
Bayesian Body Localization Using Mixture of Nonlinear Shape Models

Jiayong Zhang1, Robert Collins2 and Yanxi Liu1

1The Robotics Institute 2Dept. of Computer Science and Engineering
Carnegie Mellon University, USA The Pennsylvania State University, USA

{zhangjy,yanxi}@cs.cmu.edu rcollins@cse.psu.edu

Abstract

We present a 2D model-based approach to localizing human
body in images viewed from arbitrary and unknown angles.
The central component is a statistical shape representation
of the nonrigid and articulated body contours, where a non-
linear deformation is decomposed based on the concept of
parts. Several image cues are combined to relate the body
configuration to the observed image, with self-occlusion ex-
plicitly treated. To accommodate large viewpoint changes,
a mixture of view-dependent models is employed. Inference
is done by direct sampling of the posterior mixture, using
Sequential Monte Carlo (SMC) simulation enhanced with
annealing and kernel move. The fitting method is indepen-
dent of the number of mixture components, and does not
require the preselection of a “correct” viewpoint. The mod-
els were trained on a large number of interactively labeled
gait images. Preliminary tests demonstrated the feasibility
of the proposed approach.

1. Introduction
We consider the problem of localizing the nonrigid and ar-
ticulated shape of human body. Given an image, the task
is to detect all human figures and find their limb shapes
and positions. This problem has a history of over twenty
years [7] and turns out to be very difficult. First, body
shapes vary dramatically across subjects, poses and view-
points. Second, body appearances are hard to model due to
the wide variety of color/texture of clothing and skin. These
difficulties are compounded by ambiguities caused by self-
occlusion, foreshortening, and similarities of body limbs.

In this work, we assume that: 1) the image contains the
whole body of a single human target, 2) there is no exter-
nal occlusion, and 3) the target is approximately parallel
to the imaging plane, but can be viewed from an arbitrary,
unknown angle. An example of such a scenario is to fit a
random shot of a person walking in a circle.

We take a 2D model-based approach to this problem.
The body shape is represented by a set of landmarks along
the boundary curves. The deformation of the model is con-
strained by the joint probabilistic distribution of landmark
positions. To simultaneously accommodate anthropomet-

ric deformation, articulated motion and viewpoint effects,
this distribution is inevitably complex and highly nonlinear.
To proceed, we apply a hierarchical decomposition. First,
the body shape is modeled by a mixture of view-dependent
models. Each component model works for a small range
of view angles. Second, landmarks are grouped into parts
and joints, thus the nonlinear deformation of the component
model can be factored into shape variations of the parts and
articulated motions of the joints. Finally, the deformation
of each part/joint is modeled by either one or a mixture of
simple distributions conditioned on the deformation of other
parts. This conditioning is designed to impose anthropo-
metric constraints on the relative lengths of the limbs.

We formulate the matching of this mixture model to the
observed image in a Bayesian framework. The likelihood
is computed from several cues, including edge gradient, sil-
houette, skin color and region similarity. Due to the high
degree of freedom, optimizing the posterior is intrinsically
difficult. Therefore, we impose a sequential structure on the
model. This sequential arrangement enables us to expand
the configuration space and collect image information in-
crementally using Sequential Monte Carlo sampling. It also
enables a parallel search through all the view-dependent
models, where resources are dynamically allocated accord-
ing to the scores of their partial fits. Besides, we em-
ploy two well-known techniques, i.e. annealing and MCMC
move [4], to enhance the SMC inference performance.

The proposed approach has several features. First, we
study the body shape at the category level, i.e. across sub-
jects sampled at random from a population. To this end,
the model prior is learned from a large number of real gait
images that have been interactively labeled. Experiments
proved that the system is able to handle subjects with large
shape differences. Second, our model is designed to cap-
ture the detailed body boundary and encode both shape and
pose, which is different from most existing body models.
We argue that this can help localize body parts due to a bet-
ter decoupling of geometric deformation from appearance
variation. Third, our use of multiple deformable models
does not computationally depend on the model number, nor
does it require preselection of a “correct” viewpoint. There-
fore it is potentially easy to increase the number of mixture
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components in order to increase the modeling accuracy.

1.1. Previous Work
Most work on body fitting focuses on temporal tracking
through video sequences (e.g., [2, 3, 14]). In this case,
search is constrained by the strong prior propagated from
the past and/or future through temporal dynamics. Instead,
we focus on spatial analysis of body structure without a dy-
namic model, and rely purely on kinematic constraints.

