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Abstract We can consider the model-fitting error as a function of
the unknown parameters, which is termegrojection er-

ror function in this paper. We show that the reprojection
error functions share @@mmonand quasiconveXormula-

tion for the geometric reconstruction problems under our
consideration. As a resulf,,, the pointwise maximum

of a family of quasiconvex functions, is also a quasiconvex
function. We then present an one-dimensional bisection al-
gorithm to minimize the quasiconvex functidn,,. Our
algorithm consists of a small number of small-scale con-
vex programs, specifically linear programs (LP) or second-
order cone programs (SOCP). Both LP and SOCP are well-
studied and existing efficient algorithms and implementa-
tions are ready to use. Compared to random line search in
parameter space or local minimization approaches, our min-
imization approach is efficient, even when the unknowns
are high dimensional. More importantly, our approach is
deterministic and guarantees a predefined accuracy of the
1 Introduction minimization result.

Given measurements in 2D images, the goal of geo- . It has been pointe(_i out in [5] th#t,, is sensitiye to out-
metric reconstruction in computer vision is to estimate 1€'S: To handle outliers, we us€,, the pointwisem-th
the three-dimensional information about the scene and thesmallest reprojection error, as thg co;t function. In contrast
camera motions. Classical examples include triangula- 0 £ OF £, the cost functior¥,, is highly robust to out-
tion [10], camera resectioning [4, 9], and structure from mo- I|er§ [14,]' In SP'te (,)f its complex formulz?mon, In our cases
tion (see [6] for a review). The Gold standard for these esti- Fn IS still a pointwise operator O_f a famlly_of quasiconvex
mation problems is minimizind’s, theaverageof squared functions. As a re§u_lt, our a_lg_on_thm to m|_n|m|on can
reprojection errors (model-fitting errors measured in 2D im- P& €xtended to efficiently minimiz&},, again by solving
age domain). Minimizing?, leads to maximum likelihood ~Small-scale convex programs (LP or SOCP).
estimation when measurement noises follow Gaussian dis-1.1 Background: geometric reconstruction problems
tribution.

Due to the camera perspective effect, the cost function
F is highly nonlinear and often contains multiple local
minima. Minimizing F, is therefore difficult. Hartley and ~ 1.1.1 Multi-view triangulation
Schaffalitzky [5] proposed using thintwise maximurof  \we are given projection matrices 8f cameras, denoted by
the squared reprojection errors as the cost function, which{p, ; — 1 ..., N}, and the images of the unknown 3D point
we denote ag’,.. In contrast toF, it was shown thaf’,, Z in theseN cameras, denoted H;,i = 1,..., N}. The
contains only one single minimum value in its feasible do- task of triangulation is to estima from {P;} and {x;}.
main. An approach using random line search in the parame-Triangulation is a necessary step in two- or multi-view 3D
ter space was used in [5] to minimiz&,. The convergence  reconstruction, and in structure from motion.
behavior of random line search remains unclear. As pointed  Note that optimal triangulation algorithms [10, 8] for
outin [5], itis difficult to perform random line search when  tyo-view case are not generalizable to multi-view case.
the parameter space is high dimensional. Constrained min- o
imization is also proposed in [5] for minimizing,,. How- 1.1.2 Camera resectioning
ever, the constraints are nonlinear and nonconvex, makingWe are given 3D point§Z;,i = 1, ..., N} and their images
such constrained minimization a difficult problem by itself. {x;,s = 1,..., N} in one camera. The task is to estimate

Geometric reconstruction problems in computer vision
are often solved by minimizing a cost function that com-
bines the reprojection errors in the 2D images. In this paper,
we show that, for various geometric reconstruction prob-
lems, their reprojection error functions sharec@mmon
and quasiconvexXormulation. Based on the quasiconvex-
ity, we present a novel quasiconvex optimization framework
in which the geometric reconstruction problems are formu-
lated as a small number of small-scale convex programs
that are ready to solve. Our final reconstruction algorithm
is simple and has intuitive geometric interpretation. In con-
trast to existing random sampling or local minimization ap-
proaches, our algorithm is deterministic and guarantees a
predefined accuracy of the minimization result. We demon-
strate the effectiveness of our algorithm by experiments on
both synthetic and real data.

