
Fast Texture-Based Tracking and Delineation Using Texture Entropy∗

Ali Shahrokni† Tom Drummond‡ Pascal Fua†

ali.shahrokni@epfl.ch twd20@eng.cam.ac.uk pascal.fua@epfl.ch

† Computer Vision Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland

‡ Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, UK

Abstract

We propose a fast texture-segmentation approach to the
problem of 2-D and 3–D model-based contour tracking,
which is suitable for real-time or interactive applications.

Our approach relies on detecting texture boundaries in
the direction normal to the contour boundaries and on us-
ing a Hidden Markov model to link these boundary points
in the other direction. The probabilities that appear in this
computation closely relate to texture entropy and Kullback-
Leibler divergence, a property we use to compute and up-
date dynamic texture models.

We demonstrate results both in the context of interactive
2-D delineation and fast 3-D tracking.

1. Introduction

In earlier work [10], we proposed a texture-based ap-
proach to finding the edges of highly textured objects in
the presence of clutter. We demonstrated that, unlike most
texture-based techniques, it is fast enough for real-time
tracking. However, the estimated texture distribution be-
comes more accurate as we get more observations on each
scanline. Moreover, because it relies on learning a texture
model inside the object, it may loose track as the object’s
appearance changes. Here we overcome this problem by
incorporating

HMM and scanstripes: A Hidden Markov Model is de-
fined to bind and exploit local texture information in form of
texture crossing probabilities on a bundle of scanlines [10]
that we refer to as scanstripes. This yields the most likely
connected contour(s) of the object.

∗This work was supported in part by the Swiss National Science Foun-
dation.

Kullback-Leibler Divergence (KLD): The relative en-
tropy between the actual target texture and the prior target
texture model is measured in the course of tracking and used
to dynamically update the texture model.

We will show that this yields more robust tracking be-
havior, for example under lighting changes. Furthermore,
this opens the door for other applications that require near
real-time performance, such as the interactive drawing of
image boundaries that are becoming increasingly popular
in image-processing systems such as Photoshop. In the re-
mainder of this paper, we first discuss related work. We
then introduce scanstripes and their advantages over scan-
lines. In Section 3.3 we go through the Hidden Markov
Model that aggregates the scanstripe information. Updating
the prior target texture model and the relationship between
texture changepoint probabilities and the texture entropy is
discussed in Section 4. Finally Section 5 reports our exper-
iments on tracking with KLD-based update and interactive
segmentation of different objects.

2. Related work

The contours used for most tracking applications are ex-
tracted either based on local gradient information [3, 11]
or edge distance transform [6, 12]. These methods are ap-
pealing due to their simplicity and speed, but their appli-
cation is restricted to the cases where the contrast is suffi-
cient. Furthermore, these methods tend to fail in the pres-
ence of highly textured objects and clutter, which produce
too many irrelevant edges. This is due to their failure to
exploit the intensity values and structures available in the
image. The main reason for not exploiting this informa-
tion is the complexity of texture patterns and difficulty in
adaptation of texture segmentation and analysis techniques
to tracking applications.



The main idea here is somewhat similar to interactive
texture segmentation problems such as work by Blake et.
al. [1] where we start from an initial user-provided guess
about foreground, background and undetermined regions
and the goal is to segment the undetermined regions to
foreground and background subregions. However popu-
lar texture segmentation techniques such as methods based
on graph cuts [2, 7] require computing Markov Random
Field (MRF) models from a training set. Moreover they
tend to be computationally intensive. These features tend
to make such approaches not suitable for tracking. Re-
cently Rother et. al. [9] have introduced a technique based
on graph cuts which yields impressive interactive segmen-
tation results thanks to improvements in the optimization
stage and local post-processing. Their method works on
3-channel images and relies on post-processing to extract
details. Here we aim at a method that works on 8-bit im-
ages and finds contours given a starting guess and normal
directions. Therefore, it can be used in a complementary
sense to graph cut methods to refine object contours around
estimated positions.