Existing spatial methods can be broadly grouped into
two categories: learning-based and model-based. Learning-
based approaches [1, 6, 13] aim at recovering body pose
without extracting body parts. They are appealing because
proven statistical learning techniques can be easily applied.
They also can be made fast (in test mode) and suited to real-
time applications. However, most existing implementations
use features extracted solely from silhouette images, and do
not recover anthropometric information.

Model-based methods can be divided into two types:
bottom-up and top-down. The bottom-up approach [8, 12]
assumes simple part models that are loosely connected. It
highlights a simple and flexible structure, and thus often
targets high-level tasks such as human detection. How-
ever, this approach usually depends on a robust part detector
which is difficult to build in practice.

The top-down approach [10] directly explores a high-
dimensional configuration space. Our method falls into this
category. In general, this approach is time consuming, and
may be easily trapped in local minima. However, different
effects can be delineated and studied individually. When
the motion is complex, multiple parametric models can be
used [9]. As an extreme case, each training example may
be treated as a separate model (or exemplar) [11, 15].

Our proposed part-based model is conceptually similar
to pictorial structures [5]. The main differences are: 1) our
part parameterization is highly flexible to capture natural
body deformation, 2) our joint constraints are tight to pre-
serve boundary continuity, and 3) our model handles self-
occlusion and constraints on relative lengths of limbs, and
is not a simple tree structure for inference purpose.

2. Mixture Shape Model
We take a 2D approach to localizing body shape viewed
from an arbitrary and unknown angle. The basic idea is to
build a finite number of 2D models, each of which works for
a small range of viewpoints. Then we apply these models
to the given image and combine their outputs. A Bayesian
formulation is as follows. Let χ be a viewpoint index, Ω be
a 2D configuration of a body projected to viewpoint χ, and
I be an input image. p(χ) encodes the prior probability that
the image is obtained from a particular viewpoint. p(Ω|χ)
encodes our prior knowledge of possible shape deformation
at viewpoint χ. p(I|Ω, χ) measures the likelihood of seeing

a particular image given some body configuration at view-
point χ. Using Bayes’ rule the posterior can be written as,

p(Ω|I) ∼
∑

χ
p(I|Ω, χ) p(Ω|χ) p(χ). (1)

This indicates that the posterior is a mixture distribution
with χ as the component index. Each component p(I,Ω|χ)
corresponds to a different view-dependent model.

Currently we use eight component models from angles
uniformly distributed in [0,2π]. They are further simplified
to five basic models (as depicted in Fig. 1), noting the fact
that left facing models can be constructed by flipping their
right counterparts. The remaining of this section specifies
the component prior p(Ω|χ) and likelihood p(I|Ω, χ). Note
that all these models are parameterized in the same way, and
the viewpoint index χ will be dropped for simplicity.

2.1. Shape Prior
We represent the body shape by a set of piecewise linear
boundary curves or, equivalently, by a set of K landmarks
v1:K = {vk}K

k=1. The 2D coordinates of these landmarks,
{(xk, yk)}, specify the configuration Ω ∈ �2K of our body
model. We further divide v1:K intoM sequentially ordered
parts, W = {Wi}M

i=1, where Wi = {vi,k}Ki

k=1 consists
of Ki sequentially ordered vertices (Fig. 1). Wi is virtu-
ally attached to a particular parent part, say Wj(j < i),
through two edges, say ej

i and ei
j . ej

i is specified by the
first two vertices of Wi, and ei

j is specified by some pair

of vertices from Wj . (ej
i , e

i
j) constitute a flexible joint that

connects Wi and Wj . The M parts are connected into a
“tree” structure by a total of (M − 1) joints J = {(i, j)}.
This tree structure can be traversed sequentially by visiting
{v1,1· · ·v1,K1}{v2,1· · ·v2,K2}· · · {vM,1· · ·vM,KM }.

Given the fixed landmark ordering, the prior can be de-
composed into a series of marginal and conditional distri-
butions. We start from the simplest case. Assuming the
following Markov properties,

p(Wi|ej
i ,W1:i−1) = p(Wi|ej

i ), (2)

p(ej
i |W1:i−1) = p(ej

i |ei
j), (3)

the shape prior can be decomposed as,

p(v1:K) = p(W1)
∏

(i,j)∈J p(ej
i |ei

j)p(Wi|ej
i ). (4)

This suggests two types of deformation mechanisms. The
first mechanism, encoded by p(ej

i |ei
j), specifies the joint

motion. We parameterize this motion by a similarity trans-
form that maps ei

j to ej
i with the probability given by,

p(ej
i |ei

j) = p(xi, yi, ρi, θi) = p(xi, yi)p(ρi)p(θi), (5)

where (xi, yi) is translational offset, ρi is scale and θi is
rotation angle.

