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Abstract

The goal of deconvolution is to recover an image x from
its convolution with a known blurring function. This is
equivalent to inverting the linear system y = Hx. In this
paper we consider the generalized problem where the sys-
tem matrix H is an arbitrary non-negative matrix. Linear
inverse problems can be solved by adding a regularization
term to impose spatial smoothness. To avoid oversmooth-
ing, the regularization term must preserve discontinuities;
this results in a particularly challenging energy minimiza-
tion problem. Where H is diagonal, as occurs in image
denoising, the energy function can be solved by techniques
such as graph cuts, which have proven to be very effec-
tive for problems in early vision. When H is non-diagonal,
however, the data cost for a pixel to have a intensity de-
pends on the hypothesized intensities of nearby pixels, so
existing graph cut methods cannot be applied. This pa-
per shows how to use graph cuts to obtain a discontinuity-
preserving solution to a linear inverse system with an arbi-
trary non-negative system matrix. We use a dynamically
chosen approximation to the energy which can be mini-
mized by graph cuts; minimizing this approximation also
decreases the original energy. Experimental results are
shown for MRI reconstruction from fourier data.

1. Generalized Image Deconvolution

The goal of image deconvolution is to recover an image
x from its convolution with a known blurring function h.
This is equivalent to solving the linear inverse problem [1]

y = Hx (1)

for x given y, where H is the convolution matrix corre-
sponding to h. In this paper we consider the generalized
image deconvolution problem, where H is an arbitrary non-
negative matrix. This generalization is motivated by an im-
portant problem in medical imaging, namely the reconstruc-
tion of MRI images from fourier data. We will discuss this
problem in more detail in section 5.1; for the moment, we

simply note that it is a linear inverse problem with sparse
non-negative H .

Inverse problems of this form are ill-posed, and are typ-
ically solved by minimizing a regularized energy function
[11]. The energy of a solution x is given by

||y − Hx||22 + G(x), (2)

which is the sum of a data term and a smoothness term.
The data term forces x to be compatible with the observed
data, and the smoothness term G(x) penalizes solutions that
lack smoothness. This approach can be justified on statisti-
cal grounds, since minimizing equation (2) is equivalent to
maximum a posteriori estimation [11] assuming Gaussian
noise. The energy is proportional to the negative logarithm
of the posterior: the data term comes from the likelihood,
and the smoothness term comes from the prior.

A wide variety of algorithms have been developed to
minimize equation (2) when G imposes global smoothness
[12]. However, global smoothness is inappropriate for most
vision problems, since most underlying quantities change
slowly across most of the image, but have discontinuities at
object boundaries. As a result, some form of discontinuity-
preserving G is required, which makes the energy mini-
mization problem NP-hard [4].

A natural class of discontinuity-preserving terms is

GMRF (x) =
∑

(p,q)∈N
V (xp, xq). (3)

The neighborhood system N consists of pairs of adjacent
pixels, usually the 4-connected neighbors. The smoothness
cost V (l, l′) gives the cost to assign l and l′ to neighboring
pixels. Typically the smoothness cost has a discontinuity-
preserving form such as V (l, l′) = min(|l−l′|, K) for some
metric |·| and constant K. Such a smoothness term incorpo-
rates discontinuity-preserving priors, which can be justified
in terms of Markov Random Fields [8]. We will assume
throughout that V has a discontinuity-preserving form, as
otherwise GMRF would be merely another way of impos-
ing global smoothness.
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1.1. Energy function definition

The problem we address is to efficiently minimize

E(x) = ||y − Hx||22 + GMRF (x). (4)

When H is diagonal, as in image denoising, the data term
has a restricted form that makes it computationally tractable
to minimize E. Specifically,

||y − Hx||22 =
∑

p

(yp − Hp,pxp)2, (5)

which means that the data cost for the pixel p to have the hy-
pothesized label (i.e., intensity) xp only depends on xp and
yp. With such an H , the energy E can be efficiently mini-
mized by graph cuts, which have proven to be very effective
for pixel labeling problems such as stereo [15].

