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Abstract

In this paper, we present a new learning framework
for image style transforms. Considering that the images
in different style representations constitute different vec-
tor spaces, we propose a novel framework called Coupled
Space Learning to learn the relations between different
spaces and use them to infer the images from one style to
another style. Observing that for each style, only the com-
ponents correlated to the space of the target style are useful
for inference, we first develop the Correlative Component
Analysis to pursue the embedded hidden subspaces that best
preserve the inter-space correlation information. Then we
develop the Coupled Bidirectional Transform algorithm to
estimate the transforms between the two embedded spaces,
where the coupling between the forward transform and the
backward transform is explicitly taken into account. To en-
hance the capability of modelling complex data, we further
develop the Coupled Gaussian Mixture Model to general-
ize our framework to a mixture-model architecture. The
effectiveness of the framework is demonstrated in the ap-
plications including face super-resolution and bidirectional
portrait style transforms.

1. Introduction

In recent years, transformation between image style
representations becomes an active research topic in com-
puter vision. Representative works on style-transforms in-
clude image hallucination[3][1][6] and non-photorealistic
rendering[8][4].

Different from conventional approaches where different
types of transforms are treated separately. In this paper, we
study different transform tasks in a unified perspective and
develop a new learning framework to improve the quality of
the resultant images.

In statistical learning, each image can be represented by
a vector and thus the images in a certain style form a vec-
tor space. Under this formulation, the relation between two

image styles can be seen as the relation between two vector
spaces associated with the two image styles. In the liter-
ature, a series of statistical learning approaches have been
proposed to model the image space. Among these methods,
the most well known one is PCA[10], which finds a prin-
cipal subspace where the variational energy is maximized.
However, PCA is aimed at modelling a single sample space
with the goal of best reconstruction, thus cannot be directly
applied to model the inter-space dependencies.

Some works have been done to extend the conventional
PCA models to learn the dependency between two sample
spaces. There are mainly two families of methods: one is
to establish a subspace model in the joint space of two vec-
tor spaces[9]; the other is to learn the relation between two
principal spaces: a representative method in this family is
the eigentransformation[8] method, which learns the rela-
tionship between photo-space and sketch-space by transfer-
ring the synthesis coefficients obtained by PCA. One impor-
tant drawback in these two families of methods is that some
important correlative information, which is not necessarily
significant in reconstruction, may be lost in the stage of pro-
jecting the sample to the principal subspace learned individ-
ually, this is because the learning of these individual spaces
does not take the correlation between the two spaces into
account. To address the issue, Fernando et al. developed
the Asymmetric Coupled Component Analysis(ACCA)[2]
where hidden parameter space is made explicit to serve as a
bridge coupling the two spaces. In ACCA, though the cou-
pling is explicitly accounted for, however, as shown later,
its simple formulation does not fully reflect the essence of
coupling and lacks the capability of modelling complex de-
pendencies.

In this paper, we propose a novel framework called Cou-
pled Space Learning to learn the dependency between two
vector spaces, with each space corresponding to one image
style. The core of our framework is to couple the learn-
ing process of the forward and the backward transforms.
Observing that only the components that are correlated to
the other vector space contribute to the inference, we de-
rive the Maximum Correlation Criteria and develop a new

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



algorithm called Correlative Component Analysis to pur-
sue the hidden spaces associated with the two representative
spaces so that the correlative information is best preserved.
Then the Coupled Bidirectional Transforms algorithm is de-
veloped to learn the bidirectional transforms between two
hidden spaces in a coupled manner where the relation be-
tween the transforms in the two opposite directions are ex-
plicitly taken into account. The coupling between the for-
ward transform and backward transform are gradually es-
tablished through repeated information exchange between
the two transforms.

To further enhance the framework’s capability of mod-
elling complex data, we generalize our framework to a
mixture-model architecture, called Coupled Gaussian Mix-
ture Model, where GMM for both spaces are jointly trained.
The system consists of multiple models, in the training
phase each model is adapt to a part of the samples and in
the testing phase for a new sample, the results produced by
these models are fused together by a weighting scheme us-
ing model-posteriori as weights.

