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Abstract

We present a novel algorithm to detect and remove cast
shadows in a video sequence by taking advantage of the sta-
tistical prevalence of the shadowed regions over the object
regions. We model shadows using multivariate Gaussians.
We apply a weak classifier as a pre-filter. We project shadow
models into a quantized color space to update a shadow
flow function. We use shadow flow, background models, and
current frame to determine the shadow and object regions.
This method has several advantages: It does not require
a color space transformation. We pose the problem in the
RGB color space, and we can carry out the same analy-
sis in other Cartesian spaces as well. It is data-driven and
adapts to the changing shadow conditions. In other words,
accuracy of our method is not limited by the preset threshold
values. Furthermore, it does not assume any 3D models for
the target objects or tracking of the cast shadows between
frames. Our results show that the detection performance is
superior than the benchmark method.

1. Introduction
Cast shadows poses one of the most challenging problems
in many vision tasks, especially in object tracking, by dis-
torting the true shape and color properties of the target ob-
jects. They correspond to the areas in the background scene
that are blocked from the light source. It is essential to
eliminate only cast shadows since removal of self shadows,
which are the parts of the object that are not illuminated,
will result in incomplete object silhouettes.

After all, what is a shadow? There are a number of cues
that indicate the presence of a shadow. For instance, pixel
luminance within the shadow regions decrease, when com-
pared to the reference background. Shadows retain texture
of the underlying surface under general viewing conditions,
thus, the intensity reduction rate changes smoothly between
neighboring pixels. Furthermore, it is also true that most
shadow regions do not have strong edges [1]. Spatially,
moving cast shadow regions should adjoin to the objects.

Most of the current shadow removal approaches are
based on an assumption that the shadow pixels have the
same chrominance as the background but are of lower lu-
minance. For instance, Horprasertet al. [2], classify a pixel
into one of the four categories depending on the distortion
of the luminance and the amount of the chrominance of the

difference. Stauder [3] provided a similar approach by veri-
fying the above criteria by integrating a color model similar
to Phong. Mikicet al. [4] classified pixels on the basis of a
statistical method. Color change under changing illumina-
tion is described by a von Kries rule, and each color channel
is approximately multiplied by a single overall multiplica-
tive factor

Some approaches ([5]) prefer remapping of the color
space since a shadow cast on a background does not change
significantly its hue. Finlayson [6] has, in fact, pioneered
recovery of an invariant image from a 3-band color im-
age. The method devised finds an intrinsic reflectivity im-
age based on assumptions of Lambertian reflectance, ap-
proximately Planckian lighting, and fairly narrowband cam-
era sensors. Jianget al. [7] also made use of an illumina-
tion invariant image. If lighting is approximately Planck-
ian, then as the illumination color changes, a log-log plot
of (R/G) and B/G) values for any single surface forms a
straight line. Thus lighting change reduces to a linear trans-
formation along an almost straight line. One of the approx-
imately illumination invariant spaces devised by Geverset
al. [8] is first used to transform the color space. This color
space is approximately invariant to shading and intensity
changes, albeit only for matte surfaces under equi-energy
white illumination.

Other approaches perform image segmentation. Javed
et al [9] divided the potential shadow region into sub re-
gions. Each shadow candidate segment and its respective
background the gradient’s are correlated. If the correlation
results in more than a threshold then the candidate segment
is considered a cast shadow, and is removed from the fore-
ground region. One obvious drawback is that not all im-
ages contain statistically significant amount of object sur-
faces corresponding to both directly lit and shadowed pix-
els. Besides, the lighting color of the umbra region is not
always the same as that of the sunshine. Sato [10] proposed
a method to remove shadows using a measure of brightness.
The image is segmented into several regions that have the
same density and shadow regions are determined based on
the brightness and the color. Baba [11] extended this idea by
applying a maximum and minimum value filters, followed
by a smoothing operator the image to get a global bright-
ness of the image. From the global brightness, he calculate
the shadow density. Salvador [12] presented a shadow seg-
mentation algorithm which includes two stages. The first
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Figure 1:Normalization of color space can not remove shadows
always. Images are transferred fromRGB to rgb. Shadow is re-
moved and pedestrian can be detected (left), however shadows are
amplified and vehicles have now similar colors as shadows (right).

stage extracts moving cast shadows in each frame of the se-
quence. The second stage tracks the extracted shadows in
the subsequent frames. Obviously, the segmentation based
approaches inherently degraded by the segmentation inac-
curacies.

