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Abstract

Geometric reconstruction problems in computer vision
are often solved by minimizing a cost function that com-
bines the reprojection errors in the 2D images. In this paper,
we show that, for various geometric reconstruction prob-
lems, their reprojection error functions share acommon
and quasiconvexformulation. Based on the quasiconvex-
ity, we present a novel quasiconvex optimization framework
in which the geometric reconstruction problems are formu-
lated as a small number of small-scale convex programs
that are ready to solve. Our final reconstruction algorithm
is simple and has intuitive geometric interpretation. In con-
trast to existing random sampling or local minimization ap-
proaches, our algorithm is deterministic and guarantees a
predefined accuracy of the minimization result. We demon-
strate the effectiveness of our algorithm by experiments on
both synthetic and real data.

1 Introduction
Given measurements in 2D images, the goal of geo-

metric reconstruction in computer vision is to estimate
the three-dimensional information about the scene and the
camera motions. Classical examples include triangula-
tion [10], camera resectioning [4, 9], and structure from mo-
tion (see [6] for a review). The Gold standard for these esti-
mation problems is minimizingFs, theaverageof squared
reprojection errors (model-fitting errors measured in 2D im-
age domain). MinimizingFs leads to maximum likelihood
estimation when measurement noises follow Gaussian dis-
tribution.

Due to the camera perspective effect, the cost function
Fs is highly nonlinear and often contains multiple local
minima. MinimizingFs is therefore difficult. Hartley and
Schaffalitzky [5] proposed using thepointwise maximumof
the squared reprojection errors as the cost function, which
we denote asF∞. In contrast toFs, it was shown thatF∞
contains only one single minimum value in its feasible do-
main. An approach using random line search in the parame-
ter space was used in [5] to minimizeF∞. The convergence
behavior of random line search remains unclear. As pointed
out in [5], it is difficult to perform random line search when
the parameter space is high dimensional. Constrained min-
imization is also proposed in [5] for minimizingF∞. How-
ever, the constraints are nonlinear and nonconvex, making
such constrained minimization a difficult problem by itself.

We can consider the model-fitting error as a function of
the unknown parameters, which is termedreprojection er-
ror function in this paper. We show that the reprojection
error functions share acommonandquasiconvexformula-
tion for the geometric reconstruction problems under our
consideration. As a result,F∞, the pointwise maximum
of a family of quasiconvex functions, is also a quasiconvex
function. We then present an one-dimensional bisection al-
gorithm to minimize the quasiconvex functionF∞. Our
algorithm consists of a small number of small-scale con-
vex programs, specifically linear programs (LP) or second-
order cone programs (SOCP). Both LP and SOCP are well-
studied and existing efficient algorithms and implementa-
tions are ready to use. Compared to random line search in
parameter space or local minimization approaches, our min-
imization approach is efficient, even when the unknowns
are high dimensional. More importantly, our approach is
deterministic and guarantees a predefined accuracy of the
minimization result.

It has been pointed out in [5] thatF∞ is sensitive to out-
liers. To handle outliers, we useFm, the pointwisem-th
smallest reprojection error, as the cost function. In contrast
to F∞ or Fs, the cost functionFm is highly robust to out-
liers [14]. In spite of its complex formulation, in our cases
Fm is still a pointwise operator of a family of quasiconvex
functions. As a result, our algorithm to minimizeF∞ can
be extended to efficiently minimizeFm, again by solving
small-scale convex programs (LP or SOCP).

1.1 Background: geometric reconstruction problems

We present four classical examples of geometric recon-
struction problems in computer vision.

1.1.1 Multi-view triangulation

We are given projection matrices ofN cameras, denoted by
{Pi, i = 1, ..., N}, and the images of the unknown 3D point
Z in theseN cameras, denoted by{xi, i = 1, ..., N}. The
task of triangulation is to estimateZ from {Pi} and{xi}.
Triangulation is a necessary step in two- or multi-view 3D
reconstruction, and in structure from motion.

Note that optimal triangulation algorithms [10, 8] for
two-view case are not generalizable to multi-view case.

1.1.2 Camera resectioning

We are given 3D points{Zi, i = 1, ..., N} and their images
{xi, i = 1, ..., N} in one camera. The task is to estimate



the camera projection matrixP from theseN corresponding
pairs{xi ↔ Zi}. Camera resectioning is used in camera
calibration and in structure from motion.