Our framework is of broad interest in the realm of
computer vision. To illustrate the effectiveness of the
framework, we conduct comparative experiments in style-
transform applications including face super-resolution and
bidirectional transforms between portrait styles.

In the rest of the paper, we first present the theoreti-
cal principle and algorithms for Coupled Space Learning
in section 2. In section 3, we generalize our model to a
mixture-model system with Coupled GMM. Experiments
and their results are introduced in section 4. Finally, we
conclude the paper and propose future work in section 5.

2. Coupled Space Learning

2.1. Framework of Coupled Modelling

Suppose we have a set of visual objects, denoted as
a1, a2, . . . , an, here n is the number of objects. For each
object, it can be expressed by images in different styles,
such as photos and nonphotorealistic paintings. In each
style, the objects are represented in vectors. The vectors
in the first style constitute a sample space X , denoted as
x1,x2, . . . ,xn; likewise, the vector space and vectors in the
second style are denoted as Y and y1,y2, . . . ,yn. It should
be noted that the space dimension for different representa-
tion is not necessarily equal, we denote the dimensions of
the two representation spaces as dx and dy respectively.

Considering that both sample spaces are associated to the
same object space, it is reasonable to assume that there is an
intrinsic hidden space H reflecting the variations which the
visual objects inherently bear and the observed spaces are
some transformed versions of the hidden space, which is the
fundamental principle in coupled learning.
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Figure 1. Illustration of Harmony Coupled Learning
Framework

Denote the vectors in hidden space as h, the transforms
from hidden spaces to observed spaces as TX and TY

x = TXh + mx y = TY h + my. (1)

Here, mx and my are mean vectors of x and y. Assume
the dimension of hidden space is d, then TX is a dx × d
matrix while TY is a dy × d matrix. To investigate the
composition of the transform, we perform compact SVD
on them as TX = UXDXVT

X and TY = UY DY VT
Y .

Here UX is a dx × d matrix, and UY is a dy × d matrix,
while DX ,DY ,VX ,VY are all d × d matrices. Consider-
ing Eq.(1), we have

UT
X(x − mx) = DXVT

Xh UT
Y (y − my) = DY VT

Y h.
(2)

This equation can be interpreted as follows: orthonormal
UX projects the dx-dimensional vector x − mx to a sub-
space of equal dimension to H, which is actually H’s ro-
tated and scaled version, denoted as U . Similar interpreta-
tion can be applied to y, where the embedded subspace is
denoted as V . Base on this interpretation, we see that there
are two d-dimensional embedded spaces associated with X
and Y , which are related to the H with rotation and scal-
ing. It further follows that the two embedded subspaces are
related to each other with rotations and scaling. To clearly
emphasize the projection role of UX and UY , we denote
them as PX and PY .

Based on this rationale, we design a three-level frame-
work for Coupled Space Learning (CSL) as illustrated in
Figure.1. where the connection between U and V is estab-
lished through d× d transform matrices A and B. In math-
ematics, the whole transform procedure can be represented
as follows:

y − my = PY APT
X(x − mx), (3)

x− mx = PXBPT
Y (y − my). (4)

It is worthwhile to emphasize the following points con-
cerning the design of the framework:

1. Under this formulation, given the relation between x
and y as linear, why don’t we directly use the form y =
Ax and x = By? As mentioned above, the fundamental
concept in coupled learning is the hidden space, and the PX
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Figure 2. Illustration of Components Decomposition

and PY in Eq.(3) and Eq.(4) indeed embody this concept
and enforce it as a structural constraint in transforms.

2. Why don’t we directly focus on TX , TY and H, but
decompose the process into PX ,PY ,A, and B? This is
mainly for the sake of computational efficiency. Because
directly solving transforms between two spaces of different
dimensions is difficult and unstable, especially when dx and
dy is large, it is desirable to first learn a projection to project
the vectors to subspaces with equal dimensions and than
solve the transform within the subspaces.