We present four classical examples of geometric recon-
struction problems in computer vision.



the camera projection matrixfrom theseN corresponding
pairs{x; < Z;}. Camera resectioning is used in camera
calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only
the camera positions and the 3D of the scene to be esti-
mated [5]. For example, in vision-aided inertial navigation, Figure 1. Distance betweex = (u,v) andx = (u,?). The
accurate camera pose is available from modern gyroscopessolid square shows the contour on which thenorm errore; =
while the camera position information from accelerometers |¢:| + |e| = a, while the dash line shows the contour on which
is still noisy [3]. Another example is that there are recon- €Lz norm errorez = Ve + ¢} = o Heree, = (u — ), and
struction methods in which the camera rotation for each © = (* = ?):

frame is estimated in a first step [13].

Denote theN intrinsically calibrated cameras 48; =
(R;, —R;C;),7 = 1,..., N}, where for each camera the ro-
tationR,; is known, but its 3D positioiC; is unknown. We
are given 2D feature poin{s;; } over theN cameras. Here
x,; denotes the projection gith 3D pointZ; onto thei-th
camera. The task is to estimdt&; } and{C;} from the 2D
points{x;; } and the camera pos¢R; }.

leads to the midpoint estimation method whé&rés given

by midpoint of the perpendicular between the two rays.
When a camera is further away from the 3D pdnthe

camera has larger uncertainty @n Distance metric in 3D

space cannot take such uncertainty into account. As a result,

the reconstruction result is unstable when the 3D point is far

away from cameras.

N 2.1.3 Reprojection error in the image
1.1.4 Planar homography estimation

. . The reprojection error is defined as the distance in the 2D
Two images of points on a 3D scene plane are related by "’\mage domain betweex, and its reprojection; — 7 (Z):

planar homographyl, a3 x 3 non-singular matrix. Given N
N correspondencelx; « x,i = 1,..., N}, the task is to fi(2) = lxi = %3l = llxi = mi(Z)]a ©)
estimate such that, = Hx. wherex; = m;(Z) is the reprojection of in the image of

. camerapP;, and|| - ||; denotes some vector norm. Bath
2 The cost function andx; are in 2D Cartesian coordinates.

In this section, we define the reconstruction error metric ~ We choose reprojection error metric since it has a well-
at each individual 2D measurement, and the cost functionsdefined geometric meaning and it leads to maximum like-
that combine reconstruction errors from individual 2D mea- lihood estimation. For example, whdi, norm is used in
surements. Eq. (3), the reprojection erraf; is the Euclidean distance
2.1 Error metric for one 2D measurment betweenx; andx;. We can also usé; norm. Its geometric

. . . meaning is shown in Fig. 1.
We use Triangulation as an example to illustrate three

often-used error metrics for an individual 2D measurement, 2-2 Generalized reprojection error function

2.1.1 Algebraic distance Definition 1. The general formulation of reprojection error
function:
Denotex; = (x;;1) the homogeneous coordinates of the F(X) = p(X) @
2D measuremen;, we have the following linear equation: h q(X)
N where
kiXi = PiZ @) e X € R” is the unknown vector to be estimated:;
HereZ is also expressed in homogeneous coordinates. The p(X) is a convex function, ang(X) > 0.
algebraic distance fax; is then defined by: e ¢(X) is a linear function, and(X) > 0;
fi(Z) = ||kix; — PiZ]|2 (2

In the following we show that most reprojection error
Linear least-squares can be applied to estinZatey min-  functions are special cases of the above general formula-
imizing the sum of squared algebraic distances. Sincetion. For a geometric reconstruction problem, if its repro-
the algebraic distance is not geometrically or statistically jection error function conforms to the general formulation
meaningful, the algebraic reconstruction is not reliable (seein Eq. (4), the algorithms we present in this paper can be
[14, 5]). applied to solve such reconstruction problem.