The second mechanism, encoded by p(Wi|ej
i ), models

the local part deformation. We parameterize Wi by its Pro-
crustes residuals ri,: = {ri,k}Ki

k=1 and ej
i , where ri,: is mod-

eled as multivariate normal. To predict Wi, the mean shape
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Figure 1: Topology of five basic component models. Land-
marks are grouped into a collection of parts with depth or-
der. A fixed landmark ordering is specified such that the
shape can be traversed by growing one strip at a time.

of the i-th part is shifted by ri,:, followed by a similarity
transform that maps the first two vertices of the shifted mean
shape to ej

i . Assuming that the shape of Wi is independent
of its location, rotation and scale, the local deformation
probability simplifies to,

p(Wi|ej
i ) = p(ri,:) =

∏
k
p(ri,k|ri,1:k−1). (6)

Plugging Eqs. (5) and (6) into Eq. (4) we get,

p(v1:K) =
∏

i
p(xi, yi)p(ρi)p(θi)

∏
k
p(ri,k|ri,1:k−1).

Now we examine those assumptions we made in deriv-
ing the above decomposition. Although the human body
possesses a disaggregated structure, there exist strong de-
pendencies among the body parts. For example, contours
of two adjacent parts are mostly continuous at their con-
nection, and anthropometric constraints exist on the rela-
tive lengths of the limbs. The continuity constraint can be
imposed in our model by proper choice of the origins of
joint transforms and labeling of training data. However,
the limb length constraint obviously invalidates our inde-
pendence assumptions in Eqs. (2), (3) and (6). By parame-
terizing Wi with Procrustes residuals, its length li becomes
a nonlinear function of both the shape ri,: and the “scale”
‖ei‖. As a result, imposing constraints on the limb length
will induce a correlation between ri,: and ‖ei‖.

Based on this consideration, we modify Eqs. (2), (3)
and (6) as p(Wi|ej

i ,W1:i−1) = p(Wi|ej
i , l1), p(e

j
i |W1:i−1)

= p(ej
i |ei

j, l1) and p(ri,:|ej
i ) = p(ri,:|γj

i ), where l1 is the

length of W1, and γj
i = ‖ej

i‖/l1. The final form of prior is,

p(v1:K) ∝
∏

(i,j)∈J p(xi, yi|γi
j)p(ρi|γi

j)p(θi)∏
k
p(ri,k|ri,1:k−1, γ

j
i ). (7)

Figure 2: Selected random samples from the learned shape
prior. Each row contains five samples corresponding to five
component models. Each shape is normalized by aligning
the torso with the associated mean shape.

We estimate densities in Eq. (7) from labeled gait images.
Fig. 2 shows some random samples drawn from this learned
shape prior. Note that we assume independent joint motion
without activity specific constraints, thus the model is able
to generate poses of activities other than walking.

2.2. Image Likelihood
Let Λ = {(i, j)} be the image lattice associated with the im-
age I, and let IR denote the image patch defined on a region
R ⊂ Λ. As depicted in Fig. 1, the sequential structure of our
model insures that the shape can be traversed in T = K/2
steps by growing one quadrangle strip at a time. We denote
the quadrangle at step t as vQt , whereQt = 2t−3 : 2t, and
the associated region asRt. These quadrangles partition the
image into two areas: the body foreground, RFG = ∪tRt,
and the background,RBG = ∩tRt.

Similar to the prior, we seek a marginal and conditional
decomposition of the likelihood. We start from the sim-
plest case. Suppose: 1) there is no overlap between fore-
ground regions, 2) IRt is an independent realization from a
probabilistic foreground model p(IRt |FG), and 3) IRBG

is an independent realization from a background model
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p(IRBG |BG). With some assumption on the background
model, the likelihood can be simplified as,

p(I|Ω) ∝
∏

t

p(IRt |FG)
p(IRt |BG)

=
∏

t
φ(vQt) (8)

This means p(I|Ω) can be factored into the products of
many local terms, each of which is a likelihood ratio de-
fined on a local image region. Since I is constant, the t-th
likelihood term p(IRt |FG)/p(IRt |BG) only depends on
the position of the t-th quadrangle vQt , and thus is simply
denoted as φ(vQt).