Graph cuts, however, can only be applied to certain en-
ergy functions [7]. We will demonstrate in section 3 that
existing graph cut energy minimization methods cannot be
applied when H is non-diagonal. Intuitively, this is because
the data cost for a pixel to have a label depends on the hy-
pothesized labels of other nearby pixels. Many important
problems involve a non-diagonal system matrix whose el-
ements are zero or positive. Examples include motion de-
blurring and the reconstruction of MRI images from raw
Fourier data.

1.2. Overview

In this paper, we propose a new graph cuts energy mini-
mization algorithm which can be used to minimize E when
H is an arbitrary non-negative matrix. We begin with a brief
survey of related work. In section 3 we give some technical
details of graph cuts, and show that existing methods cannot
minimize E when H is non-diagonal. In section 4 we show
that a dynamically chosen approximation to E can be mini-
mized with graph cuts, and that minimizing the approxima-
tion also decreases E. Section 5 demonstrates experimental
results for MRI reconstruction.

2. Related Work

There are many optimization techniques to solve equa-
tion (2) when G imposes global smoothness; examples in-
clude Preconditioned Conjugate Gradient (PCG), Krylov-
space methods, and Gauss-Siedel [12]. Unfortunately, these
convex optimization methods cannot be applied when the
smoothness term is of the discontinuity-preserving form
given by GMRF . This is not surprising, since the most of
these methods use some variant of local descent, while pixel
labeling problems with discontinuity-preserving smooth-
ness terms are NP-hard [4].

Convex optimization techniques can be generalized to
handle certain MRF-based smoothness terms under re-
stricted assumptions. [5] presents a compound Gaussian
MRF model for image restoration. They introduce addi-
tional parameters describing edge discontinuities into the
MRF prior model, but the underlying image is assumed to
have a Gaussian distribution enabling the use of Tikhonov-
regularized inversion. [2] considers generalized Gaussian
MRF models, which handle the (highly restricted) class
of non-convex priors which can be turned into Gaussian
priors by a non-linear transformation of image intensities.
These approaches, while interesting, cannot be generalized
to discontinuity-preserving smoothness terms like G MRF .

It is also possible that an energy function like ours could
be minimized by a fast algorithm that is not based on graph
cuts, such as loopy belief propagation (LBP) [10]. LBP is a
method for inference on graphical models, which has been
reported to produce results that are comparable to graph cuts
[16]. It is not clear whether or not LBP could be used for
the energy function we examine, as it is in a different form
than the ones where LBP has been applied (such as [16]).
In addition, LBP is not guaranteed to converge on problems
that arise in early vision, due to the highly loopy structure
of the neighborhood system. In contrast, graph cut energy
minimization algorithms have well-understood convergence
properties, and (as we will demonstrate) can be modified to
minimize our energy function.

A related problem is addressed in [17] using LBP. They
are concerned with reducing the number of potential labels
that a pixel can have, in order to make graphical inference
more efficient. While they do not minimize a new class of
energy functions, their technique can be used to perform de-
convolution. Their method relies on learning, and uses LBP
for inference, while we do not use learning and use graph
cuts for energy minimization. While their use of learning is
innovative, there is an advantage to our non-learning based
approach, since for many applications it may be difficult to
obtain a representative training set.

3. Graph Cuts for Non-diagonal H

In the last few years, efficient energy minimization algo-
rithms using graph cuts have been developed to solve pixel
labeling problems [4]. These algorithms have proven to be
very effective; for example, the majority of the top-ranked
stereo algorithms on the Middlebury benchmarks use graph
cuts for energy minimization [15]. The most powerful graph
cut method is based upon expansion moves.1 Given a label-
ing x and a label α, an α-expansion χ = {χp | p ∈ P } is
a new labeling where χp is either xp or α. Intuitively, χ

1The other graph cut methods either have a running time that is
quadratic in the number of intensities [4, Sec. 4] or are cannot handle
discontinuity-preserving smoothness terms [6].
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is contructed from x by giving some set of pixels the label
α. The expansion move algorithm picks a label α, finds the
lowest cost χ and moves there. The algorithm converges to
a labeling where there is no α-expansion that reduces the
energy for any α.