2.2. Correlative Component Analysis

As we know, the essence of coupling comes from the sta-
tistical dependencies between two sample spaces, which is
also the foundation for bidirectional inference. In a linear
model, under Gaussian assumption, statistical dependency
is equivalent to correlation, where uncorrelated components
provide no information for prediction of each other. Con-
cretely, as illustrated in Figure.2, for each space, it can be
decomposed into two subspaces, one preserves correlative
information for intra-space communication, while the other
only captures independent variations special to the space
itself. Only the former contributes to the inter-space infer-
ence.

Suppose x ∼ N (mx,Cx) and y ∼ N (my,Cy), for a
component in X characterized by projection direction px

and a component in Y projected by py , their correlation can
be measured in terms of covariance as

E
[
(pT

x (x − mx))(pT
y (y − my))T

]
= pT

x Cxypy. (5)

Here, Cxy = E
[
(x − mx)(y − my)T

]
is the covariance

matrix between x and y.
Considering that Cxy is not a semidefinite matrix, thus

the value of the covariance matrices can be negative, how-
ever, only the magnitude but not the sign of the value rep-
resents the intensity of the correlation. For mathematical
tractability, we use the square of covariance value as Corre-
lation Intensity:

CI(px,py) = (pT
x Cxy.py)2. (6)

For a set of components obtained by projection matrices
Px and Py , their covariance is a generalization of Eq.5 as

E
[
(PT

X(x − mx))(PT
Y (y − my))T

]
= PT

XCxyPY . (7)

By taking all components as a whole, the total correlation
intensity can be derived as

CI(PX ,PY ) = tr
(
(PT

XCxyPY )(PT
XCxyPY )T

)
= tr

(
PT

XCxyPY PT
Y CyxPX

)
(8)

= tr
(
PT

Y CyxPXPT
XCxyPY

)
. (9)

Here, Cyx = E
[
(y − my)(x − mx)T

]
= CT

xy is the co-
variance matrix between y and x.

Given training sets as [x1,x2, . . . ,xn] and
[y1,y2, . . . ,yn], and denote their sample mean as x̄
and ȳ, then we can arrange the mean-offset samples into
two matrices as X̃ = [x1 − x̄,x2 − x̄, . . . ,xn − x̄] and
Ỹ = [y1 − ȳ,y2 − ȳ, . . . ,yn − ȳ], thus the maximum
likelihood estimation of covariance matrices[5] can be
written as Cxy = 1

nX̃ỸT and Cyx = 1
n ỸX̃T

To facilitate further analysis of the relation between the
two spaces, it is desirable to pursue the subspaces which
best preserve the correlative information, hence we derive
the Maximum Correlation Criteria for learning two correl-
ative subspaces as follows:

(PX ,PY ) = argmax
PX ,PY

CI(PX ,PY ). (10)

Here,

CI(PX ,PY ) = tr
(
PT

XX̃ỸT PY PT
Y ỸX̃T PX

)
, (11)

= tr
(
PT

Y ỸX̃T PXPT
XX̃ỸT PY

)
. (12)

To optimize the Maximum Correlation Criteria, we de-
velop an algorithm called Correlative Component Analysis
(CCA), which pursues optimal PX and PY alternately. The
procedure is described in Table.1:

1. Initialize P
(0)
X and P

(0)
Y to be identity matrices.

2. Repeat the following steps, at the t-th step:

(a) Compute S
(t)
X = eX eYT P

(t−1)
Y P

(t−1)T
Y

eY eXT

(b) Update PX by P
(t)
X = argmaxPX

PT
XS

(t)
X PX

(c) Compute S
(t)
Y = eY eXT P

(t)
X P

(t)T
X

eX eYT

(d) Update PY by P
(t)
Y = argmaxPY

PT
Y S

(t)
Y PY

(e) Compute the objective function C(t) by Eq.10.
3. Stop and exit when C(t) − C(t−1) < ε.