2.1.2 Distance in 3D space 2.2.1 Reprojection error function in the image plane

In the case of calibrated camergs(Z) can be defined as  Result 1. For the reconstruction problems in Section 1.1,
the distance from the 3D poii# to the ray back-projected the reprojection error function defined in the image domain
from x;. In the case of two views, this distance function conforms to the general formulation in Definition 1.



Proof. For the problems in Section 1.1, the reprojection of that¢(X) is a linear function ofX, andp(X) = |x x r|
x = (u,v) in the image can be written as: is convex inX. Therefore, the angular reprojection error

. /a™X b'X T function f(X) = ”—X) conforms to the general form in De-
=X’ X ®)

- a(
finition 1.

HereX is the vector to be estimated, b, andc are known

vectors. For example, in the triangulation problem, they are

2.3 Combining reprojection errors into cost function
The often used cost functiafi, in geometric reconstruc-

the three rows of the camera matpxrespectively.
The reprojection error function is:

1) = =&l = |55 (X)X 1. (6)
where|| - ||; is the vector norm, and
pu(X) = (ucT — aT)X,
po(X) = (ve” —=b")X, (7)

¢X)=c'X.
It is obvious thay(X) is a linear function oiX.

In this paper, we consider affine or Euclidean reconstruc-
tion 1. The cheirality constraint (see [6]), which states that
the 3D points visible in the image must be in front of the

camera, can then be expressed aX > 02. Therefore, we
haveq(X) > 0. The reprojection error function in Eg. (6)
can then be rewritten as:

1
Any norm functiong(y) = ||y||; is a convex function of.
The functioni(X) = (p,(X), p,(X)) is an affine function
of X. The composition of a convex functignand an affine
functionh, denoted byjoh, is a convex function. Therefore,
p(X) = (g o h)(X) is a convex function oX. Itis obvious
thatp(X) > 0. O

p(X)

tion is defined as the average of the squdrgahorm repro-
jection errors:

1
Fo=1; Z F(X) (10)
whereM is the total number of 2D measurements (points).
F, is difficult to minimize as it is highly nonlinear and con-
tains multiple local minima [5].

Hartley and Schaffalitzky [5] proposed using the point-
wise maximum of the reprojection errors as the cost func-
tion:

Fao(X) = max f;(X) (11)
It was shown in [5] thatF,,(X) contains only one single
minimum value in its domain, and is therefore easier to min-
imize thanF,(X). But as is also pointed out in [5F.. (X)
is sensitive to outliers.

To deal with the outliers, we propose using geentwise
m-th smallest reprojection errors as the cost function:

Fn(X) = mth £;(X) (12)

It is obvious thatF,, is a special case af,, whenm =

N. F,, is a highly robust function. For example, when
m = |N/2], it is the median operator. Minimizing,
leads to least-median optimization [14], which can handle
noisy measurements with up §6% of outliers.

When uncertainty on the location of each 2D feature 3 Minimizing the cost function

point is available, it can be shown that the uncertainty-
weighted reprojection error function still conforms to the
general formulation in Definition 1.

Both F, and F,,, are constructed from pointwise oper-
ations on a family of functions. They are not differentiable
at many points. As a result, classical gradient-based ap-
proaches are not applicable to minimizing them. Random
line search in the parameter space was proposed in [5] to
minimize F,,, and random sampling [14, 11] is often used
to detect outliers and to minimizE,,. These randomized
approaches are not scalable when the unknowns are high-
dimensional. They do not guarantee convergence either.

In this section, we show that the general reprojection er-
ror function (Definition 1) is quasiconvex. Such quasicon-
vexity enables us to design a deterministic and efficient al-
gorithm to minimizingF.,, andF;,, .

2.2.2 Angular reprojection error function

When the camera is calibrated, the anglgetween the ob-
served ray and the reprojection ray = (a,b,c) ' X can
be used to define the reprojection error [8, 5]:

X XT
x'r

f(X) = [tan(0)] =

9)

where x denotes cross-product. We chods@ () since
it is a monotonically-increasing function &f whenf ¢
[0,7/2). The cheirality constraint can be enforced|Bly<
7/2, which leads toy(X) = x"r > 0. ltis easy to verify

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a
minimization approach that uses the classic bisection search
in the range domain aof, andF,, .

