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Abstract

Face images of non-frontal views under poor illumina-
tion with low resolution reduce dramatically face recog-
nition accuracy. This is evident most compellingly by the
very low recognition rate of all existing face recognition
systems when applied to live CCTV camera input. In this
paper, we present a Bayesian framework to perform multi-
modal (such as variations in viewpoint and illumination)
face image super-resolution for recognition in tensor space.
Given a single modal low-resolution face image, we benefit
from the multiple factor interactions of training tensor, and
super-resolve its high-resolution reconstructions across dif-
ferent modalities for face recognition. Instead of perform-
ing pixel-domain super-resolution and recognition indepen-
dently as two separate sequential processes, we integrate
the tasks of super-resolution and recognition by directly
computing a maximum likelihood identity parameter vector
in high-resolution tensor space for recognition. We show
results from multi-modal super-resolution and face recog-
nition experiments across different imaging modalities, us-
ing low-resolution images as testing inputs and demonstrate
improved recognition rates over standard tensorface and
eigenface representations.

1. Introduction

Many representations and models have been proposed
for face recognition in recent years, mostly based on lin-
ear models such as PCA [1], ICA [3] and LDA [2]. Most
of them cope poorly with nonlinear variations in viewing
conditions away from the training data. More recently Ten-
sorFace [5, 4] has been proposed for a multi-linear analy-
sis to model explicitly the multiple modes of variations in
facial shape, expression, pose and illumination and their
inter-relationships. Reported experiments suggested im-
proved recognition performance over traditional approach
[1]. However, the recognition rates based on these algo-
rithms decrease dramatically with low-resolution inputs. To
overcome this problem, super-resolution techniques [14, 16,
18, 17] can be exploited to generate a high-resolution image
given a single or set of low-resolution input images. The

computation of super-resolution requires the recovering of
lost high-frequency information occurring during the im-
age formation process. Super-resolution can be performed
using either reconstruction-based [8, 9, 10, 11] or learning-
based [15, 13, 14, 16, 18, 19] approaches. In this work, we
focus on learning-based approaches.

Capel and Zisserman [16] used eigenface from a training
face database as model prior to constrain and super-resolve
low-resolution face images. To further improve the perfor-
mance, they divided human face into six unrelated parts and
apply PCA on them separately. Combined with MAP esti-
mator, they can recover the result from a high-resolution
eigenface space. A similar method was proposed by Baker
and Kanade [13]. Rather than using the whole or parts of
a face, they established the prior based on a set of training
face images pixel by pixel using Gaussian, Laplacian and
feature pyramids. Freeman and Pasztor [15] took a differ-
ent approach for learning-based super-resolution. Specif-
ically, they tried to recover the lost high-frequency infor-
mation from low-level image primitives, which were learnt
from several general training images. They broke the im-
ages and scenes into a Markov network, and learned the
parameters of the network from the training data. To find
the best scene explanation given new image data, they ap-
plied belief propagation in the Markov network. A very
similar image hallucination approach was also introduced
in [19]. They used the primal sketch as the prior to recover
the smoothed high-frequency information. Liu and Shum
[18] combined the PCA model-based approach and Free-
man’s image primitive technique. They developed a mixture
model combing a global parametric model called “global
face image” carrying common facial properties, and a local
nonparametric model called “local feature image” recording
local individualities. The high-resolution face image was
naturally a composition of both.

To go beyond the current super-resolution techniques
which only consider face images under fixed imaging con-
ditions in terms of pose, expression and illumination, we
present in this work a Bayesian model to perform simultane-
ously multi-modal face image super-resolution and recog-
nition in tensor space. Given a single modal low-resolution
face image, we benefit from the multiple factor interactions
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of training tensor, and super-resolve its high-resolution re-
constructions across different modalities for face recogni-
tion. Instead of performing pixel-domain super-resolution
and recognition independently as two separate sequential
processes, we integrate the tasks of super-resolution and
recognition by directly computing a maximum likelihood
identity parameter vector in high-resolution tensor space for
recognition.

