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Abstract

Convexity is an important geometric property of many natu-
ral and man-made structures. Prior research has shown that
it is imperative to many perceptual-organization and image-
understanding tasks. This paper presents a new grouping
method for detecting convex structures from noisy images in
a globally optimal fashion. Particularly, this method com-
bines both region and boundary information: the detected
structural boundary is closed and well aligned with detected
edges while the enclosed region has good intensity homo-
geneity. We introduce a ratio-form cost function for measur-
ing the structural desirability, which avoids a possible bias
to detect small structures. A new fragment-pruning algo-
rithm is developed to achieve the structural convexity. The
proposed method can also be extended to detect open bound-
aries, which correspond to the structures that are partially
cropped by the image perimeter, and incorporate a human-
computer interaction for detecting a convex boundary around
a specified point. We test the proposed method on a set of
real images and compare it with the Jacobs’ convex-grouping
method.

1. Introduction

This paper is concerned withperceptual organization, or
grouping, which aims at detecting desirable structures from
noisy images in a bottom-up way. As one of the most chal-
lenging problems in computer vision, grouping suffers from
the difficulties of (a) how to define thedesirabilityof a group-
ing, and (b) how to find an effective algorithm to accomplish
the grouping with a maximum desirability. For different ap-
plications, the grouping desirability needs to be defined to in-
corporate different factors. For example, in general-purpose
image understanding, the grouping desirability can usually
be described by some psychological rules, such as Gestalt
laws of closure, continuity, parallelism, symmetry, and so
on. In specific applications, such as face detection, specific
knowledge, such as the shape of the face, needs to be in-
corporated into the definition of the desirability to achieve
a more reliable and useful grouping. Considering different
factors in the definition of the desirability, a large number of
grouping methods have been developed in the past decades
[20, 1, 11, 18, 9, 6, 2, 23, 15, 22, 7, 19].

In this paper, our major goal is to find a way to integrate
the structuralconvexityinto the general-purpose grouping,
i.e., to detect convex structures from real images. Several
reasons make the convexity an important factor in grouping.
First, in many applications the desirable structures may bea
priori known to be convex, such as detecting the surface of
some furniture, the silhouette of some buildings, and many
kinds of fruits. In these cases, we have to explicitly enforce
the convexity as a constraint in the grouping. Second, even
if the desired structure is not fully convex, it may consist of
several convex components and a grouping with a convex-
ity constraint may produce more useful and accurate results.
For example, Borra and Sarkar [3] compare several group-
ing methods in a recognition task and find that the grouping
with the convexity constraint [11] leads to the best recog-
nition performance, although the underlying structures are
not convex. Third, convexity itself has been identified as a
very important property in measuring the desirability of the
general-purpose grouping. For example, Liu, Jacobs, and
Basri [14] conduct several psychophysical experiments with
observations that the convexity may dominate other Gestalt
laws, such as continuity and closure, in many cases. Jacobs
[11] shows that convexity is nonaccidental in real images
and can be used to distinguish the perceptually salient struc-
tures from the image noise. Given its important role, con-
vexity has been considered in grouping by many researchers
[13, 10, 11, 16, 8].

One state-of-the-art convex-grouping method was devel-
oped by Jacobs [11] in the form ofedge grouping. In this
method, a set of disconnected line segments are first de-
tected from an image by edge detection and line fitting. This
method then identifies a subset of these line segments and
connects them sequentially into a closed boundary in the
form of a convex polygon. The grouping desirability, or
thesaliencyof the resultant convex boundary in this case, is
measured by the boundary proximity, i.e., the proportion of
the detected line segments along the perimeter of the resul-
tant boundary. Clearly, the larger this proportion, the better
the resultant boundary is aligned with the detected line seg-
ments. In Jacobs’ method, a sequential-search algorithm is
developed to detect all the convex closed boundaries with the
saliency larger than a given threshold. While this search algo-
rithm has an exponential time complexity in the worst case,
it has a polynomial-time complexity on average. Other re-



cent edge-grouping methods include [23, 15, 22]. However,
these methods do not consider the convexity constraint. Note
that these methods, as well as Jacobs’ method, only consider
the boundary geometry, such as the Gestalt laws of proxim-
ity, closure and continuity, but not the information within the
region enclosed by the resultant boundary.