1.1.3 Multi-view reconstruction with known rotations

In some cases the camera rotations are known, leaving only
the camera positions and the 3D of the scene to be esti-
mated [5]. For example, in vision-aided inertial navigation,
accurate camera pose is available from modern gyroscopes,
while the camera position information from accelerometers
is still noisy [3]. Another example is that there are recon-
struction methods in which the camera rotation for each
frame is estimated in a first step [13].

Denote theN intrinsically calibrated cameras as{Pi =
(Ri,−RiCi), i = 1, ..., N}, where for each camera the ro-
tationRi is known, but its 3D positionCi is unknown. We
are given 2D feature points{xij} over theN cameras. Here
xij denotes the projection ofj-th 3D pointZj onto thei-th
camera. The task is to estimate{Zj} and{Ci} from the 2D
points{xij} and the camera poses{Ri}.
1.1.4 Planar homography estimation

Two images of points on a 3D scene plane are related by a
planar homographyH, a 3 × 3 non-singular matrix. Given
N correspondences{xi ↔ x′i, i = 1, ..., N}, the task is to
estimateH such thatx′i = Hx.

2 The cost function
In this section, we define the reconstruction error metric

at each individual 2D measurement, and the cost functions
that combine reconstruction errors from individual 2D mea-
surements.

2.1 Error metric for one 2D measurment

We use Triangulation as an example to illustrate three
often-used error metrics for an individual 2D measurement.

2.1.1 Algebraic distance

Denotex̃i = (xi; 1) the homogeneous coordinates of the
2D measurementxi, we have the following linear equation:

kix̃i = PiZ (1)

HereZ is also expressed in homogeneous coordinates. The
algebraic distance forxi is then defined by:

fi(Z) = ‖kix̃i − PiZ‖2 (2)

Linear least-squares can be applied to estimateZ by min-
imizing the sum of squared algebraic distances. Since
the algebraic distance is not geometrically or statistically
meaningful, the algebraic reconstruction is not reliable (see
[14, 5]).

2.1.2 Distance in 3D space

In the case of calibrated cameras,fi(Z) can be defined as
the distance from the 3D pointZ to the ray back-projected
from xi. In the case of two views, this distance function
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Figure 1. Distance betweenx = (u, v) and x̂ = (û, v̂). The
solid square shows the contour on which theL1 norm errore1 =
|eu| + |ev| = α, while the dash line shows the contour on which
theL2 norm errore2 =

√
e2

u + e2
v = α. Hereeu = (u− û), and

ev = (v − v̂).

leads to the midpoint estimation method whereZ is given
by midpoint of the perpendicular between the two rays.

When a camera is further away from the 3D pointZ, the
camera has larger uncertainty onZ. Distance metric in 3D
space cannot take such uncertainty into account. As a result,
the reconstruction result is unstable when the 3D point is far
away from cameras.

2.1.3 Reprojection error in the image

The reprojection error is defined as the distance in the 2D
image domain betweenxi and its reprojection̂xi = πi(Z):

fi(Z) = ‖xi − x̂i‖l = ‖xi − πi(Z)‖l (3)

wherex̂i = πi(Z) is the reprojection ofZ in the image of
cameraPi, and‖ · ‖l denotes some vector norm. Bothxi

andx̂i are in 2D Cartesian coordinates.
We choose reprojection error metric since it has a well-

defined geometric meaning and it leads to maximum like-
lihood estimation. For example, whenL2 norm is used in
Eq. (3), the reprojection errorfi is theEuclidean distance
betweenxi andx̂i. We can also useL1 norm. Its geometric
meaning is shown in Fig. 1.

2.2 Generalized reprojection error function

Definition 1. The general formulation of reprojection error
function:

f(X) =
p(X)
q(X)

(4)

where
• X ∈ Rn is the unknown vector to be estimated;
• p(X) is a convex function, andp(X) ≥ 0.
• q(X) is a linear function, andq(X) > 0;

In the following we show that most reprojection error
functions are special cases of the above general formula-
tion. For a geometric reconstruction problem, if its repro-
jection error function conforms to the general formulation
in Eq. (4), the algorithms we present in this paper can be
applied to solve such reconstruction problem.

2.2.1 Reprojection error function in the image plane

Result 1. For the reconstruction problems in Section 1.1,
the reprojection error function defined in the image domain
conforms to the general formulation in Definition 1.