The paper is organized as follows. Section 2 introduces
multilinear analysis and tensor singular value decomposi-
tion (SVD). In section 3, we derive a Bayesian framework
to perform multi-modal super-resolution, and present an al-
gorithm optimizing the high-resolution identity parameter
vector in tensor space. Section 4 discusses experimental re-
sults before conclusions are drawn in section 5.

2. Multilinear Analysis: Tensor SVD

Multilinear analysis [5, 7, 6] is a general extension of
the traditional linear methods such as PCA or matrix SVD.
Instead of modelling the relations within vectors or matri-
ces, multilinear analysis provides a means to investigate the
mappings between multiple factor spaces. In this context,
the multilinear equivalents of vectors (first order) and ma-
trices (second order) are called tensors, multidimensional
matrices or multiway arrays. Tensor singular value de-
composition or higher-order singular value decomposition
(HOSVD) [7] is a multilinear generalization of the con-
cept of matrix SVD. In the following, we denote scalars
by lower-case letters (a, b, . ..; a, 3, ...), vectors by upper-
case (A, B, ...), matrices by bold upper-case (A, B,...),
and tensors by calligraphic letters (A, B, .. .).

Given an N*"-order tensor A € RI*T2xIN ap ele-
ment of A is denoted as A;,. ;. .iy OF Qi i, . iy, Where
1 <14, < I,. If we refer to I,, rank in tensor terminol-
ogy, we generalize the matrix definition and call column
vectors of matrices as mode-1 vectors and row vectors of
matrices as mode-2 vectors. The mode-n vectors of the
N order tensor are the I,,-dimensional vectors obtained
from A by varying index i,, while keeping the other in-
dices fixed. We can unfold or flatten the tensor A by tak-
ing the mode-n vectors as the column vectors of matrix
Ay € RIn(hlednalusa-In) These tensor unfoldings
provide an easy manipulation in tensor algebra and if nec-
essary, we can reconstruct the tensor by an inverse process
of mode-n unfolding.

We can generalize the product of two matrices to the
product of a tensor and a matrix. The mode-n prod-
uct of a tensor A € RIIXxluxxINty 3 matrix
M ¢ R’»*I» denoted by A x,, M, is a tensor B €
RIvxe X In—1XJnXIns1 X XIN whose entries are computed

by

(AXnM)il...in_ljnin+1...iN = E iy iy ining1-inMVpin -

in

This mode-n product of tensor and matrix can be expressed
in terms of unfolding matrices for ease of usage,

B(n) = MA(VL) (1

Given the tensor A € Rt *T2-XIn and the matrices F €
R7»*In and G € R’7=*Im the following property holds
true in tensor algebra [6, 7]:

(AXy F) X G= (A X G) x, F=A X, F x,,, G.

In singular value decompositions of matrices, a matrix
D is decomposed as U; XUZ, the product of an orthogonal
column space represented by the left matrix U, € Rt %71,
a diagonal singular value matrix ¥ € R71*72, and an or-
thogonal row space represented by the right matrix Uy €
RT2%72_This matrix product can also be written in terms of
mode-n product as D = ¥ x; U; x5 Uy. We can gener-
alize the SVD of matrices to multilinear higher-order SVD
(HOSVD). An N*"-order tensor A € RI1*I2X-XIn can be
written as the product

A:ZX1U1X2U2X"'XNUN, (2)

where U, is a unitary matrix, and Z is the core tensor hav-
ing the property of all-orthogonality, that is, two subtensors
Z;,—o and Z; _g are orthogonal for all possible values of
n, o and G subject to o # (3. The HOSVD of a given tensor
A can be computed as follows. The mode-n singular ma-
trix U,, can directly be found as the left singular matrix of
the mode-n matrix unfolding of A, afterwards, based on the
product of tensor and matrix as in Eq.(1), the core tensor Z
can be computed by

Z=Ax; UT x,Ul... xyUTL.