For the vision problems in which we are interested, the
image size is bounded. Therefore, it is realistic to assume

1In a way similar to the method briefed in [5], our algorithm in this
paper can be extended to projective reconstruction.

2|n planar homography estimation, the chierality constrpg:ftx >0
can be rewritten ahgx > 0, by using the following facts: 1X is on a
3D plane; 2) homography = A — bv |, whereP’ = [A|b] is the second
camera. Her@gT is the third row ofp’, andh3T the third row ofH.



Algorithm: minx F(X). f(x) B

1: Givenl < F*, h > F*, and the tolerance > 0. Aye”
2: while (h — 1) > e do

a=(h+1)/2.

Solve the feasibility problem (14).

4
5. if (14) is feasiblethen h — | | % X

o elsel—a. Figure 3. A quasiconvex function. All of its-sublevel set$S, }
7

end while are convex. But this quasignvex function is not convex, as can be
seen from the line segmeAt3 that lies below the function.

Figure 2. Classical bisection algorithm to pin down the optimal

ever, if S, is convex, then Eq. (14) is a convex feasibilit
value by searching in the one-dimensional range domain. S a. (14) Y

problem [2] that can be solved efficiently. A function with
that! < F(X) < h, whereF(X) is the cost function. For ~ such convexi-sublevel set is calledguasiconvefunction:

o € [I, h], denotes,, thea-sublevel set of"(X): Definition 2. (see [2])A functionf : R” — R is quasicon-
So ={X | F(X) < a} (13) vexif its domaindom( f) and all its sublevel sets

If S, is non-empty, then we know thdt*, the minimum So = {x € dom(f) |f(z) < a},
value of F'(X), satisfied™ < a. Otherwise, we havé™ >
«. Determining whethe§,, is empty or not can be achieved
by solving the following feasibility problem: A convex function has convex sublevel sets, and there-
find X (14) fore, is quasiconvex. The reverse is not true in general.
Fig. 3 shows an example of quasiconvex function that is not
s.t. X € Sa convex. The dash-line segment that lies below the function
Based on the above observation, we can use the bisecindicates the non-convexity of the function.
tion algorithm (see [2]) to pin down the optimal value of The reprojection error functions are not convex due to
F(X) by solving a sequence of feasibility problems. Fig. 2 camera perspective effect, but they are quasiconvex:

shows the basic procedure of the algorithm. It starts with a pesyit 2. A reprojection error function that conforms to the

range(l, 4] that is known to contaitt™*. Then we solve the  general form defined in Eq4) is a quasiconvex function.
feasibility problem at its mid-point = (I + h)/2. Ifitis

feasible, then the optimal valug* is in the lower half of
the interval and we can shrink h] to [1, «]. Otherwise F* S, ={X|f(X) <a}
must be in the upper half of the interval and we shiiink] — [X | p(X) — ag(X) <0, ¢(X) > 0}

to [a, h]. The algorithm then continues on the identified half o e

of the interval. From the definition of the general reprojection error func-
As we can see, at each iteration the range is shrunk by:!on (De(f;nltlon;), we "IF‘OW thfap()t_() IS adco?r:/ex ;‘unc-

half, and the bisection algorithm is guaranteed to converge on, anf _O;_Q( )TI?] a mearf tl:]nc |0tn and, er? oret,_ a

in [log,((h — 1)/¢)] iterations. For examplep, 100] al- convex function. The sum of these two convex functions

lows the re-projection error to be as many as 100 pixels,fb(Xl) :tp]EX) N O‘q(?) 'St.St'”. a convex funtctfn. A Su?_
which is guaranteed to contain the optimal valte If we evel set of a convex function is a convex set. As a result,

. . . . i t since it is the intersection of two convex sets:
chooses = 0.5 pixel, the algorithm will converge in only IS a convex se .
[log, 2001 = 8 iterations. Note that the number of itera- the zero sublevel set offX), and the half space defined by

tions is independent of the dimension of the unknaiin ~ 4(X) > 0. Sincedom(f) = R" ands, are all convex, we
indicating that the algorithm is suitable for solving high di- conclude thaf(X) is quasiconvex. -
mensional problems. More importantly, the optimal value 3.3 Minimizing cost function F.,

we derive is guaranteed to be less thaa 0.5 pixel away
from the true minimum value.

for a € R, are convex.

