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Abstract In this paper, our major goal is to find a way to integrate
the structuralconvexityinto the general-purpose grouping,
Convexity is an important geometric property of many natu- i.e., to detect convex structures from real images. Several
ral and man-made structures. Prior research has shown thatreasons make the convexity an important factor in grouping.
it is imperative to many perceptual-organization and image- First, in many applications the desirable structures maa be
understanding tasks. This paper presents a new groupingpriori known to be convex, such as detecting the surface of
method for detecting convex structures from noisy images insome furniture, the silhouette of some buildings, and many
a globally optimal fashion. Particularly, this method com- kinds of fruits. In these cases, we have to explicitly enforce
bines both region and boundary information: the detected the convexity as a constraint in the grouping. Second, even
structural boundary is closed and well aligned with detected if the desired structure is not fully convex, it may consist of
edges while the enclosed region has good intensity homoseveral convex components and a grouping with a convex-
geneity. We introduce a ratio-form cost function for measur- ity constraint may produce more useful and accurate results.
ing the structural desirability, which avoids a possible bias For example, Borra and Sarkar [3] compare several group-
to detect small structures. A new fragment-pruning algo- ing methods in a recognition task and find that the grouping
rithm is developed to achieve the structural convexity. Thewith the convexity constraint [11] leads to the best recog-
proposed method can also be extended to detect open bounadhition performance, although the underlying structures are
aries, which correspond to the structures that are partially not convex. Third, convexity itself has been identified as a
cropped by the image perimeter, and incorporate a human-very important property in measuring the desirability of the
computer interaction for detecting a convex boundary around general-purpose grouping. For example, Liu, Jacobs, and
a specified point. We test the proposed method on a set oBastri [14] conduct several psychophysical experiments with
real images and compare it with the Jacobs’ convex-grouping observations that the convexity may dominate other Gestalt
method. laws, such as continuity and closure, in many cases. Jacobs
[11] shows that convexity is nonaccidental in real images
. and can be used to distinguish the perceptually salient struc-
1. Introduction tures from the image noise. Given its important role, con-

. . . o vexity h n considered in groupin many r rcher
This paper is concerned witherceptual organizationor exity has been considered in grouping by many researchers

grouping which aims at detecting desirable structures from [13,10, 11, 16, 8].

noisy images in a bottom-up way. As one of the most chal- One state-of-the-art convex-grouping method was devel-
lenging problems in computer vision, grouping suffers from oped by Jacobs [11] in the form efdge grouping In this

the difficulties of (a) how to define ttdesirabilityof a group- method, a set of disconnected line segments are first de-
ing, and (b) how to find an effective algorithm to accomplish tected from an image by edge detection and line fitting. This
the grouping with a maximum desirability. For different ap- method then identifies a subset of these line segments and
plications, the grouping desirability needs to be defined to in-connects them sequentially into a closed boundary in the
corporate different factors. For example, in general-purposeform of a convex polygon. The grouping desirability, or
image understanding, the grouping desirability can usuallythe saliencyof the resultant convex boundary in this case, is
be described by some psychological rules, such as Gestalneasured by the boundary proximity, i.e., the proportion of
laws of closure, continuity, parallelism, symmetry, and so the detected line segments along the perimeter of the resul-
on. In specific applications, such as face detection, specifictant boundary. Clearly, the larger this proportion, the better
knowledge, such as the shape of the face, needs to be inthe resultant boundary is aligned with the detected line seg-
corporated into the definition of the desirability to achieve ments. In Jacobs’ method, a sequential-search algorithm is
a more reliable and useful grouping. Considering different developed to detect all the convex closed boundaries with the
factors in the definition of the desirability, a large number of saliency larger than a given threshold. While this search algo-
grouping methods have been developed in the past decade#thm has an exponential time complexity in the worst case,
[20,1, 11, 18,9, 6, 2, 23, 15, 22, 7, 19]. it has a polynomial-time complexity on average. Other re-



cent edge-grouping methods include [23, 15, 22]. However,defined as a polygon that is constructed by sequentially con-
these methods do not consider the convexity constraint. Notenecting a subset of those fragments, as shown in Fig. 1(c).
that these methods, as well as Jacobs’ method, only considein order to form this boundary, a new set of straight-line
the boundary geometry, such as the Gestalt laws of proxim-segments (dashed lines in Fig. 1(c)) needs to be constructed
ity, closure and continuity, but not the information within the to fill the gap between the neighboring detected fragments.
region enclosed by the resultant boundary. We refer to these dashed line segmentgags-filling frag-