Prior research also shows that both boundary and region
information are important to achieve a successful group-
ing. A grouping method only considering boundary ge-
ometry is usually sensitive to image noise while a group-
ing method only considering region information usually has
difficulty in incorporating useful boundary geometries. In
the past decades, many approaches have been developed to
integrate boundary and region information into grouping,
such as theratio-regionmethod [5], Jermyn and Ishikawa’s
method [12], and thenormalized-cutmethod [21]. Recently,
active-contour and level-set methods were extended to detect
smooth boundaries that enclose regions with homogeneous
image features [4]. However, as far as we know, none of
these methods considers the factor of convexity and it is also
not trivial to extend any of these methods to detect only con-
vex structures.

In this paper, we present a newedge-groupingmethod to
detect salient convex structures from real images by integrat-
ing boundary and region information. In general, the pro-
posed method follows the usual edge-grouping process, i.e.,
the resultant structural boundary is formed by identifying and
connecting a subset of the line segments detected from the in-
put image. However, in measuring the structural saliency, we
incorporate not only the boundary proximity defined in Ja-
cobs’ method [11], but also the pixel-intensity homogeneity
within the enclosed region. To locate the convex boundary
that maximizes this integrated saliency measure, we propose
a new algorithm consisting of a novel fragment-pruning al-
gorithm and the ratio-contour algorithm developed in [22].
The proposed algorithm is of polynomial time complexity in
the worst case and guarantees the global optimality in terms
of the defined saliency measure.

The remainder of this paper is organized as follows. In
Section 2, we formulate the convex-grouping problem by
considering both boundary and region information. In Sec-
tion 3, we present the fragment-pruning algorithm and use
it to solve the problem formulated in Section 2. Section 4
presents a set of experimental results on real images. These
results are compared to the convex-grouping results from Ja-
cobs’ method. Section 5 further discusses two extensions to
the proposed method to detect open-boundary structures and
incorporate a simple human-computer interaction. Section 6
briefly concludes the paper.

2. Problem Formulation
As in other edge-grouping methods [11], we first detect a set
of line segments from the image by edge detection and line
fitting. We refer to these line segments asdetected fragments.
From these detected fragments, a valid closed boundary is

defined as a polygon that is constructed by sequentially con-
necting a subset of those fragments, as shown in Fig. 1(c).
In order to form this boundary, a new set of straight-line
segments (dashed lines in Fig. 1(c)) needs to be constructed
to fill the gap between the neighboring detected fragments.
We refer to these dashed line segments asgap-filling frag-
ments. We can see that, under this formulation, a boundary is
a polygon that traverses a subset of detected and gap-filling
fragments alternately. In the proposed method, we construct
gap-filling fragments between each possible pair of detected
fragments and then search for an optimal closed boundary.

(a) (c)(b)

P 1
P 2

Figure 1: An illustration of the edge grouping for a closed
boundary. (a) Detected fragments; (b) A gap-filling frag-
ment (dashed line) connecting two detected-fragment end-
pointsP1 andP2. (c) A closed boundary that traverses de-
tected and gap-filling fragments alternately.

The key problem is then to define a saliency measure for
each valid closed boundary. As mentioned in Section 1, we
have two important considerations in defining this saliency
measure. First, the resultant boundary must be convex, which
will be incorporated as a hard constraint in this measure.
Second, we are going to integrate both boundary and re-
gion information into grouping, i.e., the intensity homogene-
ity within the region enclosed by the resultant boundary will
be considered as well as the boundary geometry of the re-
sultant boundary. With these two considerations, we define
the cost (negatively related to thesaliency) of the resultant
closed boundaryB by

φ(B) =

∫
B

σ(t)dt + λ · ∫∫
R
|∇(I(u, v))|dudv∫∫

R
dudv

(1)

subject to a constraint thatB must be convex. HereR is the
region enclosed by the convex closed boundaryB. σ(t) is
an arc-length parameterized function along the boundaryB
and it takes the value1 for gap-filling fragments and takes
the value0 for detected fragments. The term

∫
B

σ(t)dt
measures the total gap-length along the boundaryB and re-
flects the favor of good proximity, which has been incor-
porated in many prior edge-grouping methods. The term∫∫

R
|∇(I(u, v))|dudv measures the total intensity variation

inside the enclosed region and reflects the favor of good in-
tensity homogeneity in regionR. The normalization over∫∫

R
dudv, the area of the enclosed regionR, can avoid a

bias to produce overly small structures resulting from image
noise. The parameterλ > 0 is used to balance the boundary
proximity and region homogeneity.