Proof. For the problems in Section 1.1, the reprojection of
x = (u, v) in the image can be written as:

x̂ =
(

a>X
c>X

,
b>X
c>X

)>
(5)

HereX is the vector to be estimated.a,b, andc are known
vectors. For example, in the triangulation problem, they are
the three rows of the camera matrixP, respectively.

The reprojection error function is:

f(X) = ‖x− x̂‖l = ‖ 1
q(X)

(pu(X), pv(X)) ‖l, (6)

where‖ · ‖l is the vector norm, and

pu(X) = (uc> − a>)X,

pv(X) = (vc> − b>)X, (7)

q(X) = c>X.

It is obvious thatq(X) is a linear function ofX.
In this paper, we consider affine or Euclidean reconstruc-

tion 1. The cheirality constraint (see [6]), which states that
the 3D points visible in the image must be in front of the
camera, can then be expressed asc>X > 0 2. Therefore, we
haveq(X) > 0. The reprojection error function in Eq. (6)
can then be rewritten as:

f(X) =
1

q(X)
‖ (pu(X), pv(X)) ‖l =

p(X)
q(X)

(8)

Any norm functiong(y) = ‖y‖l is a convex function ofy.
The functionh(X) = (pu(X), pv(X)) is an affine function
of X. The composition of a convex functiong and an affine
functionh, denoted byg◦h, is a convex function. Therefore,
p(X) = (g ◦ h)(X) is a convex function ofX. It is obvious
thatp(X) ≥ 0.

When uncertainty on the location of each 2D feature
point is available, it can be shown that the uncertainty-
weighted reprojection error function still conforms to the
general formulation in Definition 1.

2.2.2 Angular reprojection error function

When the camera is calibrated, the angleθ between the ob-
served rayx and the reprojection rayr = (a,b, c)>X can
be used to define the reprojection error [8, 5]:

f(X) = |tan(θ)| =
∣∣∣∣
x× r
x>r

∣∣∣∣ (9)

where× denotes cross-product. We choosetan(θ) since
it is a monotonically-increasing function ofθ when θ ∈
[0, π/2). The cheirality constraint can be enforced by|θ| <
π/2, which leads toq(X) = x>r > 0. It is easy to verify

1In a way similar to the method briefed in [5], our algorithm in this
paper can be extended to projective reconstruction.

2In planar homography estimation, the chierality constraintp′>3 X > 0
can be rewritten ash>3 x > 0, by using the following facts: 1)X is on a
3D plane; 2) homographyH = A− bv>, whereP′ = [A|b] is the second
camera. Herep′>3 is the third row ofP′, andh>3 the third row ofH.

that q(X) is a linear function ofX, andp(X) = |x× r|
is convex inX. Therefore, the angular reprojection error
functionf(X) = p(X)

q(X) conforms to the general form in De-
finition 1.

2.3 Combining reprojection errors into cost function

The often used cost functionFs in geometric reconstruc-
tion is defined as the average of the squaredL2-norm repro-
jection errors:

Fs =
1
M

∑

i

f2
i (X) (10)

whereM is the total number of 2D measurements (points).
Fs is difficult to minimize as it is highly nonlinear and con-
tains multiple local minima [5].

Hartley and Schaffalitzky [5] proposed using the point-
wise maximum of the reprojection errors as the cost func-
tion:

F∞(X) = max
i

fi(X) (11)

It was shown in [5] thatF∞(X) contains only one single
minimum value in its domain, and is therefore easier to min-
imize thanFs(X). But as is also pointed out in [5],F∞(X)
is sensitive to outliers.

To deal with the outliers, we propose using thepointwise
m-th smallest reprojection errors as the cost function:

Fm(X) = mth
i

fi(X) (12)

It is obvious thatF∞ is a special case ofFm whenm =
N . Fm is a highly robust function. For example, when
m = bN/2c, it is the median operator. MinimizingFm

leads to least-median optimization [14], which can handle
noisy measurements with up to50% of outliers.

3 Minimizing the cost function
Both F∞ andFm are constructed from pointwise oper-

ations on a family of functions. They are not differentiable
at many points. As a result, classical gradient-based ap-
proaches are not applicable to minimizing them. Random
line search in the parameter space was proposed in [5] to
minimizeF∞, and random sampling [14, 11] is often used
to detect outliers and to minimizeFm. These randomized
approaches are not scalable when the unknowns are high-
dimensional. They do not guarantee convergence either.