/

\\

Prior research also shows that both boundary and regiorments We can see that, under this formulation, a boundary is
information are important to achieve a successful group-a polygon that traverses a subset of detected and gap-filling
ing. A grouping method only considering boundary ge- fragments alternately. In the proposed method, we construct
ometry is usually sensitive to image noise while a group- gap-filling fragments between each possible pair of detected
ing method only considering region information usually has fragments and then search for an optimal closed boundary.
difficulty in incorporating useful boundary geometries. In
the past decades, many approaches have been developed to ‘ \ ‘ b P, \ ‘ \
integrate boundary and region information into grouping, / —~ /1 /\
such as theatio-region method [5], Jermyn and Ishikawa’s - ‘o
method [12], and theormalized-cutmethod [21]. Recently, \
active-contour and level-set methods were extended to detect h / N \/
smooth boundaries that enclose regions with homogeneous — — —
image features [4]. However, as far as we know, none of @ () ©
these methods considers the factor of convexity and it is also
not trivial to extend any of these methods to detect only con-Figure 1: An illustration of the edge grouping for a closed
vex structures. boundary. (a) Detected fragments; (b) A gap-filling frag-

In this paper, we present a neslge-groupingnethod to ment (dashed line) connecting two detected-fragment end-
detect salient convex structures from real images by integratfoints P1 and P». (c) A closed boundary that traverses de-
ing boundary and region information. In general, the pro- tected and gap-filling fragments alternately.
posed method follows the usual edge-grouping process, i.e.,
the resultant structural boundary is formed by identifyingand ~ The key problem is then to define a saliency measure for
connecting a subset of the line segments detected from the ineach valid closed boundary. As mentioned in Section 1, we
putimage. However, in measuring the structural saliency, wehave two important considerations in defining this saliency
incorporate not only the boundary proximity defined in Ja- measure. First, the resultant boundary must be convex, which
cobs’ method [11], but also the pixel-intensity homogeneity Will be incorporated as a hard constraint in this measure.
within the enclosed region. To locate the convex boundarySecond, we are going to integrate both boundary and re-
that maximizes this integrated saliency measure, we propos@ion information into grouping, i.e., the intensity homogene-
a new algorithm consisting of a novel fragment-pruning al- ity within the region enclosed by the resultant boundary will
gorithm and the ratio-contour algorithm developed in [22]. be considered as well as the boundary geometry of the re-
The proposed algorithm is of polynomial time complexity in sultant boundary. With these two considerations, we define
the worst case and guarantees the global optimality in termghe cost (negatively related to tisaliency of the resultant

of the defined saliency measure. closed boundarys by

The remainder of this paper is organized as follows. In (Dt N [ (] dud
Section 2, we formulate the convex-grouping problem by  ¢(B) = Jpo(t)dt+ ”Z ‘d( (u, v))lducv (1)
considering both boundary and region information. In Sec- ffR uav

tion 3, we present the fragment-pruning algorithm and usegybject to a constraint tha must be convex. Her# is the

it to solve the prOblem formulated in Section 2. Section 4 region enclosed by the convex closed boundBrya(t) is
presents a set of experimental results on _real images. Thesgn arc-length parameterized function along the boundary
results are compared to the convex-grouping results from Jagand it takes the valug for gap-filling fragments and takes
cobs’ method. Section 5 further discusses two extensions tqhe value0 for detected fragments. The terif), o(t)dt
Fhe proposed method to detect open-bqundary. structurgs angheasures the total gap-length along the boundagnd re-
Incorporate aSImple hUman-CompUter interaction. Section 6f|ects the favor of good proximity, which has been incor-