On the other hand, Zhao [13] proposed a geometrical
approach by assuming the shadow of an ellipsoid on the
ground. Any foreground pixel which lies in the shadow
ellipse and whose intensity is lower than that of the corre-
sponding pixel in the background by a threshold is classified
as a shadow pixel.

Unfortunately, the assumptions of these approaches are
difficult to justify in general. Detection based on the lu-
minance based criteria will fail when pixels of foreground
objects are darker than the background and have a uniform
gain with respect to the reference surface they cover. Color
space transformations are deficient if background color is
gray as in Fig. 1. Geometrical shadow models depend heav-
ily on the view-point and object shape. It is not possible
to achieve robust shadow elimination for a wide spectrum
of conditions with several predefined parameters. Another
main limitation of these methods is that they do not adapt
to different types of shadow, e.g. light (due to ambient light
source), heavy (due to strong spot lights).

One key observation is that cast shadows constitute a
“prevalent” change in such scenarios. In other words, color
change at a pixel due to objects has higher variance (since
objects may be in different colors) in comparison to the
color change due to cast shadows. For a pixel, cast shadows
cause identical background color change. However, color
changes caused by object motion will not be same in case
object colors are different, which is the usual case.

To address the disadvantages of the above techniques, we
propose a recursive learning based method that models the
color change induced by shadows in terms of multivariate
Gaussians for surveillance settings. We take advantage of
the above observation, and train models for shadow changes
at each pixel in addition to the set of background models.
We use multiple models, and these models are updated with
each frame. Thus, if the lighting condition (as a result, the
shadow properties) changes, these models will dynamically
adapt themselves to the new condition.

We update the shadow models of a pixel if only that pixel

Figure 2: Each frame updates the background models. Using
the pixels detected as shadow by the weak classifier, we refine the
shadow models and compute shadow flow, which in return will
steer the weak classifier.

is labeled as a shadow by a weak shadow classifier. The
reason we refer this classifier as “weak” is that it is blind
to the input data as most of the existing approaches, and it
serves as a pre-filter for the following stage. Our data-driven
method recursively adapts the shadow models to the input
video. In other words, accuracy of our method is not limited
by the preset threshold values, which is a major drawback
of the existing approaches. The accuracy of this method
improves as it process more video frames. Furthermore,
our method does not require tracking of the cast shadows.

This method requires no special color space, we pose the
problem in theRGB color space, and we can carry out the
same analysis in other Cartesian spaces as well. Besides, no
3D models of the target objects is necessary.

In the following section, we introduce the general idea
and explain the weak classifier and model update mech-
anism. In section 3, we present experimental results that
prove the effectiveness of the proposed method.

2. Learning Cast Shadows
A flow diagram of the proposed method is shown in Fig. 2.
Let the color of the current image beIt(p), wherep is a
pixel. We train two sets of models: backgroundBn

t (p) and
shadowSm

t (x), wheren andm are number of models for
the background and shadow, respectively. We perform our
operations in theRGB color space.

First, we estimate a reference model (background) for
the stationary part of the scene and compare the current
frame with the background to determine the changed re-
gions (foreground) in the image, which may contain both
objects and their moving cast shadows. We use background
subtraction that is the most common approach for discrim-
inating a moving object in arelatively static scene to find
foreground pixels
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Figure 3:Shadow model confidence.

As we explain in the next section, we define each pixel as
layers of multivariate Gaussians. We refer “layer” as the set
of ordered models of all pixels with respect to model con-
difences. Each layer corresponds to a different appearance
of the pixels. The most consistent of these layers constitute
the background. To find foreground pixels, we compare the
current image to the background layers.

We apply a weak shadow classifier that evaluates the
color and spatial changes the foreground pixels undergo.
This classifier basically defines a range of possible colors
with respect to the background color, and iteratively updates
pixel labels using a local consistency of given labels. If a
pixel p is detected as foreground and its color is in the weak
classifier’s range then we update the shadow modelsSm

t (p)
of the pixelp as illustrated in Fig. 5.