Proof. For anya > 0, thea-sublevel set off (X) is:

Result 3. F(X), the pointwise maximum of quasiconvex
reprojection error functiong; (X), is also quasiconvex.

3.2 Quasiconvex functions Proof. Thea-sublevel seS,, of F..(X) is:

The bisection algorithm in Fig. 2 is simple, determinis- S, = {X | max fi(X) < a}
tic, and it converges in a small number of iterations. It can ¢
even be applied to minimizing cost functions with multiple ={X[fi(X)<a, i=1,2,--- N}
minima. Thecritical stepin the algorithm is solving the fea- N
sibility problem in Eq. (14), which could be a hard problem = ﬂ Sy,
by itself if thea-sublevel set of’(X) is complicated. How- i=1



HereS! is thea-sublevel set of the reprojection error func-
tion f;(X). From Result 2, we know thdtS’, } are all con-
vex sets. As a result, their intersectifp is also a convex
set. ThereforeF,,(X) is a quasiconvex function. O

Due to its quasiconvexityF,, can be efficiently mini-
mized b% the bisection algorithm in Fig. 2. The convex set
So ==, S can be expressed as:

So ={X | ¢:(X) > 0;pi(X)—aq;(X) <0; i =1,--- N}
The feasibility problem of the bisection algorithm in

Eq. (14) can now be solved by the followirngnvexpro-

gram:

min y (15)

X,y
st. —qi(X)+e<n,
pi(X) — agq;(X) <7,
i=1,..,N.
Heree is a small positive number. Denoté the optimal

value of (15). Ify* < 0, thenS,, of F,(X) is nonempty,
and the problem in (14) is feasible; otherwise (14) is infea-

sible. Note that we do not need to solve (15) with high accu-

racy. The algorithm terminates whenevex 0 is satisfied,
or whenever a dual feasible point is found with positive dual
objective (which means* > 0).

3.4 Minimizing robust cost function F,,

F(X) is sensitive to outliers [5]. To deal with outliers,
we use the robust cost functidf, (X), which is defined as
them-th smallest reprojection error (see Eq. (1), (X)
is not a quasiconvex function, except far= N, in which
caseF,,, becomed .

However, since,,, (X) is a pointwise function of a fam-
ily of quasiconvex function$ f;(X)}, its a-sublevel set can

still be represented by the convex sublevel sets of these qua
siconvex functions. As a result, we are able to extend the

bisection algorithm to efficiently minimizé,,.
3.4.1 The a-sublevel set off;,,

A point X, belongs to thev-sublevel set of,,, (X) if and
only if there exists a group ofi a-sublevel sets whose in-
tersection contains the poid,.

Result 4. DenoteS,, thea-sublevel set of,, (X). For any

Xo, Xo € S, ifandonlyif Xo €, {SL,S2,--- SN}
Here S! is the a-sublevel set off;(X). The symbok,,
means that there exist sublevel sets ifS., S2,--. SNV}

such thatXj is inside the intersection of these sublevel
sets.

Proof. For anyX,, we sort theV reprojection errors
f1(Xo), f2(Xo), -+, fn(Xo)
into the nondecreasing order

fay(Xo) <+ < fm)(Xo) < -+ < fvy(Xo)  (16)

For the necessary condition, X, € S, then we have
Fin(Xo) = fum)(Xo) < a. The firstm smallest repro-
jection errors{ f(;y(Xo),i = 1,--- ,m} in Eq. (16) must
therefore satisfyf(;)(Xo) < a. As a result,X, belongs
to the intersection of then a-sublevel sets of the firsh
functions in Eq. (16).