briefly concludes the paper. porated in many prior edge-grouping methods. The term
JJz |V (I(u,v))|dudv measures the total intensity variation
2. Problem Formulation inside the enclosed region and reflects the favor of good in-

tensity homogeneity in regio®. The normalization over
As in other edge-grouping methods [11], we first detect a set | [}, dudv, the area of the enclosed regidh can avoid a
of line segments from the image by edge detection and linebias to produce overly small structures resulting from image
fitting. We refer to these line segmentsiztected fragments  noise. The parameter > 0 is used to balance the boundary
From these detected fragments, a valid closed boundary igroximity and region homogeneity.



In the next section, we develop an algorithm to find the this boundary.

optimal boundary that minimizes the cost functiofi). We carry out the following steps for fragment pruning.
First, we prune all the fragments that are not located in the
3. Algorithm considered semiplane partitioned by. As illustrated in

Fig. 3(a), if we are considering solving Problénm the top-

The problem formulated in Section 2 can be reduced to theright semi-plane, we can prune the detected fragméenésd
same problem with the additional constraint that the bound-I';, and gap-filling fragment$;, P, and Ps Fs. Second, in
ary must traverse a given detected fragment. More specifithe considered semiplane, we further prune all the gap-filling
cally, this new problem can be written as fragments for which the associated arcs are not convex, be-

Problem 1. From the detected fragments;,i = cause a convex boundary can not contain any nonconvex seg-
1,2,...,n and the constructed gap-filling fragments, find a ment. As shown in Fig. 3(b), gap-filling fragmef} P4 will
closed boundary,, that minimizes the cosi(B), subjectto  be pruned. Finally, we prune all the gap-filling fragments
(a) By is convex, and (b)3;, traverses the detected fragment for which the associated arcs are not conwgth respect to

Ig. (w.r.t) My, the midpoint of the given detected fragmént
This way, the optimal boundary for the problem for- An arc is convexw.r.t a point if they can be located along
mulated in Section 2 is the one B, By, ..., B, } with the same convex closed boundary. As shown in Fig. 3(c), the

the minimum costy(B). Furthermore, a convex boundary arc convexity w.r.t to a point can be decided by checking the
traversing fragmenf',, must be located completely in one convexity of the polygon (shaded in Fig. 3(c)) formed by con-
of the two semiplanes partitioned by the straight line along necting the arc and the point. Clearly, in Fig. 3(c), gap-filling
I';,. Therefore, we can solve Problenin two semiplanes as  fragmentP; P, is not convex w.r.t\/;, and will be pruned.
shown in Fig. 2(a) and among the two resultant boundaries,

pick the one with smaller cosgt(B). To solve probleni in I,V'PZQ P S P b,
one semiplane, we can us&agment-pruninglgorithm, the 5 p,
basic idea of which is to prune all the detected and gap-filling rl\ e { P
fragments that are impossible to be locatedjn After the o } \ ‘[%
fragment pruning, Problemcan be solved for the remaining TR, ke P M
fragments without considering the convexity constraint. @ o ©
. N N Figure 3: An illustration of the fragment pruning in solv-
S Sl o NP ing Probleml. T’ is the given detected fragment which the
& ] Ma M || M N\ M resultant boundary is required to traverse. (a) Prune all frag-
/ - r r, V. NG ments not in the considered semiplane. (b) Prune all gap-
RV filling fragments for which the associated arcs are not con-
vex. (c) Prune all gap-filling fragments for which the associ-
@ ® © ated arcs are not convex w.if;, the midpoint ofl’y,.