Eq.(2) gives the basic representation of multilinear
model. If we investigate the mode-n unfolding and folding,
and rearrange Eq.(2), we can have

S=Bx, VI,

where S is a subtensor of A corresponding to a fixed row
vector VnT of the singular matrix U,,, and

B=Zx1U; - Xp_1 Up_1 Xpg1 Upgq--- xn Uy

This expression is the basis for recovering original data
from tensor structure. If we index into basis tensor B for
more particular V,T, we can get different modal sample vec-
tor data.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05)
1550-5499/05 $20.00 © 2005 IEEE



3. Multi-Modal Super-Resolution in
Tensor Space

In this section, we first build a tensor structure for face
images of different modalities including varying illumina-
tion, viewpoint (head pose) and people identity. We then
derive an algorithm for super-resolution in tensor parameter
vector space.

3.1. Modelling Face Images in Tensor Space

We construct a tensor structure from multi-modal face
images and use HOSVD to decompose them. The decom-
posed model can be expressed as

D=2Z X1 Uidens X2 Uviews X3 Uillums X4 UpiIels:

where tensor D groups the multi-modal face images into a
tensor structure, and the core tensor Z governs the interac-
tions between the 4 mode factors. The mode matrix U gens
spans the parameter space of different people identities, the
mode matrix Uy;es Spans the parameter space of chang-
ing head poses, and the mode matrix Ujj;,ms Spanning the
space of varying illumination parameters, the mode matrix
U,izels Spanning space of face images.

With decomposed tensor of multi-modal face images,
we can perform super-resolution in tensor parameter vector
space. In such a formulation, the observation is an iden-
tity parameter vector computed by projecting testing low-
resolution face images onto a tensor constructed from low-
resolution training images, and proposed algorithm super-
resolve the true identity parameter vector in a tensor con-
structed from high-resolution training images. We start with
the pixel-domain image observation model. Assuming Dy,
is a vectorized observed low-resolution image, Dy is the
unknown true scene, and A is a linear operator that incor-
porates the motion, blurring and downsampling processes,
the observation model can be expressed as

Dy, =ADg +n, 3)

where n represents the noise in these processes.

The unknown high-resolution image Dy and observed
image Dy, have identity parameter vectors that lie in the re-
spective tensor spaces. These parameter vectors provide a
unique representation for any people identity independent
of the potentially varying modalities such as viewpoint and
illumination. Rather than performing super-resolution on
pixel-domain modal by modal, we derive a model for the
reconstruction of identity parameter vectors in the high-
resolution tensor space.

Based on the tensor algebra introduced in section 2, sup-
pose we have a basis tensor

B=2Z X2 Uviews X3 Uillums X4 Upizelsy (4)

we can index into this basis tensor for a particular viewpoint
v and illumination [ to yield a basis subtensor

T T
Bv,l =2Z X4 Upiwels X2 VU X3 VZ 5

for each of the face imaging modalities. Then the subtensor
containing the individual image data can be expressed as

Dv,l = Bv,l X1 VT + gv,h (5)

where V7T represents the identity parameter row vector and
&,,1 stands for the tensor modelling error for modalities of
viewpoints v and illumination /. For ease of notation and
readability, we will use the mode-1 unfolding matrix to rep-
resent tensors. Then the matrix representation of Eq.(5) be-
comes

Dz(Jll) = VTBSJIZ) + e1),l~ (6)
The counterpart of pixel-domain image observation model
(3) is then given as

B\VV + e, =ABl\VV + Aey i+, (D)

where Bngl) and Bﬁl) are the low-resolution and high-

resolution unfolded basis subtensor, V and V are the iden-
tity parameter vectors for the low-resolution testing face im-
age and unknown high-resolution image.

Independent of changing viewpoints v and illuminations
[, the low- and high-resolution parameter vectors V and
V' are the unique representations of the low-resolution in-
put and its corresponding high-resolution image to be es-
timated. Without loss of generality we can rewrite Eq.(7)
as

BTV 4+ F=ABTWV 4 AE + N, (®)

where BT and BT() are the unfolded basis tensors, and
E and E are the combined tensor modelling error over all
modal face images.