A prototype texture-based tracker is the set forth by Ozy-
ildiz et. al. [8] in which a formulation for fusing texture and
color is presented in a manner that makes the segmentation
reliable while keeping the computational cost low. The tex-
ture is modeled by an autobinomial Gibbs Markov Random
Field (GMRF) and a 2–D Gaussian distribution is used for
modeling the color. However since the MRF model is used
to learn the global characteristics of target texture, it can
not extract fine contours of the object as is required by 3–D
pose tracking algorithms. Instead, this method is used to
track the object as a whole in the image. Moreover training
MRF’s would lead to difficulties in tracking objects with
different local textures and patterns.

Updating the prior model is of particular importance
in tracking since the initial model of the target changes
in the course of tracking due to changes in lighting con-
ditions and object views. In the texture-based tracking
scheme proposed in [8] a statistical model for the adaptation
over time of the mean and covariance vectors is proposed
which uses L previous mean and covariance estimates. This
causes rapid accumulation of drift error and gives unde-
sirable tracking results in a long sequence. On the other
hand in this work, we exploit the Kullback-Leibler Diver-
gence to update the target model in an adaptive way. The
KLD-based update avoids rapid error accumulation thanks
to its advantageous flexibility and discriminant characteris-
tics over other distribution distance measure [13].

3. Texture boundary extraction

In this section we first review quickly our original scan-
line approach to detect texture crossings [10], we then show

how to aggregate the information from multiple scanlines to
improve the probability distribution of texture boundaries.
This is done in two ways. First we use a bundle of neigh-
boring scanlines, scanstripes, in order to better estimate the
transition matrices. Second, we link scanstripes in order to
aggregate the information on the entire set of scanstripes.
The resulting algorithm is still fast and can operate at sev-
eral frames per second for tracking while being more robust
and stable.

3.1. Scanlines

A scanline is a sequence of n pixel intensities
Sn

1 = (s1, ...sn). It is assumed to have been generated by
two distinct texture processes each operating on either side
of an unknown change point. Thus the observed data is
considered to have been produced by the following process:
First a changepoint i is selected uniformly at random from
the range [1 − n]. Then the pixels to the left of the change-
point (the sequence Si

1) are produced by a texture process
T1 and the pixels to the right (Sn

i+1) are produced by pro-
cess T2. This leads to the probability of texture crossing for
point i which can be calculated in closed form for uniform
prior for texture distribution [10].

If pixels are drawn from C classes then a 1st order model
consists of C × (C − 1)/2 parameters, if we assume a
symmetric state transition matrix. This implies that using
only the observations on a single scanline can be insuffi-
cient in order to estimate all these parameters correctly and
can cause instable tracking results. In the remainder of this
section we consider methods to better estimate these param-
eters and obtain more reliable probabilities.

3.2. Scanstripes

Scanstripes are a set of parallel scanlines that are scanned
simultaneously to count the number of pixel occurrences of
a substring Si

i−1 in the scanstripe in two perpendicular di-
rections. This improves the estimation of scanline probabil-
ities by basing the estimation on more observations using
the neighboring lines around each scanline. In general this
results in earlier convergence of the transition matrix.

One might be tempted to use two transition matrices to
represent the pixel joint probabilities in two orthogonal di-
rections, one parallel to the scanline, and one normal to it.
Although this seem to be the right choice in the case of non-
isotropic textures, it has the disadvantage of doubling the
number of parameters used to model the texture and can
have negligible advantage if the examined textures are rec-
tified according to a fixed reference system using an estima-
tion of their orientation from the pose prior.