Figure 2: An illustration of the arc representation and con-  Now let's assume we have an algorithm to find the closed
struction. (a) Convex boundary traversingmust be located  houndaryB with the minimum costs(13) without the two
in one of the two semiplanes partitioned By. (b) Forthe  constraints in Problerh. By applying this algorithm to the
gap-filling fragment?; P, an associated arc is constructed remaining fragments after pruning, we can find a bound-
as the polylineM, P, P> My, whereM; andM; are the mid-  ary that automatically satisfies the constraints in Problem
points ofl"; andI';. (c) Between two detected fragmedits  This can be proved by considering the cases shown in Fig. 4.
andI';, there may exist four gap-filling fragments (dashed First, the achieved boundary must be located in the consid-
lines), and therefore, we have four associated arcs for them.ered semiplane partitioned Y, because all the fragments
not in this semiplane have been pruned. Second, the resultant
To better describe this fragment-pruning algorithm, we boundary must traverdg,. Otherwise, as shown in Fig. 4(a),
first introduce the concept @frc to model the local connec- for any closed boundary that does not travdrgewe can al-
tions between detected and gap-filling fragments. As shownways find from it a gap-filling fragment, say; P, for which
in Fig. 2(b), each gap-filling fragment connects two detected-the associated arc is not convex wifj,. This will not hap-
fragment endpoint$?, € T'; and P, € I's. Let the mid- pen since all such gap-filling fragments have been pruned.
point of a detected fragmemt;, be M,;. We define the triple-  Third, the resultant boundary must be convex. Otherwise,
segment polyline\f; P, P> M, to be anarc associated to the  along this boundary we can always find an arc which is either
gap-filling fragmentP; P, i.e., there is a one-to-one map- nonconvex itself (see the arc associatedt®, in Fig. 4(b))
ping between the gap-filling fragments and the arcs. Clearly,or not convex w.r.tAf; (see the arc associated g P, in
a closed boundary can also be described by a sequential cor=ig. 4(c)). This will not happen since we have pruned all such
nection of arcs associated to the gap-filling fragments alonggap-filling fragments. Also note that the resultant boundary



must be simple, i.e., it does not intersect itself. This is obvi- fragment corresponding toand M, P, P, M> be the arc as-
ous since, for a self-crossing closed boundary, its inner loopsociated taP; P,. We define
is also a closed boundary that does not travEysand there-

fore, the resultant boundary must contain an arc not convex  y, (¢) = |PyPy| 4 A - // IV (u, v)|dudv 2)
w.r.t My, but all such arcs have been pruned. R(e)

and
— ,WP1
\/l \ / BN /pj wa(e) = // dudv, 3)
b p——.. R(e)
1/ \ \ 4 :
M*\rk & Mt}k —————— / M:}\k/ where| P, P,| is the length of gap-filling fragmer®, P, and
@ o ° R(e) is the convex region constructed by connecting the arc

and the pointM}, as shown by the shaded region in Fig. 5.

Figure 4: Solving Problem on the remaining fragments Note that a valid closed boundafyis uniquely represented
without the two constraints can not produce (a) a boundaryPy an alternate cycl€” in this graph. It is easy to see that

not traversing™;, and (b-c) nonconvex boundaries. the cost¢(B) = CR(C), where the cycle ratie’R(C) is
defined as
Another problem is the global optimality of the bound- S _qwile)
ary detected from the remaining fragments in terms of Prob- CR(C) = &€ 7,
lem 1. In other words, we wonder whether the proposed 2eec w2(€)

fragment-pruning algorithm may reduce the search space byl'his way, the problem of finding an optimal bounday
pruning some fragments along the desired global optimaly,m 5 set of fragments is reduced to a problem of finding
boundary. This in fact will not happen, since all the pruned an optimal alternate cycl€ € G that minimizes this cycle
fragments are the ones that are impossible to be along a valigtio  This minimum-ratio-cycle problem can be solved in
convex boundary that travers€gs. Therefore, our only re- polynomial time using the ratio-contour algorithm [22].

maining problem is how to find an optimal boundary mini- = T following summarizes the proposed convex-grouping
mizing the cost)(B) without considering the two constraints algorithm.

in Problem1. Let’s show that this problem can be solved by
a graph-theoretic algorithm call€&htio Contourwhich was  // |nitialization

developed by Wang et al. in [22]. Construct detected fragments T},
Construct gap-filling fragments
v, P P, /IMain loop
M, Loop over T4, k=1,2,...n
On semiplane 1
Prune fragments
Construct weighted graph G
Mip, Find B, with ratio contour
On semiplane 2
Prune fragments
Figure 5: An illustration of the regio®(e) (shaded region) Construct weighted graph G
used for defining weight functions of a dashed edge. Find By, with ratio contour
. . . Take By = By if ¢(Bk1) < ¢(Bk2)
We first construct an undirected graph= (V, E) with Take Bj = By otherwise

V as the vertex set anfd as the edge set. Each fragmentend- Qutput B = {Bm|¢(Bm) < ¢(B;), Vi}

point is represented by a vertex and each fragment is repregngd

sented by an edge that connects two corresponding vertices.