Now consider more complex cases. Through the discus-
sion, we will incrementally modify the decomposition given
by Eq. (8). First, visual patterns from different parts may
not be coherent, and thus should be explained by different
models. Accordingly we replace the homogeneous likeli-
hood term φ(vQt) with φ(vQt |�Qt), where �Qt is the ob-
servation model index for Rt.

Second, foreground regions come from the same object
so they are very likely correlated. This can be modeled by
merging multiple regions to be explained as a whole, or by
using conditional terms like p(IRt |IRt−1). In this case, it
is more convenient to cover the shape by a set of clusters
C. Each cluster C ∈ C contains a small number of related
vertices, on which a likelihood ratio φ(vC) is defined. We
impose a sequential structure on C by letting Ct be those
clusters that are completely covered only at step t.

Third, due to self-occlusion, foreground regions do over-
lap. The effect can be modeled by introducing correction
terms in the sequential process of shape construction. Sup-
pose at step t we visit a new cluster C which covers the
region RC . By inspecting vC and vC1:t−1 , we may detect
that RC overlaps with a cluster region, say RC′ , that has
been visited. In this case, we compute a correction term as
follows and multiply it to the likelihood function,

ψ(vC ,vC1:t−1) =
φ(vC ,vC′)
φ(vC)φ(vC′ )

. (9)

In fact, p(IR|·) does not have to be a precise generative
model. An approximate measure, such as a subjective en-
ergy term, may be good enough in practice. Another choice
is to extract features FR from the image patch IR, and re-
place the likelihood (ratio) to observe IR by the likelihood
(ratio) to observe FR. The definition of φ can then be mod-
ified as φ(vC) = p(FRC |FG)/p(FRC |BG). We extract
features from different types of image cues. For each cue
z, we define a cluster structure Cz , and a set of likelihood
terms φz(vC). Assuming these cues are independent, the
joint likelihood can be computed as their product.

Taking all of the above into consideration, the likelihood
model is expressed as,

p(I|Ω) ∝
∏

t

∏
z

∏
C∈Cz

t

φz(vC |�C)ψz(vC ,vCz
1:t−1

). (10)

Our implementation of the likelihood model involves
four types of image cues.

Edge Gradient. The edge potential φe is defined on the
external boundary sides of each quadrangle. Given a line
segment e, we compute the average gradient strength per-
pendicular to e over all color channels. This strength is then
quantized and indexed into a precomputed likelihood ratio
table. If e is occluded, we simply set φe = 1.
Silhouette. The silhouette potential φf is computed from
a binary foreground mask B that labels pixels as 1 if they
are likely to be on the person, and 0 if they are more likely
to come from the background. In our experiments, we use
a static camera and compute the mask using background
subtraction. Assume that each mask pixel is drawn inde-
pendently from the Bernoulli distribution {p10, p11} if the
pixel is in the foreground, or {p00, p01} if it is in the back-
ground. The probability to observe foreground mask B is

p(B|Ω) = γ (p10/p00)
N10 (p11/p01)

N11 , (11)

where N10 and N11 are numbers of pixels inside the model
that are labeled background and foreground respectively, γ
is a constant independent of Ω. Let R̃t be the area withinRt

which is not covered by visited quadrangles, i.e. R̃t = Rt ∩
(∩i<tRi). Noting that N1· can be decomposed as N1· =∑

tN1·(R̃t), we have,

φf (vQt) ∝ exp{αfN10(R̃t) + βfN11(R̃t)}, (12)

where αf and βf are coefficients depending on p10 and p00.
Skin Color. The skin potential φs is only defined on the
head and arm. We use a simple skin detector based on color
histogram. As the detector outputs a binary mask, a poten-
tial function similar to φf is used. Note that we only count
skin and non-skin pixels in observable regions.
Region Similarity. The region similarity potential φr is
defined by comparing appearances of image patches. Given
two adjacent quadrangles, we compute their normalized
color histograms hi and hj . Their distance is then defined
using Bhattacharya coefficient dij =

√
1 − ρij , where

ρij =
∑

k

√
hi(k)hj(k). Finally dij is indexed to retrieve

the associated likelihood ratio. This reflects the observation
that appearances of the same part are likely to be coherent.
We also compare each part with its surrounding area in a
similar way. This reflects the observation that appearances
of body and background are likely to be different.