The key step in the expansion move algorithm is to com-
pute the α-expansion χ that minimizes the energy E. This
can be viewed as a binary energy minimization problem,
since during an α-expansion each pixel either keeps its old
label or moves to the new label α. An α-expansion χ is
equivalent to a binary labeling b = { bp | p ∈ P } where

χp =

{
xp iff bp = 0,

α iff bp = 1.
(6)

Just as for a labeling χ there is an energy E, for a binary
labeling b there is an energy B. More precisely, assuming
χ is equivalent to b, we define B by

B(b) = E(χ).

We have dropped the arguments x, α for clarity, but obvi-
ously the equivalence between the α-expansion χ and the
binary labeling b depends on the initial labeling x and on
α. Since we will focus on problems like image restoration
or denoising, we will assume in this paper labels are always
intensities, and use the terms interchangeably.

In summary, the problem of computing the α-expansion
that minimizes E is equivalent to finding the b that min-
imizes B. The exact form of B will depend on E. Graph
cuts can be used to find the global minimum of B, and hence
the lowest cost α-expansion χ, as long as B is of the form

B(b) =
∑

p

B1(bp) +
∑
p,q

B2(bp, bq). (7)

Here, B1 and B2 are functions of binary variables; the dif-
ference is that B1 depends on a single pixel, while B2 de-
pends on pairs of pixels. It is shown in [7] that such a B can
be minimized exactly by graph cuts as long as

B2(0, 0) + B2(1, 1) ≤ B2(1, 0) + B2(0, 1). (8)

If B2 satisfies this condition, then B is called regular (there
is no restriction on the form of B1).

When H is diagonal the data term is given in (5), which
only involves a single pixel at a time, while the smoothness
term involves pairs of pixels. Hence B1 comes from the
data term, while B2 comes from the smoothness term:

B1(bp) =

{
(yp − Hp,pxp)2 if bp = 0,

(yp − Hp,pα)2 if bp = 1,
(9)

while
B2(bp, bq) = V (χp, χq). (10)

(Recall that the equivalence between χ and b is given by
equation (6)). It is shown in [7] that if V is a metric
B2 satisifies equation (8). As a result B is regular, and
so the expansion move algorithm can be applied. Fortu-
nately, many discontinuity-preservingchoices of V are met-
rics (see [4] for details).

However, the situation is very different when H is non-
diagonal. Consider the correlation matrix of H defined by
RH(p, q) =

∑N
r=1 Hr,pHr,q. We can then write

||y − Hx||22 =
∑

p

y2
p − 2

∑
p

(
∑

q

yqHq,p)xp +

∑
p

R2
H(p, p)x2

p +
∑
(p,q)

RH(p, q)xpxq. (11)

The first three terms in (11) depend only on a single pixel
while the last term depends on two pixels at once. As a
result, when H is non-diagonal the second term in (7) is∑

(p,q)

2RH(p, q)χpχq +
∑

(p,q)∈N
V (χp, χq). (12)

Theorem 1 When H is non-diagonal, the binary cost func-
tion B(b) is not regular.

PROOF: The regularity condition is that for any α and
pixel pair (p, q)

RH(p, q)(α2 + xpxq − αxp − αxq) ≤ 0. (13)

RH is non-negative by construction, and the polynomial in
α factors into (α − xp)(α− xq). So equation (13) holds iff

xp ≤ α ≤ xq . (14)

This is clearly invalid for arbitrary xp, xq and α.

Thus, the optimal α-expansion can only be computed on
those pixels { p | ∀q xp ≤ α ≤ xq }. This is a small subset
of the image.