There are two kinds of edgesolid anddashedones. The 4 Experiments

solid edges represent detected fragments and dashed edges

represent gap-filling fragments. This way, a closed boundaryln this section, we test the proposed convex-grouping
is represented by aaternatecycle in this graph. An alter- method on some real images by detecting the most
nate cycle indicates a cycle that traverses solid and dashedalient convex structures in terms of the cost function
edges alternately. Now let’s define two weight functions, (). Particularly, we adopt the Canny detector in the
and wy for each edge. For a solid edge we simply set  Matlab software for edge detection and Kovesi's software
w1 (e) = 0 andws(e) = 0. For a dashed edge we get back  (http://www.csse.uwa.edu.au/ ~pk/Research/

and check its corresponding gap-filling fragment and asso-MatlabFns/ ) for line fitting. The edge-detection, line-
ciated arc. As shown in Fig. 5, |€? P, be the gap-filling  fitting, and ratio-contour algorithms all have some free



parameters. The selection of suitable values for these
free parameters is usually dependent on the image size. &
Therefore, we normalize all of our test images to be of a size &
as close as possible 160 x 120 or 120 x 160, for landscape
or portrait images respectively, but maintaining the aspect
ratio. This way, we fix all the free parameters. In these
experiments, we leave the parameters for the Canny detector
at their default values, and for Kovesi’s line fitting, we set
the minimum length of the processed edges td b@ixels
and the allowed deviation between an edge and its fitted line
to be2 pixels. For the ratio-contour algorithm, we use the .
package developed in [22] and set the paramgter 0.01 L R 4 3 ,.!f',-__‘ s L
for all experiments.

It is well known that the Canny edge detector usually per-
forms poorly at corners and junctions. Therefore, the loca-
tion of some detected-fragment endpoints may be affected by
strong noise. As a result, constructing gap-filling fragments
by simply connecting two detected-fragment endpoints may
introduce some problems. As shown in Fig. 6(a), the gap-
filling fragment connecting andP, will be pruned since it
is associated to a nonconvex aig P, P, M,. However, this
may be caused by noise on the endpdt To address this
problem, we adopt the same strategy suggested in Jacobs’Eel 8
method [11], which allows the endpoidt, to slide along E
T's freely in constructing the gap-filling fragmeft P,. As -
shown in Fig. 6(b), the extension of the fragméntinter-
sectdl's. This intersection point is set to be the new endpoint
P, of I'5. The newly constructed gap-filling fragmeht Ps,
shown by a dashed line in Fig. 6(b), is associated to a conve
arc and will not be pruned.
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Figure 6: An illustration of constructing a gap-filling frag-

ment. (a) Constructing a gap-filling fragment by connect-
ing the two fixed endpoints directly. (b) Constructing a gap-
filling fragment by allowing one endpoint to slide along its
fragment.

If we construct gap-filling fragments between all possi-
ble pairs of fragment endpoints, we will ha@&n?) number
of gap-filling fragments fromn detected fragments. In prac-
tice, we reduce the number of constructed gap-filling frag-
ments by not considering the ones between two fragmentﬁzigure 7: Convex-grouping results a6 real images. First
endpoints that are far from each other. Specifically, we set a R . ) '
distance thresholdr, if the distance between two endpoints column: original images; Second column: Canny edge de-

is larger thani;, we do not construct a gap-filling fragment tection results; Third column:.llne—flttmg regults; Eourth col-
min{W,H} umn: the detected most salient boundaries using the pro-

between them. In our experiments, we ggt= ——="~, i . e .
wherelW and H are the width and height of the image. posed convex-grouping me_thod, F|fth,co|umn. the detected
most salient boundaries using Jacobs’ method.