3. Inference
There are two common strategies in using multiple de-
formable models. One is to fit each model completely then
select the one that fits the best. This approach requires high
computational cost when the model is complex. The other
is to identify the “correct” model by a preprocessing step.
However, sometimes it might not be possible to completely
remove the uncertainty without fitting the model.

Our formulation of the fitting problem leads to the explo-
ration of a posterior mixture. Combining the equations for
shape prior (7) and imaging likelihood (10) with the Bayes
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equation (1), the posterior mixture can be written as,

p(χ,Ω|I) ∝ p(χ)
∏

t
Γt · Φt, (13)

where,

Γt =

{
p(xi, yi|γi

j , χ)p(ρi|γi
j , χ)p(θi|χ) Qt is joint

p(ri,k−1:k|ri,1:k−2, γ
j
i , χ) otherwise

Φt =
∏

z

∏
C∈Cz

t

φz(vC |�C , χ)ψz(vC ,vCz
1:t−1

|χ).

Eq. (13) shows that the prior and likelihood terms of each
component are factored into a series of simple terms with
the same sequential structure. This enables us to directly
sample the posterior mixture using Sequential Monte Carlo
methods, which is equivalent to searching parallelly through
all component shape models.

We traverse the shape model in T = K/2 steps. At
step t, we grow two landmarks, expanding the configura-
tion space by four dimensions. The proposal function πt is
the partial shape prior on v1:2t, which has an iterative form
πt = πt−1Γt. The (unnormalized) importance weights is
wt ∝ wt−1Φt. We may grow more landmarks, or even
a whole body part, at a time. The choice depends on the
balance between how much uncertainty we can remove by
collecting new image information, versus how much un-
certainty we will introduce by expanding the configura-
tion space. A complete answer to this question is beyond
the scope of this paper. We initialize the shape from the
face region, which is the most visually informative part of
a human body. The output of SMC inference procedure{
χ(i),v(i)

0:K

}N

i=1
is the sample representation of the pos-

terior mixture. Note that viewpoint parameter χ can be
marginalized out from the output if we are only interested
in localizing the positions of body contours.

For complex models like ours, the basic particle filters
may not work well. Here we employ two well-known im-
provement techniques.

3.1. Annealing
The basic idea of annealing is to gradually increase the
peakness of likelihood term in order to avoid being trapped
in local maxima during the early stage of the search. At
each step, we compute a correction term from all visited
clusters based on the change in their observation model, and
multiply this correction term to the importance weight. For
silhouette potential φe, we adjust the parameters {p00, p01}
in Eq. (11). The reason is that, when we fit a partial shape,
the foreground area which the partial shape did not cover
should be considered as background. As a result, a pixel in
this background is more probable to be labeled as 1. This
implies that using the same background model during the
search procedure is inherently inappropriate. For other im-
age cues, we use the formula lnφ(t) = ξt · lnφ, where ξt
increases linearly from 1/T to 1.

3.2. MCMC Move
In standard SMC procedure, all new samples of a vertex,
say vj , are generated at step j. The number of distinct val-
ues of these samples, say Sj , is finite. As every resampling
after step j results in a decrease in Sj , it will gradually di-
minish and eventually we lose the accuracy of the distri-
bution of vj . This phenomenon is sometimes referred to
as sample attrition, or particle degeneracy. To alleviate this
problem, we move each particle once after every resampling
procedure, using Metropolis update. Specifically, given a
particle {χ(i),v(i)

0:2t} at step t, a new particle {χ(i), ṽ(i)
0:2t} is

generated from a Gaussian proposal densityN(v(i)
0:2t, ηtΣt),

where Σt is the covariance matrix estimated from the cur-
rent particle set, and ηt < 1. ṽ(i)

0:2t is accepted with the prob-

ability min(1, p(χ(i), ṽ(i)
0:2t|I)/p(χ(i),v(i)

0:2t|I)). Currently
we have not implemented jump transition between different
viewpoint models.