Bayesian update computes a confidence score for each
shadow model. We determine the most confident shadow
modelS∗

t (p) for each pixel. We compare the most confident
shadow modelS∗

t (p) with the most confident background
modelB∗

t (p) and compute a disparity vectorS∗
t (x, µ) −

B∗
t (p, µ), whereµ is the mean of the model.
We project the disparity vectors into the quantized color

space, in which each bin represents a color value visible in
the background. Note that, more than one disparity vec-
tors may be assigned to each bin since there may be same
color pixels with different disparities in the background. We
aggregate disparity vectors weighted by the model confi-
dences (Fig. 3) and compute their meanFt(c,µ) and vari-
anceFt(c, σ) at each binc to obtain a shadow flowFt(c,µ)
as shown in Fig. 7. Note that, shadow flow vectors for dif-
ferent shadow types and different backgrounds are different.
This is another reason why the shadow elimination should
be data-drive. The shadow projection projection also en-
ables us to remove the inconsistent or erroneous shadow
detection results.

To find the shadow pixels in the foreground, we back-
project the shadow flowFt(c) to a shadow imageSIt(p) =
Ft(B∗

t (p),µ) using the background image (Fig. 6). Finally,
we compare the current foreground pixels and the shadow
image to determine the shadow pixels using the shadow
color varianceFt(c, σ). Figure 8 shows a single shadow
bin, the corresponding shadow flow vector (blue) and color

Figure 4:Weak shadow is defined as a conic volume around the
corresponding background color of pixel.

changes for the current image. It is possible to use the
shadow flow to determine the quality of foreground estima-
tion.

This refinement process continues for the next image in
the video sequence.

2.1 Weak Shadow Classifier

Weak shadow classifier evaluates each foreground pixel and
decides whether it is a shadow pixel or belongs to an object.
Here, we do not make a final decision; but we select pixels
that will be used to update the multivariate shadow models
in the next step.

To find foreground pixels, we measure the Mahalanobis
distance between the the pixel color and the mean values of
confident background layers. Pixels that are outside of99%
confidence interval of all confident layers of the background
are considered as foreground pixels.

First, we determine whether a pixel is a possible shadow
pixel by evaluating the color variation as in [2]. We assume
that shadow decreases the luminance and changes the sat-

Figure 5:A simple illustration of background and shadow model
update in 1D. We update the shadow models if only the pixel is
classified as shadow by the weak classifier.
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Figure 6:First row: Most confident background layerB∗
t , second row:most confident shadow layerS∗

t , third row: shadow imageSIt,
.

uration, yet it does not affect the hue. The projection of
the color vector to the background color vector gives us the
luminance changeh

h = |I(p)| cos φ (1)

whereφ is the angle between the backgroundB∗
t (p) and

It(p). We define a luminance ratio asr = |I(p)|/h. We
compute a second angleφB between theB∗

t (p) and the
white color (1, 1, 1). For each possible foreground pixel
obtained, we apply the following test and classify the pixel
as a shadow pixel if it satisfies both of the conditions

φ < min(φB , φ0) , r1 < r < r2 (2)

whereφ0 is the maximum angle separation,r1 < r2 deter-
mines maximum allowed darkness and brightness respec-
tively. Thus, we define shadow as a conic around the back-
ground color vector in the color space (Fig. 4). Those pix-
els that satisfy the above conditions are marked as possible
shadow pixels, the rest remains as possible foreground.

At the second stage, we refine the shadow pixels by eval-
uating their local neighborhood. If the illumination ratio
of two shadow pixels are not similar than they assigned as
unclassified. Then, inside a window the number of fore-
groundC, shadowS, and unclassified pixelsU are counted
for the center pixel, and following rules are applied itera-
tively: (C > U)∧(C > S)→ C, (S > U)∧(S > C)→ S,

and elseU . The shadow removal mechanism is proved to be
effective and adjustable to the different lighting conditions.

Using the shadow flow, we adapt the above parameters
of the weak classifier using simpleα-blending after we ag-
gregate the flow vectors for all color bins.

After we select the shadow pixels, we refine our multi-
variate shadow models using a Bayesian update technique
that is explained in the next section. Note that, we use the
same update mechanism for the background models as well.
With this mechanism, we do not deform our models with
noise or foreground pixels, but easily adapt to smooth in-
tensity changes. Embedded confidence score determines
the number of layers to be used and prevents unnecessary
layers.

Using Bayesian approach, we are not estimating the
mean and variance of the layer, but the probability distri-
butions of mean and variance. We can extract statistical
information regarding to these parameters from the distri-
bution functions.