Low-resolution observation images contain very little
high-frequency information after the processes of down-
sampling and blurring, so we can safely neglect the
error £ and multiply both sides of Eq.(8) by ¥ =
(BOBTM)~1BM) on the left, we obtain

V =wABTMV + WAFE + ON, ©)

where W is the pseudoinverse of BT, Eq.(9) gives
the relation between the unknown “true” identity parame-
ter vector V' and the observed low-resolution counterpart
V. In Fig.(1), we use the multi-view example to illustrate
the whole process of our multi-modal super-resolution and
recognition in tensor space.
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Figure 1: An illustration of our multi-modal super-resolution and recognition process in tensor space using a multi-view

super-resolution example.

3.2. A Bayesian Formulation

We use the Bayesian estimation algorithm to solve Eq.(9).
The maximum a posteriori probability (MAP) estimation
of the high-resolution identity parameter vector V' can be
expressed as

V = argmax{p(V|V)p(V)}, (10)

where p(V|V) is the conditional probability modelling the
relations between V' and V, and p(V') is a prior probability.
We can assume the prior probability as Gaussian

p(V) = 5 exp(~(V = )T ATHV = ),

where A is the covariance matrix for all the training para-
meter vectors V;. In our tensor structure, the indentity para-
meter vectors V; comes from the row vectors of orthogonal
matrix Ujgens. In this sense, the prior p(V') just simply
leads the optimum V in Eq.(10) to the mean value py. So
Eq.(10) degenerates to the maximum likelihood (ML) esti-
mator _

V= argm‘z}xp(VW). (11)

To solve the above equation, we define a total noise F'
that consists of the tensor representation error £ and the
pixel-domain observation noise N, and rewrite Eq.(9) as

V=wABTOV + wF (12)

Now we need derive the distribution of the projected noise
p(PF). Before that, we can write the probability distribu-
tion of F as

PF) =  exp (~(F — up) K(F — pup)

where K is a defined diagonal covariance matrix and Z is
a normalization constant. Since BWBT(®) is nonsingular,
p(PF) can also be modeled as jointly Gaussian, then we
have

P(RF) = exp (~(WF — W) Q (W — Wpir),

(13)
where W is the projected mean error and Q is the new
covariance matrix computed by

Q= vKBTW, (14)
Based on Eg.(lZ) and Eq.(13), we find the conditional
probability p(V|V) as

. 1 . )
p(VIV) = = exp ( — (V= ABTOY — @yp)7

Z
Q (V- WABTOWY — \IJMF)>.

Then finally we obtain the ML estimator V as

V = arg H%/in ((V —WABTOY —wyp)T

Q YV - ABTOWY — \I:uF)) 15)

In the above expression of ML estimation, the statis-
tics of mean pp and covariance matrix K can be computed
based on the training images. Assuming we have [ training
people, and for each of them we have M training images of
different modalities, then we estimate the mean and covari-
ance matrix as follows

I M
1 .
e NS @) - ABIOY),
=1 m=1
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and

D) — ABLVV, — up)

M:

1 I
~ I §
=1 1

(DT(I)

3
Il

ABIOOV, — pp)7,

where DL 'r(n) represents every low-resolution training im-
age and V is the high-resolution identity parameter vector
for each training people. We set off-diagonals of K to zero
and use Eq.(14) to obtain Q.

We use the iterative steepest descent method for ML esti-
mation of V. Defining C (V') as the cost function to be min-
imized, V' can be updated in the direction of the negative
gradient of C'(V'). The updating equation can be expressed
as

Vi1 =V, — aVC(Vy), (16)

where « is the step size. We choose the cost function ac-
cording to Eq.(15) as

o) = (V-wAB"OV — w7
Q '(V-wABTOV — @),

and take the derivative of C'(V') with respect to V, the gra-
dient can be computed as

vOo(V) = -BOATETQ M (V - WABTWV — pp).