To illustrate the effects of scanstripes we have conducted
several tests. Fig. 1-(b) shows the individual scanlines tex-



(a) (b) (c)

(d) (e) (f)

Figure 1. Scanstripe vs. scanline log probabilities for the texture image shown in (a). Individual
scanlines and a single transition matrix (b). Parallel and vertical transition matrices on scanstripes
made of 5 scanlines (c). One single transition matrix containing both parallel and vertical transitions
on scanstripes made of 5 scanlines (d). Finally (e) and (f) show the most likely boundary obtained
using an HMM and the Viterbi algorithm on the test image with and without occlusion.

ture crossing log probabilities on the test image shown in
Fig. 1-(a) as intensities values. This corresponds to the case
that we use only one observation at a time to update the
transition matrix as suggested in [10]. Fig. 1-(c) shows the
case where we apply a transition matrix corresponding to
the direction parallel to the scanstripe as well as another
one for the perpendicular direction on a scanstripe made of
5 scanlines. Fig. 1-(d) shows the case where we use the par-
allel and normal transitions to update one single transition
matrix on a scanstripe made of 5 scanlines. The superior-
ity of scanstripes over scanlines can be seen in this example
where the textures on both sides are quite similar. The re-
sult obtained using scanlines are quite noisy and it is not
possible to distinguish a texture boundary from the prob-
ability image whereas using scanstripes smoothens out the
noise and yields a visible bright boundary (high probability)
in the probability image. Moreover, the convergence of the
transition matrix happens 3 times faster when using 5 scan-
lines to update the transition matrix instead of one scanline.

3.3. Linkage of scanstripes

Each scanstripe gives independently the probability of
texture change across it. These probabilities can be aggre-
gated to yield a probability distribution for the most proba-
ble paths that separates the textures.

Given a geometric (3–D) model of the object, the prob-

ability of a hypothesized pose can be calculated from the
scanstripe probabilities. Therefore we can use a robust esti-
mator to maximize the pose probability given the scanstripe
probabilities. This is explained in detail in section 5.

However, for the cases where the model is not easy to use
or for delineation application we present a Hidden Markov
Model to link separate scanstripe probabilities. This is the
case when the model does not consist of straight or geo-
metrically well defined (such as quadrics) edges. In the re-
mainder of this section we describe the HMM linkage of
scanstripes.

We define a HMM with, as observable state, a set of pixel
sequences L = {Li | i = 1, ..., N} where each sequence
Li is a scanstripe. The HMM is characterized by the vis-
ible state Li which is the sequence of pixel intensities on
scanstripe i and the hidden state Zi which is the location
of the real edge along the scanstripe i. The likelihood dis-
tribution in each of the states, P (Lt |Zt), is given by in-
dividual scanstripe probabilities of section 3.2 and the de-
pendency between successive hidden states, P (Zt+1 |Zt),
is modeled by a Gaussian kernel which ensures connectiv-
ity and smoothness of the boundary. Finally, the initial state
distribution P (Z0) is assumed to be uniform. We wish to
maximize the probability of the hidden states for a given set
of sequences, L:

arg max
z1,...,zN

P (Z1 = z1, ..., ZN = zN |L1, ..., LN ) (1)



De
via

tion
 fro

m E
ntr

opy

sequence length

Figure 2. Ĥ(n)/n or the deviation of the se-
quence log probability ln P (Sn

1 ) from the en-
tropy for C = 16.

The posterior distribution given by Eq. 1 can readily be
used to obtain texture boundaries using the Viterbi algo-
rithm [5], which provides an efficient way to extract the
highest probability path in the distribution that separates
two textures. This is illustrated in Fig. 1-(e) where the most
probable path obtained thus is superposed on the test image.
The marked advantage of such global maximization of the
a posteriori distribution of the boundary is its robustness in
presence of complex and similar textures or strong occlu-
sion such as shown in Fig. 1-(f).

4. Learning target texture model

It is sometimes helpful to learn the transition matrix of a
known target a priori in order to detect its boundary with an
arbitrary background. This is particularly useful in tracking
or segmentation of complex texture compositions. Unfortu-
nately this is not a trivial issue because the initial values of
the transition matrices on both sides of the scanstripes (cor-
responding to the exterior and interior textures, see [10] for
details) would no longer be equal. The final changepoint
probability in this case will be biased. If the effects of this
bias are too large, they can obscure the true peaks in the
scanline probability curves and therefore push the detected
boundary towards the inside of the learnt target. Moreover,
it is useful to measure the consistency of the learnt texture
model and the actual object texture during tracking. This
measure can be used to update the model as the object’s
texture and the scene’s ambiance are evolving. In the fol-
lowing we propose a method to detect and correct a bad
prior model and adaptively update the texture model.