2.2 Bayesian Update

Our models are most similar to adaptive mixture mod-
els [14] but instead of “mixture” of Gaussian distributions,
we define each pixel as “competitive” layers of multivariate
Gaussians. Each layer corresponds to a different appearance
of the pixel.
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Figure 7:Shadow flows for two sequences where heavy shadows
were present.
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Figure 8: Shadow flow (blue) and current image color change
vectors (red) corresponding to a single color bin of the background
image.

Our update algorithm maintains the multimodailty of the
background model. At each update, at most one layer is
updated with the current observation. This assures the min-
imum overlap over layers. We also determine how many
layers are necessary for each pixel and use only those layers
during foreground segmentation phase. Meanµ and vari-
anceΣ of the pixel color history are assumed unknown and
modeled as normally distributed random variables. To per-
form recursive Bayesian estimation with the new observa-
tions, joint prior densityp(µ,Σ) should have the same form
with the joint posterior densityp(µ,Σ|X). Conditioning on
the variance, joint prior density is written as:

p(µ,Σ) = p(µ|Σ)p(Σ). (3)

Above condition is realized if we assume inverse Wishart
distribution [16] for the covariance and, conditioned on the
covariance, multivariate normal distribution for the mean.
Inverse Wishart distribution is a multivariate generalization
of scaled inverse-χ2 distribution. The parametrization is

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (4)

µ|Σ ∼ N(θt−1,Σ/κt−1). (5)

where υt−1 and Λt−1 are the degrees of freedom and
scale matrix for inverse Wishart distribution,θt−1 is the
prior mean andκt−1 is the number of prior measurements.
With these assumptions joint prior density becomes normal
inverse-Wishart(θt,Λt/κt; υt,Λt) with the parameters up-
dated:

υt = υt−1 + n κn = κt−1 + n (6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(7)

Λt = Λt−1 +
n∑

i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x− θt−1)(x− θt−1)T (8)

wherex is the mean of new samples andn is the number of
samples used to update the model. If update is performed at
each time frame,n becomes one.

We use the expectations of marginal posterior distribu-
tions for mean and covariance as our model parameters at
time t. Expectation for marginal posterior mean (expecta-
tion of multivariatet-distribution) becomes:

µt = E(µ|X) = θt (9)

whereas expectation of marginal posterior covariance (ex-
pectation of inverse Wishart distribution) becomes:

Σt = E(Σ|X) = (υt − 4)−1Λt. (10)

Our confidence measure for the layer is equal to one over
determinant of covariance ofµ|X:

5



C =
1

|Σµ|X |
=

κ3
t (υt − 2)4

(υt − 4)|Λt|
. (11)

If our marginal posterior mean has larger variance, our
model becomes less confident. Note that variance of mul-
tivariate t-distribution with scale matrixΣ and degrees of
freedomυ is equal to υ

υ−2Σ for υ > 2. Instead of multi-
variate Gaussian for a single layer, it is possible to use three
univariate Gaussians corresponding to each color channel.
In this case, for each univariate Gaussian we assume scaled
inverse-χ2 distribution for the variance and conditioned on
the variance univariate normal distribution for the mean.

We initialize our system withk layers for each pixel.
Usually we select three-five layers (for both background and
shadow). In more dynamic scenes more layers are required.
As we observe new samples for each pixel we update the
parameters for our background model. We start our update
mechanism from the most confident layer in our model. If
the observed sample is inside the99% confidence interval of
the current model, parameters of the model are updated as
explained in equations (6), (7) and (8). Lower confidence
models are not updated. It is also useful to have a deple-
tion mechanism so that the earlier observations have less
effect on the model. Depletion is performed by reducing
the number of prior observations parameter of unmatched
model. If current sample is not inside the confidence inter-
val we update the number of prior measurements parameter
κt = κt−1 − n and proceed with the update of next confi-
dent layer. We do not letκt become very small. If none of
the models are updated, we delete the least confident layer
and initialize a new model with the current sample.

2.3 Comparison with Online EM
Although our model looks similar to Stauffer’s
GMM’s [14], there are major differences. In GMM’s,
each pixel is represented as a mixture of Gaussian distribu-
tion and parameters of Gaussians and mixing coefficients
are updated with an online K-means approximation of EM.
The approach is very sensitive to initial observations. If
the Gaussian components are improperly initialized, every
component eventually converges to the most significant
mode of the distribution. Smaller modes nearby larger
modes are never detected. We model each pixel with
multiple layers and perform recursive Bayesian learning to
estimate the probability distribution of model parameters.
We interpret each layer as independent of other layers,
giving us more flexibility.

