions
vk(0) = v0

k for k ∈ Zn, and Rk := Fk where Fk is defined
in (7). Then for all α > 0, the n-polygon defined according
to the set of ODE maintains its initial topology for all
t ∈ R

+.
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It is important to note that Conjecture 1 applies to a finite
number of polygons as long as the embeddedness condition
is satisfied. The proof of this statement is not trivial since
Ep does not necessarily become infinite as the n-polygon
approaches a topology change. Note that we label this a
conjecture since there are some subtle technical details that
we have not verified. The “proof” is found in a technical
report [21].

3.2. Active Contours
Let C denote the set of all twice differentiable embedded

curves in I homeomorphic to the circle. Then we define an
energy Ec : C → R

+ as

Ec(C) =
1
2

∫∫
C×C

(
1

‖C(ŝ) − C(s)‖ − 1
dC(ŝ, s)

)
dŝds

(8)
where dC(ŝ, s) denotes geodesic distance, that is, the short-
est distance along C from point C(ŝ) to C(s). To extend
this definition to embedded curves that are not necessarily
homeomorphic to the circle, simply set dC(ŝ, s) = +∞ if
there is no path along the curveC connecting C(ŝ) to C(s).
Since the integral in (8) is the difference of two functions
that diverge on the same set, it is natural to ask whether the
integral exists. A proof that the integral exists is given in
[17]. The energy in (8) is similar to knot energies, which
were noted in Section 2, but Ec is not a knot energy since
it does not necessarily diverge as the curve approaches self
intersection [17]. Hence this energy is not considered in the
mathematical literature. We choose to use this energy since
the gradient turns out to be easy to compute numerically
when the curve is approximated by a polygon. It is im-
portant to note that the regularization term, i.e., the second
term, in (8) only “cancels out” the infinity of the electro-
static term, i.e., first term, due to points on the curve that
are close together in the sense of geodesic distance. The
regularization does not affect the asymptotic behavior of
the electrostatic term as a curve approaches self intersec-
tion. This is because points on the curve that touch during
self intersection are far away in the geodesic sense. Finally,
we note that the integral of the regularization term does not
depend on the geometry of the curve; it only depends on
the length of the curve. In fact, one can write formally,
Ec(C) = E∞(C) − 2E∞(SL/2) where SL/2 is a straight
line with length L/2 and L is the length of C.
We define the gradient of Ec with respect to the usual

geometric L2 inner product on the space of perturbations of
a curve. Defining BC(ε, s) = {C(ŝ) : dC(s, ŝ) < ε},

Eε(s) =
∫

C\BC(ε,s)

C(s) − C(ŝ)
‖C(s) − C(ŝ)‖3

· N (s)dŝ,

where N is the unit inward normal to C and

Pε(s) =
∫

C\BC(ε,s)

dŝ

‖C(s) − C(ŝ)‖ ,

we state the following proposition, which is proved in a
technical report [21].

Proposition 1 (Gradient of Ec) The gradient of Ec is
given by∇Ec(C) = −R where

R(s) = lim
ε→0+

[
Eε(s) + Pε(s)κ(s) − ln

(
L

2ε

)
κ(s)

]
N (s),

(9)
κ denotes the curvature of C, and L denotes the length of
C.

The term Eε(s) + Pε(s)κ(s) arises from the electrostatic
term of Ec, and the term ln (L/2ε)κ(s) arises from the reg-
ularization term. For the sake of intuition, let us ignore the
regularization terms in both Ec and R. The energy Ec(C)
can then be regarded as the potential energy of a uniform
charge distributed along the curve C. The term, Eε(s), can
be regarded as the projection of the electric field vector of
the charge distribution at the point C(s) onto the inward
normal of C. The term, Pε(s), can be regarded as the
electrostatic potential of the charge distribution at the point
C(s). Notice that there are two factors that contribute to the
energy Ec. One factor is the length of the curve, which is
equivalent to the total charge since we are assuming a uni-
form charge density. The other factor is the “closeness” of
points on the curve to other points on the curve. Thus, to re-
duce energy, the curve should contract, which is equivalent
to reducing its charge, in such a way that is consistent with
close points moving away from each other due to repulsion
of charge. Notice that the term, PεκN , corresponds to con-
traction of the curve since Pε is positive. Since this term is
a curvature flow, it keeps the curve smooth and away from
irregularities. Repulsion from close points arises from the
term, EεN , which is the electrostatic force.
We now state the following conjecture; the conjecture

states thatR keeps the active contour embedded in the pres-
ence of image based forces.