Table 1. Training process of CCA

Note that for a positive semidefinite matrix S,
argmaxP tr(PT SP) can be obtained by performing
eigenvalue-eigenvector analysis on S, and takes the d eigen-
vectors associated with largest eigenvalues as the column
vectors of P.

Discussion
1. As in Eq.11 and Eq.12, their equivalence elegantly

reflects the duality of the two spaces.
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2. When PX or PY is fixed, the objective function is
convex w.r.t PY or PX , thus the updating achieves global
optimal PY or PX with the other matrix fixed. Moreover,
we can see that due to the equivalence of two forms of the
objective function, step.2.2 and step.2.4 is actually optimiz-
ing the same objective, and the procedure is thus guaranteed
to converge.

3. Intuitively, the Correlative Component Analysis algo-
rithm embodies a Negotiation Mechanism: in each iteration,
both spaces convey the information of themselves through
the projection matrices, and adjust their subspace projection
to cater for the other part’s need. In this procedure the com-
monality between two subspaces is gradually amplified via
continuous conversation between the two parts.

2.3. Coupled Bidirectional Transform

When the two hidden subspaces are established by Cor-
relative Component Analysis, we can learn the bidirectional
transform between the two spaces. Here we denote the
vectors in the two hidden spaces as [u1,u2, . . . ,un] and
[v1,v2, . . . ,vn] respectively, which can be computed as
follows

ui = PT
X(xi − x̄), (13)

vi = PT
Y (yi − ȳ). (14)

Before we derive the objective function, it is worthwhile
to analyze the goal of learning. Different from conventional
unidirectional model where transform accuracy is the chief
aim, in a bidirectional model the relation between forward
transform and backward transform should be taken into ac-
count. In ideal case, they should be inverse process of each
other. Therefore, there are two goals in learning the pair
of transforms: the first goal is the accuracy of transform
as in unidirectional models, while the second goal is their

coupling relationship, which can be measured in terms of
fidelity of reconstruction. Based on this rationale, the ob-
jective function to be minimized can be written as

J(A,B) =
n∑

i=1

(||vi − Aui||2 + ||ui − Bvi||2

+||ui − BAui||2 + ||vi − ABvi||2
)
. (15)

Denote U = [u1,u2, . . . ,un] and V = [v1,v2, . . . ,vn],
then Eq.15 can be rewritten as

J(A,B) = ||V − AU||2F + ||U − BV||2F
+||U − BAU||2F + ||V − ABV||2F . (16)

As illustrated in Figure 3, the 1st term and the 2nd term of
Eq.16 correspond to the goal of transform accuracy, while
the other 2 terms correspond to the fidelity of coupling.

The objective function is nonlinear with respect to A and
B, and it has no analytic solution. One approach is to em-
ploy gradient-based numerical optimization, the derivatives
of the objective w.r.t A and B are deduced as follows

∂J

∂A
= −2VUT + 2AUUT − 2BT UUT − 2VVT BT

+2BT BAUUT + 2ABVVT BT , (17)
∂J

∂B
= −2UVT + 2BVVT − 2AT VVT − 2UUT AT

+2AT ABVVT + 2BAUUT AT . (18)

A drawback of traditional optimization method is that it is com-
putationally expensive and the convergence is slow. To enhance
the efficiency of optimization, we develop a novel algorithm to
learn the Coupled Bidirectional Transform (CBT) as described in
Table.2

1. Initialize A and B by linear regression:

A(0) = argmin
A

||V − AU||2F = (VUT )(UUT )−1, (19)

B(0) = argmin
B

||U − BV||2F = (UVT )(VVT )−1. (20)