In the next section, we develop an algorithm to find the
optimal boundary that minimizes the cost functionφ(B).

3. Algorithm
The problem formulated in Section 2 can be reduced to the
same problem with the additional constraint that the bound-
ary must traverse a given detected fragment. More specifi-
cally, this new problem can be written as

Problem 1: From the detected fragmentsΓi, i =
1, 2, . . . , n and the constructed gap-filling fragments, find a
closed boundaryBk that minimizes the costφ(B), subject to
(a)Bk is convex, and (b)Bk traverses the detected fragment
Γk.

This way, the optimal boundary for the problem for-
mulated in Section 2 is the one in{B1, B2, . . . , Bn} with
the minimum costφ(B). Furthermore, a convex boundary
traversing fragmentΓk must be located completely in one
of the two semiplanes partitioned by the straight line along
Γk. Therefore, we can solve Problem1 in two semiplanes as
shown in Fig. 2(a) and among the two resultant boundaries,
pick the one with smaller costφ(B). To solve problem1 in
one semiplane, we can use afragment-pruningalgorithm, the
basic idea of which is to prune all the detected and gap-filling
fragments that are impossible to be located inBk. After the
fragment pruning, Problem1 can be solved for the remaining
fragments without considering the convexity constraint.

M1 M2

P1 P2

Γ1 Γ2

Γ1 Γ2

(b)(a)

M1 M2
Γk

(c)

Figure 2: An illustration of the arc representation and con-
struction. (a) Convex boundary traversingΓk must be located
in one of the two semiplanes partitioned byΓk. (b) For the
gap-filling fragmentP1P2, an associated arc is constructed
as the polylineM1P1P2M2, whereM1 andM2 are the mid-
points ofΓ1 andΓ2. (c) Between two detected fragmentsΓ1

andΓ2, there may exist four gap-filling fragments (dashed
lines), and therefore, we have four associated arcs for them.

To better describe this fragment-pruning algorithm, we
first introduce the concept ofarc to model the local connec-
tions between detected and gap-filling fragments. As shown
in Fig. 2(b), each gap-filling fragment connects two detected-
fragment endpointsP1 ∈ Γ1 andP2 ∈ Γ2. Let the mid-
point of a detected fragmentΓi beMi. We define the triple-
segment polylineM1P1P2M2 to be anarc associated to the
gap-filling fragmentP1P2, i.e., there is a one-to-one map-
ping between the gap-filling fragments and the arcs. Clearly,
a closed boundary can also be described by a sequential con-
nection of arcs associated to the gap-filling fragments along

this boundary.
We carry out the following steps for fragment pruning.

First, we prune all the fragments that are not located in the
considered semiplane partitioned byΓk. As illustrated in
Fig. 3(a), if we are considering solving Problem1 in the top-
right semi-plane, we can prune the detected fragmentsΓ1 and
Γ3, and gap-filling fragmentsP1P2 andP5P6. Second, in
the considered semiplane, we further prune all the gap-filling
fragments for which the associated arcs are not convex, be-
cause a convex boundary can not contain any nonconvex seg-
ment. As shown in Fig. 3(b), gap-filling fragmentP3P4 will
be pruned. Finally, we prune all the gap-filling fragments
for which the associated arcs are not convexwith respect to
(w.r.t) Mk, the midpoint of the given detected fragmentΓk.
An arc is convexw.r.t a point if they can be located along
the same convex closed boundary. As shown in Fig. 3(c), the
arc convexity w.r.t to a point can be decided by checking the
convexity of the polygon (shaded in Fig. 3(c)) formed by con-
necting the arc and the point. Clearly, in Fig. 3(c), gap-filling
fragmentP3P4 is not convex w.r.tMk and will be pruned.
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Figure 3: An illustration of the fragment pruning in solv-
ing Problem1. Γk is the given detected fragment which the
resultant boundary is required to traverse. (a) Prune all frag-
ments not in the considered semiplane. (b) Prune all gap-
filling fragments for which the associated arcs are not con-
vex. (c) Prune all gap-filling fragments for which the associ-
ated arcs are not convex w.r.tMk, the midpoint ofΓk.