Figure 7 shows the convex-grouping results o6




real images. The most salient convex boundaries ex-D. Extensions
tracted using the proposed method and Jacobs’ method . ) ) .
are shown in the fourth and fifth columns respectively. In this section, we consider two important extensions of the

The code of Jacobs' method was downloaded from Proposed convex-grouping method. The first one enables the
http://www.cs.umd.edu/ ~djacobs/ and we set method to deal with open boundaries, i.e. boundaries of the
the parametek = 0.7 (see [11]). We can see that by con- structures that are cropped by the image perimeter and only
sidering the region information, including both the intensity partially located inside the image. The second extension is to
homogeneity and region area in the cost (1), the proposedncorporate a simple human-computer interaction to detect
method can extract structures with homogenous regions andhe salient convex structures around a user specified point.
large areas, as witnessed in the first, second, third, fourth,
sixth, seventh, eighth,2th, and15th images in Fig. 7. Fur- ;
thermore, although the convex-grouping problem is formu- 5.1. Open-boundary Detection
lated as extracting a convex polygon in this paper, someThe above convex-grouping method is developed based on
smooth convex boundaries can still be quite accurately ex-the assumption that the desired structure is completely lo-
tracted in the form of a polygon approximation, as shown cated inside the image perimeter and the structural boundary
in the eighth,10th, 11th, 12th, 13th, 14th, and15th images is a closed polygon, as shown in Fig. 9(a). However, in many
in Fig. 7. One may notice that Jacobs’ convex -grouping real images, the most salient structure may only be partially
method sometimes produces nonconvex boundaries, such ggesent in the image and the structural boundary is cropped
the ones in the fifth anti4th images. This comes from a spe- by the image perimeter. This results in an open boundary,
cial processing in Jacobs’ method which allows certain er-as shown in Fig. 9(b) and (c). Open-boundary detection is
ror in determining the colinearity between two detected frag- a more difficult problem in grouping when incorporating the
ments [11]. region information. The major reason is that we cannot dis-
tinguish which region is the one enclosed by an open bound-
It is not difficult to extract multiple convex structures ary, i.e., regionR in cost (1) is not well defined. One typical
from an image by repeatedly applying the proposed convex-way to address this problem is to reformulate the cost func-
grouping method. We can run the proposed method once tdion by seeking a balance between two resulting segments in
extract the optimal boundary. After that, we can remove all terms of some region information, such as the area, the inten-
the fragments along the detected boundary and then repeatity homogeneity, or the total pixel affinity. Unfortunately,
the method to detect the second optimal boundary. Figure &uch a reformulation of the grouping cost usually results in a
shows the multiple structures detected on several real imageNP-hard problem [17, 18, 21].

§ : ’ § ’
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Figure 9: An illustration of determining the enclosed region
R in the cost function (1) in various cases. (a) Enclosed re-
gion R is well defined given a closed boundary. In this case
this region isB. (b) Enclosed regioi® is ill defined given an
open boundary: Is the enclosed regi¢ror B? (¢) Enclosed
region R is well defined given an open boundary in convex
grouping. In this case, this region ix

However, we have no such problems in the proposed
convex-grouping method, because the structural convexity
can be used to determine which one is the region enclosed by
an open boundary. An example is shown in Fig. 9(c), where
the regionB is convex, so it is unambiguously the regifin
in the cost function (1). Therefore, we do not need to change
the problem formulation to deal with the open-boundary de-
tection. We only need to adapt the construction of some gap-
filling fragments and the definition of edge weights for these

Figure 8: Sample results on detecting multiple convex struc-
tures by repeating the proposed convex-grouping method.