In summary, everything but V and V are known (In
our experiments, the low-resolution images are blurred and
downsampled manually, so we keep the the image observa-
tion model parameter A in the data preparation processes).
The identity parameter vector V' on low-resolution tensor
space is obtained by projecting the testing face image D
onto basis subtensors of all modalities, and then reconstruct
them by projecting back, the parameter vector that gives the
minimum reconstruction error is chosen as V, which is es-
sentially a modal estimation process. Based on Eq.(6), the
expression can be written as

V = argmin | D — BT(I)V 2, a7

v,l
for all the combinations of viewpoints v and illumination [,
where VU ; can be computed as VU 1=, lD and ¥, is
the pseudoinverse of Bv.(l ). To summarize, the complete
algorithm is as follows.

e Compute the initial estimate of 1} by bilinearly inter-
polating the given low-resolution testing face image to
the same size of the high-resolution training images,
and projecting it onto the training tensor space.

e Obtain the identity parameter vector 1% using Eq.(17).
e Repeat the process of optimizing V;, in Eq.(16).

e Obtain the ML estimation V.

® (® (h)

Figure 2: Example images in our dataset: (a), (b), (c), (d)
and (e) are 56 x 36 face images at frontal, yaw -/+45 degrees
and tilt -/+ 45 degrees views; (f), (g) and (h) are 56 x 36
face images under three different illumination conditions of
Illum-I, Illum-II and Ium-III.

4. Experiments

In this section, we present first results on super-resolving
face images in multiple views given a single view low-
resolution testing image. We then show results on super-
resolving face images under different illumination con-
ditions given a single illumination low-resolution testing
image. We further present results on face recognition
across different 3D pose and illumination conditions, based
on super-resolved identity parameter vectors in a high-
resolution tensor space.

For our experiments, we used face images from a sub-
set of AR, FERET and Yale databases to form two datasets
for multi-view and multi-illumination experiments respec-
tively. The multi-view dataset has two sets of face images
of 295 different individuals captured at two different occa-
sions, and each set consists of 1475 images of these 295
individuals, in which each individual has 5 different view
face images. For multi-illumination dataset, we has one
subset of 399 images of 133 person, each of them have 3
face images with 3 different illuminations (Illum-I, [llum-II
an [1lum-IIT), and another subset of 133 images of the same
133 persons, but with a different expression under condi-
tion of illum-I. Originally face images from AR, FERET
and YALE databases have different sizes, and also the area
of the image occupied by face varies considerably. To es-
tablish a standard training dataset, we aligned these face im-
ages manually by hand marking the location of 3 points: the
centers of the eyeballs and the lower tip of the nose. These
3 points define an affine warp, which was used to warp the
images into a canonical form. Examples of our dataset are
shown in Fig.2.

4.1. Multi-Modal Super-Resolutions

We performed two sets of experiments on multi-modal
super-resolution using our model derived in section 3. In
the first experiment, we used one set of 1475 face im-
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Figure 3: Experiments on super-resolving multi-view face images given a single view low-resolution input: (a) are low-
resolution input images (14 x 9) at different single views (obtained by downsampling original testing input images); (b) - (f)
are high-resolution reconstruction results (56 x 36) at frontal, yaw -/+45 degrees, and tilt -/+45 degrees views respectively;

and (g) - (k) are ground truth face images at these 5 views.

ages of 295 individuals in our multi-view dataset. Given
a low-resolution single view face image, we super-resolved
5 high-resolution outputs at 5 different views covering the
frontal, yaw -/+45 degrees, and tilt -/+45 degrees. Some
example results from this experiment is shown in Figure 3.
In the second experiment, we used the first subset of 399
images of 133 persons in our multi-illumination dataset,
to perform super-resolution and yield three high-resolution
outputs under three different illumination conditions (Illum-
I, Illum-II and [lum-III) given only one single illumination
low-resolution input. Some example results are shown in
Figure 4. In both of these two experiments, we used the
“leave-one-out” methodology. That is in each of the dataset,
those images which were not selected as the testing image
were used to construct the model tensors.

The high-resolution reconstruction results shown in
Fig.3 and Fig.4 are clearly promising and go beyond what
existing methods are capable of in terms of generalizing into
significantly different views in super-resolution. Although
not perfect, it does not seem to affect the recognition per-
formance using super-resolved identity parameter vector in

the high-resolution tensor space. In next section, we show
results on recognition experiments using our model.