Now let’s assume we have an algorithm to find the closed
boundaryB with the minimum costφ(B) without the two
constraints in Problem1. By applying this algorithm to the
remaining fragments after pruning, we can find a bound-
ary that automatically satisfies the constraints in Problem1.
This can be proved by considering the cases shown in Fig. 4.
First, the achieved boundary must be located in the consid-
ered semiplane partitioned byΓk, because all the fragments
not in this semiplane have been pruned. Second, the resultant
boundary must traverseΓk. Otherwise, as shown in Fig. 4(a),
for any closed boundary that does not traverseΓk, we can al-
ways find from it a gap-filling fragment, sayP1P2, for which
the associated arc is not convex w.r.tMk. This will not hap-
pen since all such gap-filling fragments have been pruned.
Third, the resultant boundary must be convex. Otherwise,
along this boundary we can always find an arc which is either
nonconvex itself (see the arc associated toP1P2 in Fig. 4(b))
or not convex w.r.tMk (see the arc associated toP3P4 in
Fig. 4(c)). This will not happen since we have pruned all such
gap-filling fragments. Also note that the resultant boundary



must be simple, i.e., it does not intersect itself. This is obvi-
ous since, for a self-crossing closed boundary, its inner loop
is also a closed boundary that does not traverseΓk and there-
fore, the resultant boundary must contain an arc not convex
w.r.t Mk, but all such arcs have been pruned.

Mk
Γk

P1

P2

(b)

Mk
Γk

Mk
Γk

P1

P2

(c)

P4

P3

(a)

Figure 4: Solving Problem1 on the remaining fragments
without the two constraints can not produce (a) a boundary
not traversingΓk and (b-c) nonconvex boundaries.

Another problem is the global optimality of the bound-
ary detected from the remaining fragments in terms of Prob-
lem 1. In other words, we wonder whether the proposed
fragment-pruning algorithm may reduce the search space by
pruning some fragments along the desired global optimal
boundary. This in fact will not happen, since all the pruned
fragments are the ones that are impossible to be along a valid
convex boundary that traversesΓk. Therefore, our only re-
maining problem is how to find an optimal boundary mini-
mizing the costφ(B) without considering the two constraints
in Problem1. Let’s show that this problem can be solved by
a graph-theoretic algorithm calledRatio Contour, which was
developed by Wang et al. in [22].

Γk
kM

P2
P1

M1

M2

Figure 5: An illustration of the regionR(e) (shaded region)
used for defining weight functions of a dashed edge.

We first construct an undirected graphG = (V,E) with
V as the vertex set andE as the edge set. Each fragment end-
point is represented by a vertex and each fragment is repre-
sented by an edge that connects two corresponding vertices.
There are two kinds of edges,solid anddashedones. The
solid edges represent detected fragments and dashed edges
represent gap-filling fragments. This way, a closed boundary
is represented by analternatecycle in this graph. An alter-
nate cycle indicates a cycle that traverses solid and dashed
edges alternately. Now let’s define two weight functions,w1

and w2 for each edge. For a solid edgee, we simply set
w1(e) = 0 andw2(e) = 0. For a dashed edgee, we get back
and check its corresponding gap-filling fragment and asso-
ciated arc. As shown in Fig. 5, letP1P2 be the gap-filling

fragment corresponding toe andM1P1P2M2 be the arc as-
sociated toP1P2. We define

w1(e) = |P1P2|+ λ ·
∫ ∫

R(e)

|∇I(u, v)|dudv (2)

and

w2(e) =
∫ ∫

R(e)

dudv, (3)

where|P1P2| is the length of gap-filling fragmentP1P2 and
R(e) is the convex region constructed by connecting the arc
and the pointMk, as shown by the shaded region in Fig. 5.
Note that a valid closed boundaryB is uniquely represented
by an alternate cycleC in this graph. It is easy to see that
the costφ(B) = CR(C), where the cycle ratioCR(C) is
defined as

CR(C) =
∑

e∈C w1(e)∑
e∈C w2(e)

.