Conjecture 2 (Embeddedness of Active Contour)
Suppose C0 ∈ C2([0, 1], R) defines an embedded curve,
i ∈ C2([0, 1] × R

+, R) satisfies the condition in (4), and
R is defined in (9). Consider the curve evolving in time
according the PDE defined in (3) with initial condition
C(·, 0) = C0. Then for any α > 0, the curve defined by the
PDE stays embedded for all t ∈ R

+.

As in the polygon case, this conjecture applies to multi-
ple curves as long as the embeddedness condition is sat-
isfied. Again, the proof is not trivial since Ec does not be-
come infinite as the curve approaches topology change. We
show in [21] that if the curve stays smooth, then the topol-
ogy of the curve will be preserved. However, we have not
shown that the curve remains smooth under this flow and
an image based term. We believe, however, that since the
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flow contains a positive function times the curvature vec-
tor when the limit is evaluated, the curve remains smooth.
Hence, we have labeled the statement a conjecture. In the
“proof” of the conjecture, it is established that there exists a
p ∈ [0, 1] such that ‖R(p, t)‖ → +∞ as a curve approaches
topology change. This fact now allows us to define what is
meant by a curve being close to topology change. Defining
τ : C → (0, +∞)

τ(C) =
1

maxp∈[0,1] ‖R(p)‖ , (10)

we say an embedded curve, C, is close to topology change
if τ(C) is close to zero. A similar measure of closeness to
topology change can also be defined for active polygons.

4. Implementation
4.1. Active Polygon Evolution
We implement the polygon evolution by storing the ver-

tices of the evolving polygon in a n × 2 array where n is
the number of vertices of the polygon. The vertices are as-
sumed to be ordered so that vk is adjacent to vk+1 for all
k ∈ Zn. Discretizing the continuous evolution given in (1)
yields

vm+1
k = vm

k + ∆t(Im
k + αFm

k )

where vm
k denotes the kth vertex at timem, similarly for the

forces F m
k , Im

k , and∆t is the step size, which is a small pos-
itive number. Note that F m

k is the sum of n forces that are
given in (7). The final expressions for these forces are given
in [21]. It is interesting to note that more than one polygon
can be evolved using this algorithm, and the presence of
Fk guarantees that there will be no self intersections. This
same algorithm can be used for a parametric implementa-
tion of active contours, except that Fk is replaced withR.
4.2. Active Contour Evolution
We briefly describe an implementation of the contour

evolution using level set techniques [18]. That is, to im-
plement the flow in (3), we embed the evolving curve as the
zero level set of a scalar function Ψ : R

2 × R
+ → R that

evolves in time. The evolution of Ψ becomes

Ψt(x, t) = −∇Ψ(x, t) · Ct(x) for x ∈ C(t) (11)

where Ct is defined in (3), Ψt denotes the derivative with
respect to the second argument, and ∇Ψ denotes the gradi-
ent with respect to the first argument. The zero level set of
Ψ is guaranteed to evolve according to (3). Now, the dis-
crete approximation to (11) on a finite grid using a forward
Euler scheme is

Ψm+1(x, y) = Ψm(x, y)−
∆t(∇Ψm(x, y) · Rm + ‖∇Ψ‖m(x, y)im) (12)

Figure 2. Unwinding of spirals using the pro-
posed topology preserving flow. Spatial
scale is shrunk as the evolution progresses.