In this section, we show that the general reprojection er-
ror function (Definition 1) is quasiconvex. Such quasicon-
vexity enables us to design a deterministic and efficient al-
gorithm to minimizingF∞ andFm.

3.1 Minimization by feasibility

Instead of random search or sampling, let us look at a
minimization approach that uses the classic bisection search
in the range domain ofF∞ andFm.

For the vision problems in which we are interested, the
image size is bounded. Therefore, it is realistic to assume



Algorithm: minX F (X).

1: Givenl ≤ F ∗, h ≥ F ∗, and the toleranceε > 0.
2: while (h− l) > ε do
3: α = (h + l)/2.
4: Solve the feasibility problem (14).
5: if (14) is feasible,then h = α;
6: else l = α.
7: end while

Figure 2. Classical bisection algorithm to pin down the optimal
value by searching in the one-dimensional range domain.

that l ≤ F (X) ≤ h, whereF (X) is the cost function. For
α ∈ [l, h], denoteSα theα-sublevel set ofF (X):

Sα = {X | F (X) ≤ α} (13)

If Sα is non-empty, then we know thatF ∗, the minimum
value ofF (X), satisfiesF ∗ ≤ α. Otherwise, we haveF ∗ >
α. Determining whetherSα is empty or not can be achieved
by solving the following feasibility problem:

find X (14)

s.t. X ∈ Sα

Based on the above observation, we can use the bisec-
tion algorithm (see [2]) to pin down the optimal value of
F (X) by solving a sequence of feasibility problems. Fig. 2
shows the basic procedure of the algorithm. It starts with a
range[l, h] that is known to containF ∗. Then we solve the
feasibility problem at its mid-pointα = (l + h)/2. If it is
feasible, then the optimal valueF ∗ is in the lower half of
the interval and we can shrink[l, h] to [l, α]. Otherwise,F ∗

must be in the upper half of the interval and we shrink[l, h]
to [α, h]. The algorithm then continues on the identified half
of the interval.

As we can see, at each iteration the range is shrunk by
half, and the bisection algorithm is guaranteed to converge
in dlog2((h − l)/ε)e iterations. For example,[0, 100] al-
lows the re-projection error to be as many as 100 pixels,
which is guaranteed to contain the optimal valueF ∗. If we
chooseε = 0.5 pixel, the algorithm will converge in only
dlog2 200e = 8 iterations. Note that the number of itera-
tions is independent of the dimension of the unknownX,
indicating that the algorithm is suitable for solving high di-
mensional problems. More importantly, the optimal value
we derive is guaranteed to be less thanε = 0.5 pixel away
from the true minimum value.

3.2 Quasiconvex functions

The bisection algorithm in Fig. 2 is simple, determinis-
tic, and it converges in a small number of iterations. It can
even be applied to minimizing cost functions with multiple
minima. Thecritical stepin the algorithm is solving the fea-
sibility problem in Eq. (14), which could be a hard problem
by itself if theα-sublevel set ofF (X) is complicated. How-
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Figure 3. A quasiconvex function. All of itsα-sublevel sets{Sα}
are convex. But this quasiconvex function is not convex, as can be
seen from the line segmentAB that lies below the function.

ever, if Sα is convex, then Eq. (14) is a convex feasibility
problem [2] that can be solved efficiently. A function with
such convexα-sublevel set is called aquasiconvexfunction:

Definition 2. (see [2])A functionf : Rn → R is quasicon-
vex if its domaindom(f) and all its sublevel sets

Sα = {x ∈ dom(f) |f(x) ≤ α},
for α ∈ R, are convex.

A convex function has convex sublevel sets, and there-
fore, is quasiconvex. The reverse is not true in general.
Fig. 3 shows an example of quasiconvex function that is not
convex. The dash-line segment that lies below the function
indicates the non-convexity of the function.

The reprojection error functions are not convex due to
camera perspective effect, but they are quasiconvex:

Result 2. A reprojection error function that conforms to the
general form defined in Eq.(4) is a quasiconvex function.