This way, the problem of finding an optimal boundaryB
from a set of fragments is reduced to a problem of finding
an optimal alternate cycleC ∈ G that minimizes this cycle
ratio. This minimum-ratio-cycle problem can be solved in
polynomial time using the ratio-contour algorithm [22].

The following summarizes the proposed convex-grouping
algorithm.

// Initialization
Construct detected fragments {Γi}n

i=1

Construct gap-filling fragments
//Main loop
Loop over Γk, k = 1, 2, . . . n

On semiplane 1
Prune fragments
Construct weighted graph G
Find Bk1 with ratio contour

On semiplane 2
Prune fragments
Construct weighted graph G
Find Bk2 with ratio contour

Take Bk = Bk1 if φ(Bk1) < φ(Bk2)
Take Bk = Bk2 otherwise

Output B = {Bm|φ(Bm) ≤ φ(Bi), ∀i}
End

4. Experiments
In this section, we test the proposed convex-grouping
method on some real images by detecting the most
salient convex structures in terms of the cost function
(1). Particularly, we adopt the Canny detector in the
Matlab software for edge detection and Kovesi’s software
(http://www.csse.uwa.edu.au/ ∼pk/Research/
MatlabFns/ ) for line fitting. The edge-detection, line-
fitting, and ratio-contour algorithms all have some free



parameters. The selection of suitable values for these
free parameters is usually dependent on the image size.
Therefore, we normalize all of our test images to be of a size
as close as possible to160× 120 or 120× 160, for landscape
or portrait images respectively, but maintaining the aspect
ratio. This way, we fix all the free parameters. In these
experiments, we leave the parameters for the Canny detector
at their default values, and for Kovesi’s line fitting, we set
the minimum length of the processed edges to be10 pixels
and the allowed deviation between an edge and its fitted line
to be2 pixels. For the ratio-contour algorithm, we use the
package developed in [22] and set the parameterλ = 0.01
for all experiments.

It is well known that the Canny edge detector usually per-
forms poorly at corners and junctions. Therefore, the loca-
tion of some detected-fragment endpoints may be affected by
strong noise. As a result, constructing gap-filling fragments
by simply connecting two detected-fragment endpoints may
introduce some problems. As shown in Fig. 6(a), the gap-
filling fragment connectingP1 andP2 will be pruned since it
is associated to a nonconvex arcM1P1P2M2. However, this
may be caused by noise on the endpointP2. To address this
problem, we adopt the same strategy suggested in Jacobs’
method [11], which allows the endpointP2 to slide along
Γ2 freely in constructing the gap-filling fragmentP1P2. As
shown in Fig. 6(b), the extension of the fragmentΓ1 inter-
sectsΓ2. This intersection point is set to be the new endpoint
P2 of Γ2. The newly constructed gap-filling fragmentP1P2,
shown by a dashed line in Fig. 6(b), is associated to a convex
arc and will not be pruned.

P1

P2

M2

M1

Γ1
Γ2 Γ1 Γ2
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1M
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Figure 6: An illustration of constructing a gap-filling frag-
ment. (a) Constructing a gap-filling fragment by connect-
ing the two fixed endpoints directly. (b) Constructing a gap-
filling fragment by allowing one endpoint to slide along its
fragment.

If we construct gap-filling fragments between all possi-
ble pairs of fragment endpoints, we will haveO(n2) number
of gap-filling fragments fromn detected fragments. In prac-
tice, we reduce the number of constructed gap-filling frag-
ments by not considering the ones between two fragments
endpoints that are far from each other. Specifically, we set a
distance thresholddT , if the distance between two endpoints
is larger thandT , we do not construct a gap-filling fragment
between them. In our experiments, we setdT = min{W,H}

5 ,
whereW andH are the width and height of the image.