fragments so that they only count the boundary and regionthe detection of open and closed boundaries is unified in the
information inside the image perimeter. proposed method. In Fig. 11, we show several sample im-
First, we check all the fragment endpoints that are nearages where the detected most salient structural boundaries
the image perimeter. As shown in Fig. 10, even though theare open. In these experiments, a fragment endjiris
endpointsP; and P, are far from each other based on their considered to be near the image perimetéPifQ,| < %T,
spatial distance, we still construct a gap-filling fragment con- wheredr is the same threshold defined in Section 4.
necting them if they are both near the image perimeter. Such
a gap-filling fragment may represent the cropped structural
boundary and we call theexternal(gap-filling) fragments.
Note that the external fragment betwefp and P, is not
the simple straight line segmef; . Instead, it is a con-
vex polyline connectingP;, @1, Q2, and P, sequentially,
where @, and @, are intersection points between the ex-

‘g‘ F.
tended fragments and the image perimeter. Betwgeand I Eﬁ
@2, this external fragment is aligned with the image perime- ?ggg . ’@Q ,
ter. Therefore, ifQ); and Q- are located on the same side %\%1 : 7/\\
of the image perimeter, as shown in Fig. 10(a), they are con- - i@fﬁ;{i{ﬁ{ A e
nected by a straight line segment.Qf and@, are located : ﬁ&“&%@ % ‘
on two different sides of the image perimeter, two or three %}?ﬁgﬁ? & 4
R . g =
straight line segments may be used to connect them, as shown §p/’f

in Fig. 10(b). All the external fragments are treated the same
as other gap-filling fragments in the fragment pruning. . , , .
Second, like other gap-filing fragments, each external Figure 11: Sample results of'detectlng open boundarles.usmg
fragment is also represented by a unique dashed edge in thi?® Proposed convex-grouping method. From left to right,
graph. However, its two weight functions are redefined to ©ach row shows the original image, the Canny detection re-
only consider the boundary and region information inside the Sult, the line-fitting result, and the detected open boundary,

image perimeter. Specifically, for the dashed edgmrre-  respectively.
sponding to the external fragment shown in Fig. 10(b), we _
adapt the definition of the first edge weight as 5.2. Human-Computer Interaction

Adding some simple human-computer interactions may al-
wi(e) = |P1Q1] + |Q2 P2 +>\~// |VI(u,v)|dudv (4) low a user to more flexibly control the convex-grouping
R(e) process. In this section, we consider the following simple
human-computer interaction: The user specifies a point in
h the image and then the computer finds the most salient con-
d Vex boundary around this specified point. In fact, this just
adds a new constraint to the problem formulated in Section
2: the detected boundary should enclose a given plint

because for this external fragment, only line segméhtg,
and P>, can be included in an open boundary. For bot
weight functions R(e) represents the convex region enclose
by the arc and the given poidt/;,. An example is shown in
Fig. 10(c), where the shaded regionAse) for the external

- We address this problem by adding another step of fragment
fragmentd; 1 Q1 Q2 P> M, shown in Fig. 10(b). pruning: We prune all the gap-filling fragments for which
Q 9 Q Q the associated arcs are not convex w.r.t the given puint
M/Fa pw M/Fi M/Fa This additional fragment-pruning step is executed before any
L o4 r, /i B o, other fragment pruning. After this, we run the standard arc-
h h Aol B pruning and ratio-contour algorithms introduced in Section 3.
& M\;\'E;/— & Similar to the proof given in Section 3, we can easily show
@ ® © that the resultant boundary must be arodddand is also the

globally optimal one for the problem formulated in Section
Figure 10: An illustration of constructing external gap-filling 2 with this additional interaction constraint. Figure 12 shows
fragments. (a-b) Sample external fragments constructed besome sample convex-grouping results with some manually
tweenP; andP». (c) Shaded region is thR(e) in the edge-  specified points. Note that, for the third image (from the left),
weight definitions for the external fragment shown in (b). the last row shows a result where the human-computer inter-
action leads to an open boundary.
By introducing the external fragments, we can apply the
proposed convex-grouping method to detect a closed bound§. Conclusions
ary as usual. If the resulting boundary contains an external
fragment. We know that it traverses portions of the image This paper presented a new convex-grouping method for de-
perimeter and we in fact obtain an open boundary. This way,tecting salient convex structures from an image. In this
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