To demonstrate the performance of the algorithm, mix-
ture of 1D Gaussian data with uniform noise is gener-
ated. First data set consists of12000 points corrupted with
3000 uniform noise samples and second data set consists
of 23000 points corrupted with10000 uniform noise sam-
ples. We assume that we observe the data in random order.
We threat the samples as observations coming from a single
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Figure 10:Ratio of foreground pixels detected as shadow (false-
alarm) to ratio of misclassified shadow pixels (miss). Lower left
of the chart is the desired region (low false-alarms, low misses).
SF: proposed shadow flow, SF+L, with luminance clipping, T is a
benchmark method [2], and T+L its clipped version. As visible,
our method almost doubles the detection accuracy.

pixel and estimate the model parameters with our approach
and online EM algorithm. One standard deviation interval
around the mean for actual and estimated parameters are
plot on the histogram, in Figure 9. Results show that, in
online EM, usually multimodality is lost and models con-
verge to the most significant modes. With our method, mul-
timodality of the distribution is maintained. Another im-
portant observation is, estimated variance with online EM
algorithm is always much smaller than the actual variance.
This is not surprising because the update is proportional to
the likelihood of the sample, so samples closer to the mean
become more important.

Our confidence score is very effective in determining the
number of necessary layers for each pixel. Although we
estimate the model parameters with five layers, it is clear
from our confidence scores that how many layers are effec-
tive. There is a big gap between significant and insignificant
layers.

3. Experimental Results
We tested the proposes method with several real data se-
quences that contains heavy to light shadow conditions (to
name a few;traffic - heavy - 440 frames,corner - light-
7200 frames,green- varying - 3100 frames,street- light-
8000 frames).

We used 5 Gaussian models for the background, how-
ever, we assumed the color channels (RGB) are indepen-
dent and covariance matrix is diagonal. For the shadow,
we assigned 3 models. We manually marked the shadow
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Figure 9:Left: Histograms of Gaussian data corrupted with uniform noise,Middle: Estimation results using conventional EM algorithm,
Right: Using Bayesian update. As visible, EM fails to detect correct modes. (Upper row: 2-modes, lower row: 4-modes simulations)

regions in these sequences to generate ground truth data,
which was a tedious task. We quantize the background color
space using 64-bins for each color channel (a total of218

bins). The presented performance scores is similar down to
16-bins, however, it drops for more severe quantizations.

Using the ground truth we evaluated the performance of
our algorithm and another algorithm presented in [2] since
this algorithm also uses background images. Note that, our
algorithm does not require training with ground truth. In
Fig. 10 we give the detection performance, which is ob-
tained by changing various parameters. We also integrated
an additional heuristic (luminance clipping) for the bench-
mark result since its performance for the above dataset was
comparatively poor. The graph SF (green) and SF+L shows
the ROC curves for the proposed shadow flow method, and
T, T+L are for the the benchmark method. As visible, the
proposed algorithm doubled the detection accuracy from
20% false-alarms on average to 10% on average for most
miss ratios. We also want to point out that the benchmark
method has a hard limit, i.e. it can not decrease the false
alarms less than 23% at the equal error rate. On the other
hand, shadow flow method achieves 15% for most of the pa-
rameter assignments, and it always out performs the bench-
mark method. In Fig. 11 we show sample shadow detection
results without clipping without any filtering or morpholog-

Figure 11: Sample detection results without any filtering (red:
shadow, green: foreground).

ical operations.

4. Conclusion
In this paper, we propose a shadow removal algorithm for
surveillance scenarios. The main contribution of this work
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is an adaptive shadow flow method that learns the properties
of cast shadows automatically by using multivariate Gaus-
sians. We also present an accurate model update mecha-
nism.

This method has several advantages: 1) It does not re-
quire a color space transformation. We pose the problem
in the RGB color space, and we can carry out the same
analysis in other Cartesian spaces as well. 2) Our data-
driven method dynamically adapts the shadow models to
the changing shadow conditions. In other words, accuracy
of our method is not limited by the preset threshold values,
which is a major drawback of the existing approaches. The
accuracy of this method improves as it process more video
frames. 3) Furthermore, it does not assume any 3D models
for the target objects or tracking of the cast shadows be-
tween frames.

Our results prove that the shadow flow doubles the de-
tection accuracy by consistently decreasing the percentage
of false-alarms.
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