Figure 7 shows the convex-grouping results on16

Figure 7: Convex-grouping results on16 real images. First
column: original images; Second column: Canny edge de-
tection results; Third column: line-fitting results; Fourth col-
umn: the detected most salient boundaries using the pro-
posed convex-grouping method; Fifth column: the detected
most salient boundaries using Jacobs’ method.



real images. The most salient convex boundaries ex-
tracted using the proposed method and Jacobs’ method
are shown in the fourth and fifth columns respectively.
The code of Jacobs’ method was downloaded from
http://www.cs.umd.edu/ ∼djacobs/ and we set
the parameterk = 0.7 (see [11]). We can see that by con-
sidering the region information, including both the intensity
homogeneity and region area in the cost (1), the proposed
method can extract structures with homogenous regions and
large areas, as witnessed in the first, second, third, fourth,
sixth, seventh, eighth,12th, and15th images in Fig. 7. Fur-
thermore, although the convex-grouping problem is formu-
lated as extracting a convex polygon in this paper, some
smooth convex boundaries can still be quite accurately ex-
tracted in the form of a polygon approximation, as shown
in the eighth,10th, 11th, 12th, 13th, 14th, and15th images
in Fig. 7. One may notice that Jacobs’ convex -grouping
method sometimes produces nonconvex boundaries, such as
the ones in the fifth and14th images. This comes from a spe-
cial processing in Jacobs’ method which allows certain er-
ror in determining the colinearity between two detected frag-
ments [11].

It is not difficult to extract multiple convex structures
from an image by repeatedly applying the proposed convex-
grouping method. We can run the proposed method once to
extract the optimal boundary. After that, we can remove all
the fragments along the detected boundary and then repeat
the method to detect the second optimal boundary. Figure 8
shows the multiple structures detected on several real images.

Figure 8: Sample results on detecting multiple convex struc-
tures by repeating the proposed convex-grouping method.

5. Extensions

In this section, we consider two important extensions of the
proposed convex-grouping method. The first one enables the
method to deal with open boundaries, i.e. boundaries of the
structures that are cropped by the image perimeter and only
partially located inside the image. The second extension is to
incorporate a simple human-computer interaction to detect
the salient convex structures around a user specified point.

5.1. Open-boundary Detection

The above convex-grouping method is developed based on
the assumption that the desired structure is completely lo-
cated inside the image perimeter and the structural boundary
is a closed polygon, as shown in Fig. 9(a). However, in many
real images, the most salient structure may only be partially
present in the image and the structural boundary is cropped
by the image perimeter. This results in an open boundary,
as shown in Fig. 9(b) and (c). Open-boundary detection is
a more difficult problem in grouping when incorporating the
region information. The major reason is that we cannot dis-
tinguish which region is the one enclosed by an open bound-
ary, i.e., regionR in cost (1) is not well defined. One typical
way to address this problem is to reformulate the cost func-
tion by seeking a balance between two resulting segments in
terms of some region information, such as the area, the inten-
sity homogeneity, or the total pixel affinity. Unfortunately,
such a reformulation of the grouping cost usually results in a
NP-hard problem [17, 18, 21].

(a) (b) (c)

A B AB BA

Figure 9: An illustration of determining the enclosed region
R in the cost function (1) in various cases. (a) Enclosed re-
gion R is well defined given a closed boundary. In this case
this region isB. (b) Enclosed regionR is ill defined given an
open boundary: Is the enclosed regionA or B? (c) Enclosed
regionR is well defined given an open boundary in convex
grouping. In this case, this region isB.

However, we have no such problems in the proposed
convex-grouping method, because the structural convexity
can be used to determine which one is the region enclosed by
an open boundary. An example is shown in Fig. 9(c), where
the regionB is convex, so it is unambiguously the regionR
in the cost function (1). Therefore, we do not need to change
the problem formulation to deal with the open-boundary de-
tection. We only need to adapt the construction of some gap-
filling fragments and the definition of edge weights for these



fragments so that they only count the boundary and region
information inside the image perimeter.

First, we check all the fragment endpoints that are near
the image perimeter. As shown in Fig. 10, even though the
endpointsP1 andP2 are far from each other based on their
spatial distance, we still construct a gap-filling fragment con-
necting them if they are both near the image perimeter. Such
a gap-filling fragment may represent the cropped structural
boundary and we call themexternal(gap-filling) fragments.
Note that the external fragment betweenP1 and P2 is not
the simple straight line segmentP1P2. Instead, it is a con-
vex polyline connectingP1, Q1, Q2, andP2 sequentially,
whereQ1 and Q2 are intersection points between the ex-
tended fragments and the image perimeter. BetweenQ1 and
Q2, this external fragment is aligned with the image perime-
ter. Therefore, ifQ1 andQ2 are located on the same side
of the image perimeter, as shown in Fig. 10(a), they are con-
nected by a straight line segment. IfQ1 andQ2 are located
on two different sides of the image perimeter, two or three
straight line segments may be used to connect them, as shown
in Fig. 10(b). All the external fragments are treated the same
as other gap-filling fragments in the fragment pruning.