4.2. Recognition Experiments

Our multi-view dataset has two sets of face images cap-
tured at two different occasions. For multi-view face recog-
nition experiment, we used the first set as training dataset
and the second as testing dataset. We set up three com-
parative face recognition experiments, which are our Multi-
Model TensorSuperResolution, TensorFace and EigenFace.
In the first one using our Multi-Model TensorSuperResolu-
tion, we used the yaw -/+45 degrees and tilt -/+45 degrees
view high-resolution training face images to build our high-
resolution tensor, and used all 5 view low-resolution train-
ing images (obtained by downsampling the high-resolution
training images) to build the low-resolution tensor. We used
the frontal view low-resolution face images in the testing
dataset as the testing images. For each of these testing
images, we projected it to the low-resolution training ten-
sor to get its low-resolution identity parameter vector V as
defined in Eq.(7) and computed in Eq.(17), and then per-
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Figure 4: Experiments on super-resolving face images under multiple illumination conditions given a single illumination
low-resolution input: (a) are low-resolution input images (14 x 9) under 3 different illumination conditions (obtained by
downsampling original testing input images); (b) - (d) are high-resolution reconstruction results (56 x 36) at Illum-I, Illum-II
and Illum-III repectively; and (e) - (g) are ground truth face images under these 3 illumination conditions.

formed super-resolution using our high-resolution training
tensor and the corresponding low-resolution training sub-
tensor obtained by removing frontal view information. Af-
ter getting the estimated identity parameter vector V' as in
Eq.(15), we employed nearest neighbour based recognition
by computing its L2 norm to every identity parameter vec-
tors V; in high-resolution training tensor. In the second Ten-
sorFace experiment, we also used the yaw -/+45 degrees and
tilt -/+45 degrees view high-resolution training face images
to build the high-resolution tensor, and used the frontal view
low-resolution face images in the testing dataset as the test-
ing images. We bilinearly interpolated testing images to the
same size of high-resolution images. We projected these
interpolated images onto subtensors of yaw -/+45 degrees
and tilt -/+45 degrees to get V,—2 345, the identity para-
meter vector in training tensor that yields the smallest L2
norms among v = 2, v = 3, v = 4 and v = 5 identifies the
testing frontal image. In the last EigenFace experiment, we
performed PCA using all the yaw -/+45 and tilt -/+45 de-
grees view high-resolution training face images, and used
the frontal high-resolution face images in the testing dataset
as testing images, recognition can be done in eigenspace.
We tabulate the results as below:

For face recognition under different illumination con-
ditions, we have two subsets in our multi-illumination
datasets, we used the first subset as training dataset and the
second one as testing dataset. Similar to the multi-view face
recognition, we also performed three experiments for com-
parison and the results are tabulated as below:

Recognition experiments
Experiment I: Face recognition
across views using our Multi-
Model TensorSuperResolution
Experiment II: Face recognition
across views using low-resolution
TensorFace

Experiment III: Face recognition
across views using high-resolution
EigenFace

Recognition rates
74.6%

51.4%

39.7%

Table 1: Face recognition comparison across multiple
views.

Recognition experiments
Experiment I: Face recognition un-
der changing illuminations using
our Multi-Model TensorSuperRes-
olution

Experiment II: Face recognition un-
der changing illuminations using
low-resolution TensorFace
Experiment III: Face recognition
under changing illuminations using
high-resolution EigenFace

Recognition rates
86.2%

66.2%

45.9%

Table 2: Face recognition comparison under changing illu-
mination conditions.

5. Conclusion

In summary, we present a multi-modal face image super-
resolution and recognition system in tensor space. By intro-

YFF.F.

COMPUTER
SOCIETY

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05)
1550-5499/05 $20.00 © 2005 IEEE



ducing the tensor structure that models multiple factor in-
teractions into a Bayesian framework, we can super-resolve
the high-resolution tensor identity parameter vector, given
a single modal low-resolution face image. Based on the
super-resolved identity parameter vector, we can directly
perform face recognition across different views and under
changing illumination conditions, we can also reconstruct
multiple high-resolution face images of different modali-
ties. Experimental results verify our declaration.
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