4. Approximating the Energy

We now demonstrate how to use the graph cuts to min-
imize our energy function for arbitrary non-negative H .
Our approach is to minimize a carefully chosen approxi-
mation to the original energy E. The approximation is cho-
sen dynamically (i.e., it depends upon x and α), and the
α-expansion that most decreases the approximation can be
rapidly computed using graph cuts. While we cannot guar-
antee that we find the best α-expansion for the original en-
ergy function E, we can show that decreasing our approxi-
mation also decreases E.

As before, we will use the expansion move algorithm
with a binary energy function B. We will assume that V is
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a discontinuity-preserving metric, which means that we can
write B(b) = Bregular(b) + Bcross(b), where

Bcross(b) =
∑
(p,q)

2RH(p, q)χpχq (15)

are the only terms that are not known to be regular. Graph
cuts cannot be used because there will be pairs (p, q) that
do not satisfy equation (14), and as a result B is not regular.

In the following analysis we will omit the potential terms
that come from V (xp, xq), since our aim is to obtain an ap-
proximation which is valid regardless of the choice of V . In
general, if these terms are large they can potentially cause
some otherwise irregular pairs to become regular. However,
our approximation should not rely on this occurring since
the choice of V reflects prior information about the impor-
tance and form of image smoothness, and should be as un-
constrained as possible.

We will create a regular approximation B ′ and minimize
it instead of B. The construction proceeds in two steps;
first, we introduce an initial modification B̂, and then we
use B̂ to build B ′. Let R denote the set of pairs (p, q) that
obey equation (14) at the current labeling x, i.e.

R = { (p, q) | xp ≤ α ≤ xq }.

Let Nd be the set of all pixel pairs interacting together via
the cross data cost (15). For convenience, we wil also define
R̄ = Nd \ R, which is the intersection of Nd and the com-
plement of R. We can split the pairs of pixels (p, q) into
those in R and those in R̄. We will use an approximation
for those pixels in R̄.

We begin by approximating Bcross by

B̂cross(b) =
∑

(p, q) ∈ R
2RH(p, q)χpχq

+
∑

(p, q) ∈ R̄
RH(p, q)(xpχq + χpxq) (16)

Our initial approximation is B̂(b) = Bregular(b) +
B̂cross(b). It is straightfoward to show that we can use
graph cuts with this approximation (the proof appears in
[14]).

Theorem 2 The energy function B̂(b) is regular.

The obvious question is whether decreasing our modi-
fied energy function B̂ results in a decrease in the original
energy function B. Consider an initial labeling x and an
α-expansion χ. Both χ and the input labeling x correspond
to binary labelings; χ corresponds to b, and x corresponds
to the zero vector, which we will write as 0. The change in

energy when we move from x to χ under the two different
energy functions can be written as

ΔB = B(b) − B(0), ΔB̂ = B̂(b) − B̂(0). (17)

We can use graph cuts to find the b that minimizes B̂, so
ΔB̂ < 0. We wish to show that this results in a decrease in
the original energy function, i.e. ΔB < 0.

Using the definitions of B, B̂ we can write

ΔB̂ = ΔB +
∑

(p,q)∈R̄
RH(p, q)Δ(χp, χq). (18)

The function Δ(χp, χq) is defined by

Δ(χp, χq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 χp = xp, χq = xq,

xq(xp − α) χp = α, χq = xq,

xp(xq − α) χp = xp, χq = α,

2α(xp+xq

2 − α) χp = χq = α.
(19)

In order to reduce the value of the original energy function,
we need ΔB ≤ 0. It suffices to show that the second term
in equation (18) is positive.

Let us define the set of pixel pairs

R′ =
{

(p, q) ∈ R̄ | xp < α, xq < α
}
,

and the set of pixels

C = {p | ∃q s.t. (p, q) ∈ R′ }. (20)

C is important because if we do not modify pixels in C, then
reducing our modified energy reduces the original energy.