Second, like other gap-filling fragments, each external
fragment is also represented by a unique dashed edge in the
graph. However, its two weight functions are redefined to
only consider the boundary and region information inside the
image perimeter. Specifically, for the dashed edgee corre-
sponding to the external fragment shown in Fig. 10(b), we
adapt the definition of the first edge weight as

w1(e) = |P1Q1|+ |Q2P2|+ λ ·
∫ ∫

R(e)

|∇I(u, v)|dudv (4)

because for this external fragment, only line segmentsP1Q1

andP2Q2 can be included in an open boundary. For both
weight functions,R(e) represents the convex region enclosed
by the arc and the given pointMk. An example is shown in
Fig. 10(c), where the shaded region isR(e) for the external
fragmentM1P1Q1Q2P2M2 shown in Fig. 10(b).
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Figure 10: An illustration of constructing external gap-filling
fragments. (a-b) Sample external fragments constructed be-
tweenP1 andP2. (c) Shaded region is theR(e) in the edge-
weight definitions for the external fragment shown in (b).

By introducing the external fragments, we can apply the
proposed convex-grouping method to detect a closed bound-
ary as usual. If the resulting boundary contains an external
fragment. We know that it traverses portions of the image
perimeter and we in fact obtain an open boundary. This way,

the detection of open and closed boundaries is unified in the
proposed method. In Fig. 11, we show several sample im-
ages where the detected most salient structural boundaries
are open. In these experiments, a fragment endpointP1 is
considered to be near the image perimeter if|P1Q1| < dT

2 ,
wheredT is the same threshold defined in Section 4.

Figure 11: Sample results of detecting open boundaries using
the proposed convex-grouping method. From left to right,
each row shows the original image, the Canny detection re-
sult, the line-fitting result, and the detected open boundary,
respectively.

5.2. Human-Computer Interaction
Adding some simple human-computer interactions may al-
low a user to more flexibly control the convex-grouping
process. In this section, we consider the following simple
human-computer interaction: The user specifies a point in
the image and then the computer finds the most salient con-
vex boundary around this specified point. In fact, this just
adds a new constraint to the problem formulated in Section
2: the detected boundary should enclose a given pointM .
We address this problem by adding another step of fragment
pruning: We prune all the gap-filling fragments for which
the associated arcs are not convex w.r.t the given pointM .
This additional fragment-pruning step is executed before any
other fragment pruning. After this, we run the standard arc-
pruning and ratio-contour algorithms introduced in Section 3.
Similar to the proof given in Section 3, we can easily show
that the resultant boundary must be aroundM and is also the
globally optimal one for the problem formulated in Section
2 with this additional interaction constraint. Figure 12 shows
some sample convex-grouping results with some manually
specified points. Note that, for the third image (from the left),
the last row shows a result where the human-computer inter-
action leads to an open boundary.

6. Conclusions
This paper presented a new convex-grouping method for de-
tecting salient convex structures from an image. In this



Figure 12: Sample convex-grouping results with the human-
computer interaction introduced in Section 5.2. Each col-
umn, from top to bottom, shows the original image, the
Canny detection result, the line-fitting result, the grouping
results without human-computer interaction, and the results
with two different specified points (marked by cross).

method, we consider both boundary and region information,
including closure, convexity, proximity, and the intensity ho-
mogeneity of the enclosed region. This method can detect the
globally optimal boundaries in terms of the defined cost func-
tion in polynomial time. We demonstrate the performance
of this convex-grouping method on a set of real images and
the results were compared to the convex-grouping method
developed by Jacobs. This method can be extended to (a)
detect open boundaries where the structure of interest is not
fully located inside the image perimeter, and (b) incorporate
a simple human-computer interaction for finding a convex
boundary around a specified point.
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