For the sufficient condition, suppos§, is in the in-
tersection of the followingn sublevel sets:{SS),i
1,---,m}, where S is the a-sublevel set off®. We
must have:

F(Xo) < e, (17)
Now if F3,,(Xo) = f(m)(Xo) > a, then from the sorted se-
guence in Eq. (16) we know that the number of less-than-
reprojection errors is less tham. This contradicts Eq. (17)
where there aren less-thanx reprojection errors. There-
fore we haver,,, (Xy) < o, i.e.,Xp € S,. O

i=1,-.,m

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algo-
rithm to minimizing F,,, can be rewritten as:

find X

st. X €, {SL,82%,..., 5N}
In other words, we need to determine if there exist-
sublevel sets whose common intersection is non-empty. A
straightforward approach is to check the feasibility of every
possible group ofn sublevel sets, where for each group its
feasibility can be exactly determined by the convex program
of Eq. (15). In worst case, this requirénéi) convex pro-
grams to solve Eq. (18), which is good for small When
N is large, we use the following single convex program to
determine the feasibility problem in Eq. (18):

(18)

Result 5. Denotey* = (v{,75,- - ,vx) the optimal value
of the following convex program achievingXt:

miny; +7vy2 +---+ N (19)
X,y

st —qi(X) +e <,

pi(X) — aqi(X) < i,

Yi 2 07

i=1,..,N.
Heree is a small positive number. Denogethe number of
zero elements i*. If g > m, then the problem defined by
Eqg. (18) must be feasible; otherwise we consider EiB)
infeasible.

~; is called the infeasibility of;(X*). For any sublevel
setS?, if its corresponding infeasibility; = 0, thenX* is
inside S?,. As a result, the conditiop > m is sufficient for
Eq. (18) to be feasible, since thegesublevel sets contain
the common poinX*.

While ¢ > m is a sufficient condition, it is an approxi-
mated necessary condition for Eq. (18) to be feasible. The



Figure 4. When the camera matrix is normalized appropriately,
the infeasibilityy;" is the distance fronX* to thea-convex cone.
For comparison purposed; is the distance to the ray back-
projected from 2D measuremext.

exact conclusion about the infeasibility of Eq. (18) requires
checking the feasibility of ) groups ofm sublevel sets,

or using integer programming to find the optimal paXit
that minimizes the number of infeasibilities (the number
of nonzero components ity*). Result 5 finds the mini-
mum sum-of-infeasibilitie$ ", v, and uses it to approxi-
mate the minimum number of infeasibilities. With such ap-
proximation, the bisection algorithm gives an upper bound
on the true minimum value df,,,. The sum of infeasibility
l7lli = >, is by itself a robust metrici(; norm is a

Figure 5. Geometric illustration of 3D reconstruction using con-

vex feasibility. The algorithm seeks the minimum cone size with
which at leastn cones have non-empty intersection.

miny; +y1 +---+ N (20)
Xy

st —qi(X) +e <y,

—ag;(X) + pui(X) — pui(X) < i,
—aq;(X) + pui(X) + pui(X) <,
—ag;(X) = pui(X) — pui(X) < i,
*OZQZ( ) Pui (X) erm(X) < iy
v >0, i=1,....,N.

Here p.i, pvi, andg; are all linear functions ofX (see
Eq. (7) for the definition).

robust metric), especially in our cases where the magn|tude3 5.2 L,-norm error metric leads to SOCP

of outliers in the 2D measurements is bound by the image

size. As a result, the bisection algorithm using Result 5 WhenLa-norm error metric is used, Eq. (19) becomes:

can usually achieve a tight upper bound on the true mini-

mum value ofF},,. We can further improve the result by us-
ing weighted sum of infeasibilityw "~ in Eq. (19), where
w = (wy, -+ ,wy) Iis the weight for each measurement,
andw; € [0,1] can be set according to its corresponding
reprojection error to down-weight outliers.