Theorem 3 Let x be an initial labeling and consider the
α-expansion χ corresponding to the binary labeling b. Sup-
pose that b does not modify the label of any pixel in C, i.e.
∀p ∈ C, bp = 0. Then if b decreases our modified energy
(i.e., ΔB̂ < 0), it also decreases the original energy (i.e.,
E(χ) < E(x).

PROOF: If p �∈ C, then for some neighbor q at least one of
xp, xq is greater than α. If both xp > α and xq > α, then
Δ(χp, χq) ≥ 0, since all of the cases in equation (19) are
non-negative. If α lies between xp, xq then (p, q) ∈ R.

We will need a better approximation than B̂, since min-
imizing B̂ is sound, but not practical. In practice, C will
be too large for fast convergence, since pixels in C do not
change. We will further modify the energy to allow all pix-
els to potentially change, hence increasing the convergence
speed. Our final approximation is

B′(b) = B̂(b) +
∑
p∈C

λbp, (21)
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where λ is a constant. This imposes a cost of λ for a pixel
in C to increase in brightness to α.

Notice that the new cost only depends on a single pixel
at a time, so B′ is regular and we can use graph cuts to
rapidly compute its global minimum. The following theo-
rem, whose proof is supplied in [14], shows that reducing
B′ reduces B.

Theorem 4 Let x be an initial labeling and consider the α-
expansion χ corresponding to the binary labeling b. Then
if b decreases our modified energy B′, it also decreases the
original energy (i.e., E(χ) < E(x)).

Our algorithm, then, replaces B by the approximation
B′ and uses graph cuts to find the global minimum of B ′.
We are guaranteed that this decreases the original energy E
which we wish to minimize.

5. Experimental results

Our approach is valid for any non-negative H , which
covers the vast majority of linear inverse problems in vi-
sion.2 Our experimental results focus the important prob-
lem of reconstructing MRI images from fourier data. Run-
ning time for our method was approximately 2 minutes on
256 by 256 images for a Matlab implementation ([3] pro-
vides evidence that the speed of graph cut methods scales
linearly with the number of pixels).

Since there are very few methods that can minimize our
energy function, we compared against an energy function
with the first derivative as the smoothness term G in equa-
tion (2). Such an energy function is expected to produce
oversmoothing, but has the advantage that it can be mini-
mized by standard numerical methods such as PCG. As a
result, it is representative of a large class of approaches to
linear inverse problems. Note that PCG is subject to various
numerical issues such as round-off error, which our method
avoids (since we do not perform any floating point calcula-
tions).

Parameters for our method and for PCG were experi-
mentally chosen from a small number of trial runs. In the
following experiments we used the truncated linear model
for potential functions between neighbours. Further details
of the exact choices of parameters are given in [14], along
with experimental evidence that our method can also per-
form motion deblurring.

5.1. The MRI reconstruction problem

Reconstructing MRI’s from the raw fourier data gener-
ate by an MR scanner is an important problem in medi-
cal imaging [9]. Generalized deconvolution problems arise

2Our method actually coversa larger group of system matrices; we only
require that RH is non-negative.

Figure 1. Left: sensitivity map for a coil at the
top left of the object. Right: system matrix for
parallel imaging, shown for L = 4 coils. Non-
zero entries, which come from the sensitivity
maps, are shown as circles.

commonly in this application, where the system matrix H
encodes the fourier transform. A particularly compelling
application lies in a fast scanning technique called parallel
imaging, which has previous been solved without imposing
spatial smoothness. Fast scanning is extremely important in
MR, because MR is known to be very sensitive to motion
artifacts [9].