Proof. For anyα > 0, theα-sublevel set off(X) is:

Sα = {X | f(X) ≤ α}
= {X | p(X)− αq(X) ≤ 0, q(X) > 0}

From the definition of the general reprojection error func-
tion (Definition 1), we know thatp(X) is a convex func-
tion, and−αq(X) is a linear function and, therefore, a
convex function. The sum of these two convex functions
φ(X) = p(X) − αq(X) is still a convex function. A sub-
level set of a convex function is a convex set. As a result,Sα

is a convex set since it is the intersection of two convex sets:
the zero sublevel set ofφ(X), and the half space defined by
q(X) > 0. Sincedom(f) = Rn andSα are all convex, we
conclude thatf(X) is quasiconvex.

3.3 Minimizing cost function F∞
Result 3. F∞(X), the pointwise maximum of quasiconvex
reprojection error functionsfi(X), is also quasiconvex.

Proof. Theα-sublevel setSα of F∞(X) is:

Sα = {X | max
i

fi(X) ≤ α}
= {X | fi(X) ≤ α, i = 1, 2, · · · , N}

=
N⋂

i=1

Si
α



HereSi
α is theα-sublevel set of the reprojection error func-

tion fi(X). From Result 2, we know that{Si
α} are all con-

vex sets. As a result, their intersectionSα is also a convex
set. Therefore,F∞(X) is a quasiconvex function.

Due to its quasiconvexity,F∞ can be efficiently mini-
mized by the bisection algorithm in Fig. 2. The convex set
Sα =

⋂N
i=1 Si

α can be expressed as:

Sα = {X | qi(X) > 0; pi(X)−αqi(X) ≤ 0; i = 1, · · · , N}
The feasibility problem of the bisection algorithm in
Eq. (14) can now be solved by the followingconvexpro-
gram:

min
X,γ

γ (15)

s.t. −qi(X) + ε ≤ γ,

pi(X)− αqi(X) ≤ γ,

i = 1, ..., N.

Hereε is a small positive number. Denoteγ∗ the optimal
value of (15). Ifγ∗ ≤ 0, thenSα of F∞(X) is nonempty,
and the problem in (14) is feasible; otherwise (14) is infea-
sible. Note that we do not need to solve (15) with high accu-
racy. The algorithm terminates wheneverγ ≤ 0 is satisfied,
or whenever a dual feasible point is found with positive dual
objective (which meansγ∗ > 0).

3.4 Minimizing robust cost function Fm

F∞(X) is sensitive to outliers [5]. To deal with outliers,
we use the robust cost functionFm(X), which is defined as
them-th smallest reprojection error (see Eq. (12)).Fm(X)
is not a quasiconvex function, except form = N , in which
caseFm becomesF∞.

However, sinceFm(X) is a pointwise function of a fam-
ily of quasiconvex functions{fi(X)}, itsα-sublevel set can
still be represented by the convex sublevel sets of these qua-
siconvex functions. As a result, we are able to extend the
bisection algorithm to efficiently minimizeFm.

3.4.1 The α-sublevel set ofFm

A point X0 belongs to theα-sublevel set ofFm(X) if and
only if there exists a group ofm α-sublevel sets whose in-
tersection contains the pointX0.

Result 4. DenoteSα theα-sublevel set ofFm(X). For any
X0, X0 ∈ Sα if and only if X0 ∈m {S1

α, S2
α, · · · , SN

α }.
Here Si

α is the α-sublevel set offi(X). The symbol∈m

means that there existm sublevel sets in{S1
α, S2

α, · · · , SN
α }

such thatX0 is inside the intersection of thesem sublevel
sets.

Proof. For anyX0, we sort theN reprojection errors

f1(X0), f2(X0), · · · , fN (X0)

into the nondecreasing order

f(1)(X0) ≤ · · · ≤ f(m)(X0) ≤ · · · ≤ f(N)(X0) (16)

For the necessary condition, ifX0 ∈ Sα, then we have
Fm(X0) = f(m)(X0) ≤ α. The firstm smallest repro-
jection errors{f(i)(X0), i = 1, · · · , m} in Eq. (16) must
therefore satisfyf(i)(X0) ≤ α. As a result,X0 belongs
to the intersection of them α-sublevel sets of the firstm
functions in Eq. (16).

For the sufficient condition, supposeX0 is in the in-
tersection of the followingm sublevel sets:{S(i)

α , i =
1, · · · ,m}, whereS

(i)
α is the α-sublevel set off (i). We

must have:
f (i)(X0) ≤ α, i = 1, · · · ,m (17)

Now if Fm(X0) = f(m)(X0) > α, then from the sorted se-
quence in Eq. (16) we know that the number of less-than-α
reprojection errors is less thanm. This contradicts Eq. (17)
where there arem less-than-α reprojection errors. There-
fore we haveFm(X0) ≤ α, i.e.,X0 ∈ Sα.