Fig. 4 illustrates the meaning aff. When the camera
matrix is normalizedappropriately, the infeasibility; is
the distance fronX* to the convex cone KX * is outside the
cone. IfX* is inside the coné&? , theny; = 0. The sum-of-
infeasibilities) _, v; is therefore the sum of distances from
X* to the convex cones that do not contairi. WhenX*
goes further away from the cametg, the camera’; has
larger uncertainty oiX*. Such varying uncertainty is taken
into account byy; as it is the distance to the cone, and the
cone becomes larger ¥5° goes further away from the cam-
eraC;. This is in contrast to the distance to back-projected
ray in 3D space (see Fig. 4).

3.5 Feasibility by LP or SOCP

WhenL;- or Ly-norm error metric is used in defining the
reprojection error function, the convex program for feasi-

bility becomes small-scale linear programs (LP) or second-

order convex programs (SOCP), respectively.

3.5.1 Li-norm error metric leads to LP

When L1-norm error metric is used, the convex program in
Eq. (19) becomes the following linear program:

miny; +7v + -+ N (21)
X,

st —qi(X)+e< v,
8:X]]2 < aq;(X) + i,
v >0, i=1,..,N.
—a,

A — UZC;F
7 \ve] —b]

is a2 x 3 matrix, anda, b, andc are known vectors (see
Eg. (5) for the notation)ag; (X) + ~; is a linear function of
X. Therefore, the inequality

[A:X]]2 < agi(X) +

defines a second order convex cone [2]. As aresult, Eq. (21)
is a second-order cone programming (SOCP).

Here
-

3.6 Geometric interpretation

The minimization algorithm we presented in this section
has intuitive geometric interpretation. We use multi-view
triangulation as an example to illustrate. For each 2D mea-
surement, the camera optical center and the six linear in-
equalities in Eq.(20) form a convex cog in front of the
camera in the 3D space, as shown in Fig. 5. The cone size is
determined byv. For any point inside the convex coisg,
its reprojection error must be less thanlf the common in-
tersection of at leasi convex cones is not empty, then we
conclude that there exists at least one p&ptin the 3D
space such that the cost functidh,(X,) < a. Minimiz-
ing F,,,(X) is therefore equivalent to adjusting the size of
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era is rotating and translating, imaging a 3D scene consists of 4( ,.[[ + e N + + Aoetrar
points; (b): Reconstruction errors (normalized by Eg2)) with ot oem ’ o
zero-mean Gaussian noises added to 2D point coordinates; (c3" B . g ol * .
Reconstruction errors under both Gaussian noises and outliers. : g : .
the convex cone, until we find the minimumwith which ~ *"] . e
the intersection of at least convex cones is non-empty. § o8 T elgee- [ - J/‘&\k_z,‘,
Note that as a camera is further away from the 3D poin  ° * “Gudisavaonorcamsannises LA
Xy, it has weaker constraint, since the convex cone size at (©) (d)

Xo becomes larger. This is a nice property since the furtherrigure 7. Multi-view triangulation: corridor sequence. (a): The
away from the camera, the larger uncertainty about the 3Dfirst image of this 11-frame sequence; (b): Reconstruction errors

position the camera has. (normalized by Eq(22)) with added zero-mean Gaussian noises;
. (c): Reconstruction errors with both Gaussian noises and outliers.
4 EXpe”mentS For each feature track, the outliers are added to 1 to 3 views, de-

o pending on the number of views in which the corresponding 3D
point is visible. (d): Reconstruction errors with increased strength
of outliers (ranged from 5 to 40 pixels).

We apply our quasiconvex optimization algorithm t
multi-view triangulation and sequential structure from mo-
tion (SFM)(see [1]), and evaluate the performance using

both synthetic and real data. outliers, the performance df,, degrades quickly.