2. Iterate the following steps until the change of objec-
tive is below some specified threshold:

(a) Backward transform variables [v1,v2, . . . ,vn]
by B(t−1). Then we can form the augmented sam-
ple matrices Uaug = [U, B(t−1)V], and Vaug =
[V,V], then update A as A(t) = argminA ||Vaug −
AUaug||2F

(b) Forward transform variables [u1,u2, . . . , un]
by A(t). Then we can form the augmented sample ma-
trices Uaug = [U,U], and Vaug = [V, A(t)U], then
update B as B(t) = argminB ||Uaug − BVaug||2F

Table 2. Training process of CBT
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Discussion

1. The goal of the transform accuracy and that of the recon-
struction fidelity are not equivalent. This is clearly illustrated in
Figure.4, it can be easily seen that although the transform accuracy
of the left one equals the right one, however the right one achieves
much higher reconstruction fidelity and thus is more preferable,
which indicates the significance of explicit considering reconstruc-
tion fidelity in learning bidirectional transforms.

2. As in correlative component analysis, the process of learning
the coupled bidirectional transforms also reflects the “negotiation
mechanism”, where the forward transform A conveys the informa-
tion about it by augmenting the training set of B with the forward
transformed variables AU, so that the optimization of B will take
the information from A into account. The principle is similar for
backward transform. Therefore, the “augmented set” plays an cru-
cial role for exchanging information between the two transforms,
and through repeated communication, the two transforms are fi-
nally coupled together and a well equilibrium is achieved between
transform accuracy and reconstruction fidelity.

2.4. Procedure of Coupled Space Learning

Here, we summarize the whole procedure for coupled space
learning. In training stage, the process can be briefly described as
follows:

1. Compute the mean vectors mx and my , co-
variance matrices Cx, Cy , Cxy and Cyx for both
spaces.
2. Learn the two hidden subspaces PX and PY by
Correlative Component Analysis.
3. Project the mean-offset samples X̃ and Ỹ onto
hidden spaces to obtain U and V.
4. Learn the bidirectional transforms between two
U and V using Coupled Bidirectional Transforms
algorithm.

Table 3. The whole training procedure of CSL

In testing stage, for arbitrary new sample u or v, we can infer
corresponding v or u following Eq.3 or Eq.4.

3. Generalization to Mixture Model

3.1. Coupled Gaussian Mixture Model

Due to the complexity of the real data, one single linear model
is often not enough to capture all the aspects of variations and
dependencies. Motivated by the successful application of Gaus-
sian Mixture Model(GMM)[13] in many practical problems, we
develop Coupled Gaussian Mixture Model (CGMM) which effec-
tively integrates GMM and Coupled Space Learning.

The fundamental difference between CGMM and GMM is that
the pair of samples ui and vi should be dealt with as a whole in-
stead of being handled individually. In CGMM, suppose we have

K models, denoted as M1, M2, . . . , MK ; then the probability of
a sample-pair (ui, vi) conditioning on the k-th model is

p(ui,vi|Mk) = p(ui|muk,Σuk)p(vi|mvk,Σvk). (21)

Here muk,Σuk and mvk,Σvk are the mean vectors and covari-
ance matrices of the samples belonging to Mk in hidden space U
and V respectively.

3.2. Optimization by EM Algorithm

With the definition of coupled conditional probability, the
CGMM can be learned by Expectation-Maximization algorithm
similar to that in GMM[13]. The procedure is described as fol-
lows:

1. Initialize CGMM by Random Clustering:
(a) Randomly select K pairs of samples as

cluster centers, denoted as m
(0)
u1 , . . . ,m

(0)
uK and

m
(0)
v1 , . . . ,m

(0)
vK , which are also the initial estimation

of mean vectors for CGMM.
(b) For each pair of samples(ui,vi), categorize it

to the cluster where the cluster center is closest. The
distance is simply defined as dik = ||ui − m