where the subscript m denotes the time variable. An up-
winding differencing scheme is used to estimate ‖∇Ψ‖m

and ∇Ψm, and a central difference scheme is used for a
term of the form κ‖∇Ψ‖m, which is contained in the term
∇Ψm(x, y) · Rm. To efficiently implement (12), we note
that Ψ needs to be updated only around a small neighbor-
hood of the zero-level set of Ψ that is called the “narrow
band”. The quantities i and R are defined at points in the
narrow band to be the same value as at the closest point on
the contour to the given point in the narrow band.
The most direct way to computeR is to find a polygonal

estimate of the zero level set at each iteration, and compute
R on this estimate. We have worked out a closed form so-
lution to the integrals inR for polygonal estimations; these
are found in [21]. Another way to calculate R that may be
more efficient and does not require a polygonal estimate of
the zero level set is to approximate the integrals of R with
integrals around the entire curve. These integrals can then
be written as convolutions over the domain of Ψ, and FFTs
can be used to efficiently compute these convolutions. The
details are found in [21].

5. Simulations
5.1. Geometric Properties
The top of Fig. 2 shows the evolution of a polygonal spi-

ral under the flow v′
k(t) = Fk. Notice that the spiral un-

ravels from the inside by shrinking its inner segments and
pushing segments into a small area. Although it looks as
if several vertices of the polygon have collapsed to a sin-
gle point in the evolution, this cannot happen as the “proof”
of Conjecture 1 shows [21]. The polygon then becomes
convex, and finally converges to a regular polygon. We be-
lieve that any polygon converges to a regular polygon under
this topology preserving flow, but this has not been proved.
Therefore, this flow can also be used as a regularity term in
addition to preserving topology for segmentations. The bot-
tom row of Fig. 2 shows the evolution of a spiral evolving
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Figure 3. Illustration of a difference between
curvature flow (top) and proposed flow (bot-
tom).

under Ct = R. The spiral eventually becomes convex, be-
comes circular, and shrinks to a configuration that is not rep-
resentable with the given resolution of the level set function.
The behavior of this flow, as witnessed through this simula-
tion, shows some similarities to curvature flow. In particu-
lar, the proposed topology preserving flow has smoothness
properties like curvature flow. Indeed in [21], we prove that
a circle, under our flow, shrinks in finite time to a point.
Also, it has been shown in [1] that Ec is minimized by a
circle among curves having a constant perimeter. However,
as shown in Fig. 3, the topology preserving flow also has
different properties than curvature flow. In this figure, the
evolution of a thin, long curve is shown. The top of the fig-
ure shows the evolution under curvature flow, and the bot-
tom of the figure shows the evolution under the proposed
flow. Notice that the curve on the bottom of the figure be-
comes thicker as parallel sides are pushed apart. This is due
to the term EεN . Since these parallel sides have nearly zero
curvature, curvature flow does not push the sides apart.

5.2. Image Segmentations
In all the following image segmentations, we have used

the Chan-Vese flow [4] as the image based term. The Chan-
Vese flow, in summary, moves a contour or polygon to sep-
arate an image into two regions that are piecewise constant.
Results of segmentation of a simple leaf image with an ac-
tive polygon are shown in Fig. 4. The result of the running
the Chan-Vese flow without the proposed topology preserv-
ing flow is shown on the top row of Fig. 4. Notice that a
topology change occurs between the second and third im-
age. From the nature of the Chan-Vese flow, the vertices
indicated by the arrows in Fig. 4 will move the polygon
toward self intersection. This is because the vertices will
move in the direction that reduces the white area as fast
as possible; clearly, the direction of the vertices that de-

�

�

Figure 4. Simple leaf segmentation without
(top) and with (bottom) proposed flow.