4. Preliminary Experiment

4.1. Data Collection and Training
The first challenge in building the proposed body shape
model is to obtain realistic, multi-view training data. Here
we use the CMU MoBo dataset which contains 25 subjects
walking on a treadmill. The subjects perform four different
activities: slow walk, fast walk, incline walk and walking
with a ball. All subjects are captured using six synchro-
nized cameras distributed evenly around the treadmill. We
use 150 slow-walk sequences for the training purpose. La-
beling these data is inevitably laborious and difficult. We
completed this task by combining interactive tracking and
the presented localization method. Given a walking se-
quence, we first hand-labeled a number of key frames and
used them to initialize an appearance-based body tracker.
We then edited the tracking errors by hand and, if necessary,
added more key frames. This procedure was repeated until
all frames in the sequence were correctly labeled. We only
labeled arms and legs on one side using interactive tracking,
as their counterparts suffered from severe occlusion thus
were very difficult to track. Instead, we fit the missing limbs
using the presented shape model, which was learned from
the partially labeled data. For each sequence, we labeled
around 50 frames which covers more than a complete gait
cycle. Fig. 3 shows some training examples overlayed with
the labeled body contours.

An interesting fact is that, since the cameras are syn-
chronized, the labeling at six discrete views can be interpo-
lated to generate virtual contours at an arbitrary angle. This
potentially enables us to construct densely populated body
shape models. However, there are two π/2 angular gaps in
MoBo camera setup which are too large to get realistic inter-
polation. This problem can be fixed using the periodic and
symmetric property of human walking, and Fig. 4 shows an
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Figure 3: Example training images of two subjects, overlayed with body contours obtained by interactive tracking (cyan) and
fitting the presented shape model (magenta). Synchronized frames from all six views were shown for each subjects.

  0o  10o  20o  30o  40o  50o  60o  70o  80o  90o 100o 110o 120o 130o 140o 150o 160o 170o 180o

Figure 4: Virtual contours generated by interpolating labeled synchronous data (right in Fig. 3), at 19 view angles uniformly
distributed between 0 and π.

example of virtual body contours generated by linear inter-
polation. Note that we did not use these virtual contours for
training in this paper.

4.2. Test Results
We applied our mixture shape model to both indoor and out-
door cluttered scenes. First, we tested the model on CMU
MoBo incline-walk and fast-walk sequences. For each se-
quence we randomly selected one frame, resulting in a test
set of 300 images. These images were obtained from view
angles similar to the training data, but the target performed
different activities. Fig. 5 shows some example results.
Plotted are the output of a simple mode selection procedure,
which was used to deal with the possible swapping between
left and right limbs in the inference output. First, the sam-
pled body shapes generated by each component model are
split into two clusters based on hand and foot positions re-
spectively. Then we select the cluster with the highest fitting
score, and output its mean shape and associated component
model index (plotted as a compass in the top left corner of
each image). As can be observed in Fig. 5, both the view-
point and body boundary estimates are quite accurate. Con-
sidering the fact that the variations of body shape among
these 25 subjects are quite large, the results do demonstrate
the superior modeling ability of our shape model. Note that
the target poses in some images are quite different from the
slow-walk training data but are correctly handled. This is
because that our model assumes independent joint motion
without activity specific constraints.

We also applied our model to a widely tested outdoor
video sequence (from Michael Black) of a person walking
in a circle. Sample results are shown in Fig. 6. The video
contains a total of 174 frames with the size of 320 × 240
pixels. Note that we did not use the sequential nature of
the data to impose dynamic constraints on the body pose
over time. Each frame is fit independently. This test set
is challenging in several ways. First, it contains continuous
change of viewpoint, while the gap between our shape mod-

els is 45o. Second, the circle radius is quite small. The head,
torso, legs and feet of the target are almost never in the same
direction. Third, the elevation angle of this test data is dif-
ferent from our training data by 10o–150 for side views, and
25o for front and back views. The fitting algorithm shows
reasonable performance on estimating the shape boundaries
of body parts. However, we observed large noise in the
viewpoint estimate. One obvious reason is the difference
between training and testing conditions. Another reason
is that the elevation angle of the test data is close to zero,
in which case the inherent ambiguity between symmetric
viewpoints becomes more evident.

5. Summary
We have presented a novel statistical representation of non-
rigid and articulated shapes using mixture and part-based
decomposition. We also proposed an effective yet compu-
tationally feasible algorithm to fit multiple view-dependent
models. Preliminary experiments demonstrated the ability
of our model to localize human body in images viewed from
arbitrary, unknown angles. Future works include the incor-
poration of new image cues for robust viewpoint estimation,
and the extension to poses of more general activities.
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