(0)
uk ||2 +

||vi − m
(0)
vk ||2

(c) Compute the covariance matrices in clusters
Σ

(0)
u1 , . . . ,Σ

(0)
uK and Σ

(0)
v1 , . . . ,Σ

(0)
vK as initial estima-

tion of covariance matrices.
(d) Initialize the prior probability for all models to

be the same, i.e. P (0)(M1) = · · · = P (0)(MK) = 1
K

2. Update the CGMM by iterating the following steps:
(a) Compute the probability of every training

sample-pair belonging to the k-th model as

wik =
P (t−1)(Mk)p(ui,vi|Mk)PK
j=1 P (t−1)(Mj)p(ui,vi|Mj)

. (22)

The calculation of conditional probability follows Eq.21
using the mean vectors and covariance matrices com-
puted in the (t − 1)-th step.

(b) Update the priori of models as

P (Mk) = 1
n

Pn
i=1 wik. (23)

(c) Update the mean vectors and covariance matrices
as follows:

m
(t)
uk = 1

nP (Mk)

Pn
i=1 wikui, (24)

m
(t)
vk = 1

nP (Mk)

Pn
i=1 wikvi, (25)

Σ
(t)
uk = 1

nP (Mk)

Pn
i=1 wij(ui −muk)(ui − muk)T , (26)

Σ
(t)
vk = 1

nP (Mk)

Pn
i=1 wij(vi − mvk)(vi − mvk)T . (27)

Training process of CGMM
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The CGMM is trained on U and V after the hidden subspaces
are obtained. After the CGMM is trained, the bidirectional trans-
forms are learned for every model, denoted as A1, . . . ,AK and
B1, . . . ,BK . For a new sample x it is first projected to U to ob-
tain u, then v can be computed as

v =
KX

k=1

P (Mk|u)(Aku). (28)

Here the posteriori can be calculated as

P (Mk|u) =
p(u|Mk)p(Mk)PK
j=1 p(u|Mj)p(Mj)

. (29)

This inference process is illustrated in figure 5.

4. Integrated Framework for Image Style
Transform

In this section we introduce the framework integrating the cou-
pled space learning algorithm with image analysis and synthesis.
Due to the complexity and high dimensionality of image, directly
modelling the whole image sample space is very difficult and in-
efficient. However, the images associated with one visual object
such as face maintain a stable global structure over the image,
which will not change notably when the style changes. For ex-
ample, whatever style you employ to express a face, the eyes,
nose and mouth remain in all the styles and correspondence can
be established between the same facial components in different
image styles. Moreover, inter-pixel dependency is believed to con-
sist within a neighboring region but not the whole image. Based
on these rationales, we can partition the images into patches, and

learn the dependencies within these patches. As illustrated in fig-
ure 6, in our patch-based approach, we train different models for
patches in different positions. The patch-based strategy brings us
two-fold merits: 1)The vector space dimensions for each model is
much lower, thus both robustness and efficiency will be enhanced;
2)Since each model focuses on a small region, more subtle details
can be captured in the model.

Since patches in different positions are independently mod-
elled, the continuity in the patch-boundary cannot be guaranteed.
To enhance the smoothness of the whole image and reduce the ar-
tifacts incurred by inter-patch discontinuities, we design a scheme
(illustrated in figure 7), where adjacent patches are overlapped and
the value of each pixel is weighed sum of values in synthesized
patches covering that pixel. The weights of a patch on each pixel
is attenuated softly as the distance of the pixel to the center of the
patch increases. Specially, we employ an exponential function to
describe the attenuation of the weights as w(r) = exp(−r2/σ2),
where r is the distance of a pixel to the patch-center, σ controls
the speed of attenuation.

The whole procedure of image-transform can be described as
follows:
Step 1. For an input image, divide it into overlapped patches. The
partition scheme should follow that in the training stage.
Step 2. For each patch, infer its corresponding part using the Cou-
pled Space Learning Model and Coupled GMM Model as intro-
duced in previous sections.
Step 3. Use the weighed-sum scheme to combine all patches syn-
thesized to form the entire image.