creases white area fastest moves the polygon toward self
intersection. After self intersection, the normal vectors be-
come flipped at the indicated vertices, and the flow moves
in the wrong direction. Since there is no way to consis-
tently define a normal vector field when the polygon is no
longer embedded, this problem cannot be corrected. The
bottom row of Fig. 4 shows snapshots of the evolution of
Chan-Vese flow weighted 98% and the topology preserv-
ing flow weighted 2%. Notice the continuous motion of the
polygon to keep the polygon away from self intersection.
In addition, the polygon is more “regular” during the evolu-
tion than the polygon that results without using the topology
preserving flow.
The next simulations are segmentations with active con-

tours. Figure 5 shows the results of segmentation of an im-
age with two closely spaced bones with no topology preser-
vation, topology preservation (Han [10]), and more-than-
topology preservation, i.e., the proposed method. The top
rows is the result with a curvature prior; the curvature is
weighted 50% to compensate for the noise. As can be seen,
the two contours merge across the thin gap between the two
bones. This merging is due to the nature of the image and
Chan-Vese flow, and not a step size problem. The middle
row shows the result of the topology preserving method
of Han [10] with curvature weighted 50%. The final row
shows the result with our proposed more-than-topology-
preserving flow weighted 27% and the remaining percent
only the image based term. We wish to comment that the
topology preservation method of Han simply stops the evo-
lution at points of the contour where a topology change will
occur as result of updating the level set function. Often
times the contour is stopped in an arbitrary location relative
to the image features, and is stopped at a distance based on
the grid spacing of the level set function. This phenomena
is illustrated in Fig. 6, which provides a zoom of the region
separating the two bones. Our method pushes the contour
to attract relevant image features, and does more than just
topology preservation.
Figure 7 shows a segmentation of a simple image of two

circles connected by a thin line with active contours to fur-
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Figure 5. Segmentation of bones CT image with no topology preservation (top), with topology preser-
vation of Han (middle), and with more-than-topology preservation (bottom). (Image courtesy of Ben
Kimia.)

Figure 6. Gap between bones with contours
overlaid. Results of no topology preserva-
tion, topology preservation of Han, andmore-
than-topology preservation.

ther illustrate the degeneracies of the method of Han. The
top row shows the result of the topology preserving level
set method of Han [10], and the bottom row shows the re-
sults of the proposed method. Note that we have used a
curvature force (weighted 10%) in the method of Han to
keep the curve smooth. The method of Han results in a
“degenerate” curve as shown in the figure. The resulting
curve is close to topology change. Although the topology is
correct, the segmentation is incorrect. One may argue that
weighting the curvature high enough in the method of Han
will correct this problem. However, weighting the curva-
ture just enough, produces a flow that looks like curvature
flow, and fails to even capture the circles in the image. The
bottom row of Fig. 7 shows the result of segmentation with
Chan-Vese flow weighed 96% and the proposed more-than-
topology-preserving flow weighted 4%. The segmentation
with the proposed method does not have the problem with

Figure 7. Incorrect segmentation by topology
preservation method of Han [10] (top), and
correct segmentation by the proposed more-
than-topology preserving flow.

that of Han’s method. The curve repels from itself in a con-
tinuous manner as it becomes close to self intersection. The
curve is then pushed in the right direction to capture the thin
strip as the thin strip slowly becomes detected.

6. Conclusion
In summary, we have presented a novel method for en-

forcing a prior assumption on the topology of objects to be
detected from an image. This method is a geometric flow
that can be added to existing image based evolutions of ac-
tive polygons or contours. We have demonstrated that our
flow does more than mere topology preservation, and that
our method gradually and continuously preserves topology.
We presented possible numerical schemes for implementing
the topology preserving flow for both active contours and
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active polygons. Experimental results were shown to illus-
trate the geometrical properties of the topology preserving
flows. In particular, it was shown that the flows had regu-
larizing properties like the curve shortening flow. Experi-
ments involving the use of the topology preserving flow in
segmentations of real images was shown, and compared to
segmentations not using the proposed topology preserving
flow. We also compared our method to the method of Han
[10], and showed how our method corrected some undesir-
able features of Han’s method.
The energies defined in this paper naturally extend to

surfaces, and therefore, future work will be to consider ex-
tending this topology preserving flow to surfaces. Topology
preservation for surfaces is an interesting problem since the
commonmethod to smooth surfaces, mean curvature, works
to change the topology of a surface in the non-convex case.
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