3.4.2 Feasibility by convex program

From Result 4, the feasibility problem in the bisection algo-
rithm to minimizingFm can be rewritten as:

find X (18)

s.t. X ∈m {S1
α, S2

α, · · · , SN
α }

In other words, we need to determine if there existm α-
sublevel sets whose common intersection is non-empty. A
straightforward approach is to check the feasibility of every
possible group ofm sublevel sets, where for each group its
feasibility can be exactly determined by the convex program
of Eq. (15). In worst case, this requires

(
N
m

)
convex pro-

grams to solve Eq. (18), which is good for smallN . When
N is large, we use the following single convex program to
determine the feasibility problem in Eq. (18):

Result 5. Denoteγ∗ = (γ∗1 , γ∗2 , · · · , γ∗N ) the optimal value
of the following convex program achieving atX∗:

min
X,γ

γ1 + γ2 + · · ·+ γN (19)

s.t. −qi(X) + ε ≤ γi,

pi(X)− αqi(X) ≤ γi,

γi ≥ 0,

i = 1, ..., N.

Hereε is a small positive number. Denoteg the number of
zero elements inγ∗. If g ≥ m, then the problem defined by
Eq. (18) must be feasible; otherwise we consider Eq.(18)
infeasible.

γ∗i is called the infeasibility offi(X∗). For any sublevel
setSi

α, if its corresponding infeasibilityγ∗i = 0, thenX∗ is
insideSi

α. As a result, the conditiong ≥ m is sufficient for
Eq. (18) to be feasible, since theseg sublevel sets contain
the common pointX∗.

While g ≥ m is a sufficient condition, it is an approxi-
mated necessary condition for Eq. (18) to be feasible. The
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Figure 4. When the camera matrix is normalized appropriately,
the infeasibilityγ∗i is the distance fromX∗ to theα-convex cone.
For comparison purpose,di is the distance to the ray back-
projected from 2D measurementxi.

exact conclusion about the infeasibility of Eq. (18) requires
checking the feasibility of

(
N
m

)
groups ofm sublevel sets,

or using integer programming to find the optimal pointX∗

that minimizes the number of infeasibilities (the number
of nonzero components inγ∗). Result 5 finds the mini-
mum sum-of-infeasibilities

∑
i γ∗i , and uses it to approxi-

mate the minimum number of infeasibilities. With such ap-
proximation, the bisection algorithm gives an upper bound
on the true minimum value ofFm. The sum of infeasibility
‖γ‖1 =

∑
i γi is by itself a robust metric (L1 norm is a

robust metric), especially in our cases where the magnitude
of outliers in the 2D measurements is bound by the image
size. As a result, the bisection algorithm using Result 5
can usually achieve a tight upper bound on the true mini-
mum value ofFm. We can further improve the result by us-
ing weighted sum of infeasibilityw>γ in Eq. (19), where
w = (w1, · · · , wN ) is the weight for each measurement,
andwi ∈ [0, 1] can be set according to its corresponding
reprojection error to down-weight outliers.

Fig. 4 illustrates the meaning ofγ∗i . When the camera
matrix is normalizedappropriately, the infeasibilityγ∗i is
the distance fromX∗ to the convex cone ifX∗ is outside the
cone. IfX∗ is inside the coneSi

α, thenγ∗i = 0. The sum-of-
infeasibilities

∑
i γ∗i is therefore the sum of distances from

X∗ to the convex cones that do not containX∗. WhenX∗

goes further away from the cameraCi, the cameraCi has
larger uncertainty onX∗. Such varying uncertainty is taken
into account byγ∗i as it is the distance to the cone, and the
cone becomes larger asX∗ goes further away from the cam-
eraCi. This is in contrast to the distance to back-projected
ray in 3D space (see Fig. 4).

3.5 Feasibility by LP or SOCP

WhenL1- orL2-norm error metric is used in defining the
reprojection error function, the convex program for feasi-
bility becomes small-scale linear programs (LP) or second-
order convex programs (SOCP), respectively.