4.1 Synthetic data )
_ _ ) o 4.2 Real data with “ground truth”
The synthetic scene contains forty 3D points, distributed

at different depth, that are imaged by a moving synthetic =~ We use thecorridor sequencé in which the camera is
camera, as shown in Fig. 6(a). We use 10 consecutive viewsnoving forward along the corridor. Fig. 7(a) shows the first
in the triangulation. Controlled zero-mean Gaussian noisesframe of this 11-frame sequence. Along with the sequence,
and outliers are added to the 2D points. We apply our al- the 2D feature tracks, camera projection matrices, and 3D
gorithm to minimize three cost functiods,,, F,,,, andF}". points are also provided. We use 2D feature tracks and cam-
Here ¥ denotesF,,, with weighted sum-of-infeasibilities  era matrices for triangulation, and compare the recovered
used in Eq. (19). The reconstruction results from the alge- 3D against the provided “ground truth”.
braic approach (see Section 2.1.1) are included for compar-  Controlled zero-mean Gaussian and/or outliers are added
ison purpose. to the 2D feature coordinates. Fig. 7(b) and (c) show the
Fig. 6 shows the average reconstruction errors, where (b)reconstruction errors. The results are consistent with those
shows results when Gaussian noises are added to the 2Brom the synthetic data experiment. Again, our quasiconvex
positions at increasing variances, and (c) shows the result®ptimization successfully minimizes,,, F,,,, and .
with both Gaussian noises and 50% of outliers. The recon- e gbserved thak,, is determined by outliers. Its per-

struction error is normalized by formance depends on the “strength” of the outliers. Fig 7(d)
S |Z —Zr|2 (22) shows the results where the strength of one outlier is in-
|Z1]2 creased. As we can see, the performance ffopdegrades
whereZ is the known ground truth of 3D position, and quickly when outlier strength is increased:;, performs
Z is the triangulation result. As we can see, the algebraic Petter thanf,, when outlier strength is large. When the 2D
approach has poor performance when there are noises ofeature tracking error is less than 25 pixef§, performs as
outliers, while our quasiconvex optimization successfully Well asF;7, indicating that in real scenarids,, is usually
minimizes F..,, F,,, and F*. Without outliers,F,, F,, good enough.
and £} have similar performance, with;,, and F}Y better
than F, when the noises become larger. When there are  3http://www.robots.ox.ac.uk/ ~vgg/datal.html




(b)
Figure 8. Multi-view triangulation in sequential SFM. The cam-
era is moved (largely forward motion) around inside the office.
(a): The first, middle, and last frame of the 450-frame sequence
(image size360 x 240), with tracked points superimposed. (b):
Top-down view of the reconstruction results of camera trajectory
and 3D points. The yellow lines show the optical axis of the recov-
ered cameras. The red circle indicates the 3D points correspond-
ing to the chair.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro
aerial vehicle navigation, in which sequential SFM is ap-
plied to estimate both the camera motions and the 3D. We
apply our multi-view triangulation using;,, minimization
to the sequential SFM.

A 450-frame image sequence is taken by a mini camera

that was moved around by hand in an office. Fig. 8(a) shows

the first, middle, and last frames in this sequence. The cam-

era is mostly moving forward, which is typical for a micro

aerial vehicle. The forward motion makes the 3D estima-
tion very challenging. Moreover, the images captured by
the mini camera have low quality, resulting in noisy 2D fea-

ture tracking. We therefore seek to use as many frames as

possible in triangulating a 3D point.

Fig. 8(b) shows the final reconstruction result (without
global bundle adjustment). The red circle indicates the
points from the chair visible both in the first and the last
image. In the 3D view, the reconstruction of those points
at the end of the sequence aligns very well with their recon-

struction at the beginning of the sequence, indicating a good

estimation of both the 3D and the camera motions.

5 Conclusion

We have presented a novel guasiconvex optimization
framework to geometric reconstruction problems. Our algo-
rithm is an efficient bisection search in toeedimensional

has very intuitive geometric interpretation. We have demon-
strated the effectiveness of our approach, using both syn-
thetic and real data.

We identified the general quasiconvex formulation of the
reprojection error functions, therefore our quasiconvex op-
timization framework can be potentially applied to many
other estimation problems. We are investigating the appli-
cations of our approach to space carving [7], multi-baseline
stereo reconstruction, and efficient bundle adjustment [12]
in structure from motion.
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