Parallel imaging techniques, such as SENSE [13] and its
variants, significantly accelerate acquisition speed by sub-
sampling in fourier space. To overcome the aliasing that
subsampling induces, multiple receiver coils are used. The
image created by a coil is brightest at pixels near the coil
and falls away smoothly with distance from the coil. By
scanning a uniform phantom, it is possible to compute the
multiplicative factor that each coil applies to each intensity
(this is called a sensitivity map, and an example is shown
at left in figure 1). Given the sensitivity maps and the
aliased coil outputs, the well-known SENSE algorithm [13]
reconstructs the un-aliased image using least squares. Least
squares, of course, computes the maximum likelihood es-
timate, which corresponds to having no smoothness term
whatsoever.

The problem of reconstructing the un-aliased image is an
example of the generalized deconvolution problem, with the
observation y computed from the coil outputs and the sys-
tem matrix H computed from the sensitivity maps. Assume
there are L coils and that each coil subsamples by a factor
of R (which reduces scan time by a factor of R). Standard
acquisition protocols perform regular cartesian sampling in
fourier space. Taking the inverse fourier transform results
in a linear inverse problem with a sparse system matrix of
the form shown at right in figure 1 (see [13] for details). In
parallel imaging the non-zero elements of the system ma-
trix are sensitivity map entries, which are non-negative. (A
precise definition of the system matrix for parallel imaging
is given in [14].)
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5.2. MRI reconstruction results

In figure 2 we present the reconstructed images obtained
by our graph cut method, as well as standard SENSE. In or-
der to perform a comparison with a “gold standard”, we ob-
tained these results from a normal-speed scan. Ideally, the
parallel imaging methods should be able to reconstruct the
same image from heavily sub-sampled inputs, which can be
obtained much faster. In our experiments the sub-sampling
factor, R, was chosen to be 3, with L = 4 coil outputs.
Results are shown for both a phantom and a patient’s knees.

One would expect to see better spatial smoothing with
our method than with SENSE, and this is quite obvious in
the phantom images in the top row. The patient data also
appears to be somewhat improved by our method, although
the differences are more subtle. In the zoomed in region
of the patient’s knee shown in the bottom row, the edge
definition produced by our method seems somewhat bet-
ter than SENSE, although it is definitely not as good as
the original (non-accelerated) version. In terms of PSNR,
our method gives an improvement on the phantom image
(SENSE PSNR: 24.3; our PSNR: 26.1), while on the pa-
tient image our PSNR numbers are slightly worse (SENSE
PSNR: 29.3; our PSNR: 29.2).

6. Conclusions

We have shown that graph cut algorithms can efficiently
compute a discontinuity-preserving solution to linear in-
verse problems with a non-negative system matrix H . The
obvious extension of our work would be to generalize our
results to arbitrary H . We would only need to handle the
case where RH can be negative; it seems plausible that this
could be done by further refining our approximation to the
original energy function. Linear inversion problems where
RH can be negative, however, do not appear to arise often
in computer vision, and hence our current results cover the
vast majority of applications.

Another extension would be to investigate non-sparse
choices of H . While the techniques we describe do not
make any assumption about sparsity, the speed of the
method decreases as H becomes less sparse. This is due to
an increase in the number of edges in the graph (the number
of vertices remains the same). Graph cut algorithms rely on
max flow to compute the minimum cut. The widely-used
augmenting paths methods for computing max flow have
complexity O(mn2) for m edges and n vertices.

In general, the graphs constructed for energy minimiza-
tion problems in vision have a large number of short paths,
which improves the performance of max flow. [3] reports
that in practice the speed is nearly linear in the number
of pixels instead of the quadratic fall-off predicted by the
asymptotic complexity. If H is not sparse the number of

edges in the graph would increase, which asymptotically
should produce a linear increase in running time. Yet for
several 3D vision problems [3] found that going from a
6-connected neighborhood system to a 26-connected one
roughly doubled the running time. It is thus unclear how
significant an issue the running time would be.
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Non-accelerated reconstruction SENSE reconstruction Our reconstruction

Figure 2. MRI reconstruction results. The acquisition time for non-accelerated reconstructions was
3 times as long as for SENSE or our method. Phantom results are shown at top, results on a patient
at at bottom, with zoomed-in versions below the originals.
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