5. Experiments

In this section, we test the framework in two applications: face
super-resolution and portrait style transforms.

5.1. Face Super-resolution

Super-resolution technique is to infer the high-resolution im-
age based on a given low-resolution image in order to restore the
details of the image. There are mainly two families of super-
resolution methods: reconstruction-based and learning-based. Re-
cently, learning-based approaches become more popular due to its
capability of utilizing the prior knowledge in the inference, which
is shown to play a crucial role, especially for face super-resolution.
Baker. et al[1] propose the Gradient Prior Prediction algorithm
with an MAP framework incorporated. Liu et al.[6] develop a
framework integrating a global parametric linear model and a lo-
cal patch-based Markov Random Field. Wang and Tang propose
to use eigentransformation for inferring high-resolution faces from
low-resolution ones [12][11]. Though face super-resolution seems
to be a unidirectional process, however due to the fact that the
super-resolution process is related to its inverse process: down
sampling, thus we believe that it can be benefit from coupled learn-
ing.

We conduct our experiments on the FERET database[7], where
1276 images are selected into the training set while another 1272
images are selected into the testing set. Each image is prepro-
cessed by affine transform to fix the positions of eyes and mouth
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center and cropped to size of 96 × 120 as high-resolution image.
Then each one is low-pass-filtered and down-sampled to size of
24 × 30 as low-resolution image. Models are then trained on the
1276 pairs of images. Here, we employ the patch-based strategy,
each image is divided into 11 × 11 overlapped patches, the size
of patches in the high-resolution images is 16 × 20 while the size
of patches in the low-resolution images is 4 × 5. In testing, a
low-resolution image is input and its high-resolution counter-part
is inferred by the algorithms in testing.

We compare the experimental results by our framework and
those produced by other state-of-the-art algorithms in figure 8. It
can be seen from the results that the quality of high-resolution im-
ages obtained by our Coupled Space Learning(CSL) framework is
better than other algorithms. Moreover, the Coupled GMM further
refines the details of the image and reduces the artifacts.

An objective evaluation of all these algorithms is shown in the
following table in terms of mean square error compared to original
high resolution image, which shows that the resultant images of
Coupled Space Learning approximates the desired high resolution
image better.

Algorithm B-Spline Baker Eigen Trans.
MSE 0.00813 0.00290 0.00243

Algorithm C.Liu CSL CSL + CGMM
MSE 0.00152 0.00094 0.00047

Table 4. Comparison of reconstruction errors of dif-
ferent methods

5.2. Portrait Style Transforms

The transforms between different art styles are mainly investi-
gated in Computer Graphics. The most representative work is the
image analogies[4] which use graphics techniques to filter the im-
age so that it takes on desirable artistic effect. Tang and Wang[8]
consider the problem as a learning problem and derive an eigen-
transformation method to transform photos to sketches for recog-
nition.

In our experiments, we apply the CSL framework to learn the
transforms between two image styles for portrait. The face im-
ages in the FERET database[7] are divided into a training set with
1276 samples and a testing set with 1272 samples. The images
are normalized to size of 96 × 120 and partitioned into 11 × 11
patches of size 16 × 20. The relationship between real portraits
and PosterEdge-Style images and that between real portraits and
HalfTone images are respectively learned in training stage. Figure
9 illustrates the results of forward and backward transforms be-
tween real photos and PosterEdge-Style renderings, while figure
10 illustrates the results for real photos and images with halftone
effects. The results show the good performance of our framework
in the application of style transforms.

6. Conclusion

In this paper, we have proposed a new framework to learn
the dependency between two associated vector space. Correlative

Component Analysis and Bidirectional Transforms are integrated
to learn the relation in a coupled manner. We further develop a
Coupled GMM model to enhance the framework’s capability of
modelling data under complex distribution by adapting each model
to a part of samples and fuse them together. Experiments in face
super-resolution and portrait style transforms clearly demonstrate
the effectiveness of the framework.
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