3.5.1 L1-norm error metric leads to LP

WhenL1-norm error metric is used, the convex program in
Eq. (19) becomes the following linear program:

C2 CN…

C1

Figure 5. Geometric illustration of 3D reconstruction using con-
vex feasibility. The algorithm seeks the minimum cone size with
which at leastm cones have non-empty intersection.

min
X,γ

γ1 + γ1 + · · ·+ γN (20)

s.t. −qi(X) + ε ≤ γi,

−αqi(X) + pui(X)− pvi(X) ≤ γi,

−αqi(X) + pui(X) + pvi(X) ≤ γi,

−αqi(X)− pui(X)− pvi(X) ≤ γi,

−αqi(X)− pui(X) + pvi(X) ≤ γi,

γi ≥ 0, i = 1, ..., N.

Here pui, pvi, and qi are all linear functions ofX (see
Eq. (7) for the definition).

3.5.2 L2-norm error metric leads to SOCP

WhenL2-norm error metric is used, Eq. (19) becomes:

min
X,γ

γ1 + γ1 + · · ·+ γN (21)

s.t. −qi(X) + ε ≤ γi,

‖AiX‖2 ≤ αqi(X) + γi,

γi ≥ 0, i = 1, ..., N.

Here

Ai =
(

uic>i − a>i
vic>i − b>i

)

is a 2 × 3 matrix, anda,b, andc are known vectors (see
Eq. (5) for the notation).αqi(X)+γi is a linear function of
X. Therefore, the inequality

‖AiX‖2 ≤ αqi(X) + γi

defines a second order convex cone [2]. As a result, Eq. (21)
is a second-order cone programming (SOCP).

3.6 Geometric interpretation

The minimization algorithm we presented in this section
has intuitive geometric interpretation. We use multi-view
triangulation as an example to illustrate. For each 2D mea-
surement, the camera optical center and the six linear in-
equalities in Eq.(20) form a convex coneSi

α in front of the
camera in the 3D space, as shown in Fig. 5. The cone size is
determined byα. For any point inside the convex coneSi

α,
its reprojection error must be less thanα. If the common in-
tersection of at leastm convex cones is not empty, then we
conclude that there exists at least one pointX0 in the 3D
space such that the cost functionFm(X0) ≤ α. Minimiz-
ingFm(X) is therefore equivalent to adjustingα, the size of



∆h

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard deviation of Gaussian noises

R
ec

on
st

ru
ct

io
n 

er
ro

r

Algebraic

F−inf

Fm

Fm−weight

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard deviation of Gaussian noises

R
ec

on
st

ru
ct

io
n 

er
ro

r

Algebraic

F−inf

Fm

Fm−weight

(a) (b) (c)

Figure 6. Multi-view triangulation: synthetic data. (a): The cam-
era is rotating and translating, imaging a 3D scene consists of 40
points; (b): Reconstruction errors (normalized by Eq.(22)) with
zero-mean Gaussian noises added to 2D point coordinates; (c):
Reconstruction errors under both Gaussian noises and outliers.

the convex cone, until we find the minimumα with which
the intersection of at leastm convex cones is non-empty.

Note that as a camera is further away from the 3D point
X0, it has weaker constraint, since the convex cone size at
X0 becomes larger. This is a nice property since the further
away from the camera, the larger uncertainty about the 3D
position the camera has.

4 Experiments

We apply our quasiconvex optimization algorithm to
multi-view triangulation and sequential structure from mo-
tion (SFM)(see [1]), and evaluate the performance using
both synthetic and real data.

4.1 Synthetic data

The synthetic scene contains forty 3D points, distributed
at different depth, that are imaged by a moving synthetic
camera, as shown in Fig. 6(a). We use 10 consecutive views
in the triangulation. Controlled zero-mean Gaussian noises
and outliers are added to the 2D points. We apply our al-
gorithm to minimize three cost functionsF∞, Fm, andFw

m.
HereFw

m denotesFm with weighted sum-of-infeasibilities
used in Eq. (19). The reconstruction results from the alge-
braic approach (see Section 2.1.1) are included for compar-
ison purpose.

Fig. 6 shows the average reconstruction errors, where (b)
shows results when Gaussian noises are added to the 2D
positions at increasing variances, and (c) shows the results
with both Gaussian noises and 50% of outliers. The recon-
struction error is normalized by

err =
‖Z− ZT ‖2
‖ZT ‖2 (22)

whereZT is the known ground truth of 3D position, and
Z is the triangulation result. As we can see, the algebraic
approach has poor performance when there are noises or
outliers, while our quasiconvex optimization successfully
minimizesF∞, Fm, andFw

m. Without outliers,F∞, Fm,
andFw

m have similar performance, withFm andFw
m better

thanF∞ when the noises become larger. When there are
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Figure 7. Multi-view triangulation: corridor sequence. (a): The
first image of this 11-frame sequence; (b): Reconstruction errors
(normalized by Eq.(22)) with added zero-mean Gaussian noises;
(c): Reconstruction errors with both Gaussian noises and outliers.
For each feature track, the outliers are added to 1 to 3 views, de-
pending on the number of views in which the corresponding 3D
point is visible. (d): Reconstruction errors with increased strength
of outliers (ranged from 5 to 40 pixels).

outliers, the performance ofF∞ degrades quickly.

4.2 Real data with “ground truth”

We use thecorridor sequence3 in which the camera is
moving forward along the corridor. Fig. 7(a) shows the first
frame of this 11-frame sequence. Along with the sequence,
the 2D feature tracks, camera projection matrices, and 3D
points are also provided. We use 2D feature tracks and cam-
era matrices for triangulation, and compare the recovered
3D against the provided “ground truth”.

Controlled zero-mean Gaussian and/or outliers are added
to the 2D feature coordinates. Fig. 7(b) and (c) show the
reconstruction errors. The results are consistent with those
from the synthetic data experiment. Again, our quasiconvex
optimization successfully minimizesF∞, Fm, andFw

m.

We observed thatF∞ is determined by outliers. Its per-
formance depends on the “strength” of the outliers. Fig 7(d)
shows the results where the strength of one outlier is in-
creased. As we can see, the performance fromF∞ degrades
quickly when outlier strength is increased.Fw

m performs
better thanFm when outlier strength is large. When the 2D
feature tracking error is less than 25 pixels,Fm performs as
well asFw

m, indicating that in real scenariosFm is usually
good enough.

3http://www.robots.ox.ac.uk/ ∼vgg/data1.html



(a) (b)

Figure 8. Multi-view triangulation in sequential SFM. The cam-
era is moved (largely forward motion) around inside the office.
(a): The first, middle, and last frame of the 450-frame sequence
(image size360 × 240), with tracked points superimposed. (b):
Top-down view of the reconstruction results of camera trajectory
and 3D points. The yellow lines show the optical axis of the recov-
ered cameras. The red circle indicates the 3D points correspond-
ing to the chair.

4.3 Application: sequential structure from motion

Our target application is vision-aided small and micro
aerial vehicle navigation, in which sequential SFM is ap-
plied to estimate both the camera motions and the 3D. We
apply our multi-view triangulation usingFm minimization
to the sequential SFM.

A 450-frame image sequence is taken by a mini camera
that was moved around by hand in an office. Fig. 8(a) shows
the first, middle, and last frames in this sequence. The cam-
era is mostly moving forward, which is typical for a micro
aerial vehicle. The forward motion makes the 3D estima-
tion very challenging. Moreover, the images captured by
the mini camera have low quality, resulting in noisy 2D fea-
ture tracking. We therefore seek to use as many frames as
possible in triangulating a 3D point.

Fig. 8(b) shows the final reconstruction result (without
global bundle adjustment). The red circle indicates the
points from the chair visible both in the first and the last
image. In the 3D view, the reconstruction of those points
at the end of the sequence aligns very well with their recon-
struction at the beginning of the sequence, indicating a good
estimation of both the 3D and the camera motions.

5 Conclusion
We have presented a novel quasiconvex optimization

framework to geometric reconstruction problems. Our algo-
rithm is an efficient bisection search in theone-dimensional
range domain, with each search step accomplished by a
small-scale convex program that can be efficiently solved.
We derived the algorithm based on sound mathematical
grounds, and the algorithm is essentially free of parame-
ter tuning. The final algorithm is simple, deterministic, and

has very intuitive geometric interpretation. We have demon-
strated the effectiveness of our approach, using both syn-
thetic and real data.

We identified the general quasiconvex formulation of the
reprojection error functions, therefore our quasiconvex op-
timization framework can be potentially applied to many
other estimation problems. We are investigating the appli-
cations of our approach to space carving [7], multi-baseline
stereo reconstruction, and efficient bundle adjustment [12]
in structure from motion.
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