4.1. Log probability and the entropy of texture

The log probability curves of a scanstripe have an impor-
tant mathematical interpretation. We show how this curve
relates to the entropy of the texture. This is an important

issue since it can be exploited to distinguish the prior mod-
els which are not in compliance with the current texture and
moreover it gives us a distance measure which can be di-
rectly used to update them as discussed in the next section.
First we derive the relationship between the log probabil-
ity curves and entropy for the 0th (histogram) and 1st order
(transition matrix) texture model, using the estimated prob-
ability of texture symbols [10].

0th order model

Imagine that we have C classes in our texture model (bins
of intensity histogram for example). The uniform texture
distribution prior implies that the probability of a given se-
quence of n pixels drawn from an unknown texture process
T is given by:

P (Sn
1 ) =

Os1

(1+C−1) ×
Os2

(2+C−1) × · · · ×
Osn

(n+C−1)

=
Q

C

i=1 Osi
!

(n+C−1)!
(C−1)!

(2)

where Osi
is the number of times a class, to which pixel

Si belongs, has appeared in the sequence Si
1. If n is large

enough we have Osi
= npi, with pi being the probability

of class i.
The log probability of this term is therefore:

ln P (Sn
1 ) =

C∑

i=1

ln(npi)! − ln(n + C − 1)! + ln(C − 1)!

Using the Stirling’s formula, ln x! ≈ x ln x − x + 1, we
get:

ln P (Sn
1 ) =

∑C

i=1(npi ln(npi) − npi + 1)
− (n + C − 1) ln(n + C − 1)
+n + (C − 1) ln(C − 1) .

Simplifications give:

ln P (Sn
1 ) = −nH −

(n ln(n+C−1
n

) + (C − 1) ln(n+C−1
C−1 ) − C)

= −nH − Ĥ(n) .

Thus:

H = −(ln P (Sn
1 ) + Ĥ(n))/n (3)

with H being the entropy of the texture. Ĥ(n) determines
the amount of drift from the real entropy in the sequence
as n changes. The above equation suggests that the en-
tropy can be derived from the probability of the sequence.
Fig. 2 shows the deviation of the sequence log probability
ln P (Sn

1 ) from the entropy, i.e. Ĥ(n)/n vs. n. As can be
seen this deviation approaches zero for large n. While for
small sequence lengths it should be taken into considera-
tion.



1st order distribution

The probability of a given sequence drawn from a 1st order
texture process T governed by a transition matrix instead of
a histogram can be obtained by employing Eq. 8 in [10] and
expanding the sequence probability term. This gives:

P (Sn
1 ) =

∏C

j=1

∏C

i=1(1/C + Oij − 1)!
∏C

j=1 Oj !

The log probability of this probability term is therefore:

ln P (Sn
1 ) =

C∑

j=1

C∑

i=1

ln(1/C + Oij − 1)! −
C∑

j=1

lnOj !

where Oij is the number of times symbol j is followed
by symbol i in the sequence of n pixels Sn

1 drawn from a
texture. Unlike the 0th order it is not straight forward to de-
rive a direct formula for the entropy in this case. However,
letting Oij = npjpij and 1/C+Oij−1 ≈ Oij would make
appear the entropy term. These assumptions are not accu-
rate for small n. Nevertheless, they allow us to estimate the
relationship between the log probability curve and the 1st

order entropy of the texture:

H = −(ln P (Sn
1 ) + Ĥ)/n

with
Ĥ = C2 − C . (4)

We can see that unlike the 0th order model, the deviation
from the entropy, Ĥ , does not increase with n which indi-
cates the advantage of using a transition matrix instead of a
histogram.

However, as mentioned earlier the approximation 1/C +
Oij − 1 ≈ Oij is not a good one for small n. Instead,
our experiments show that we can approximate the entropy
using the equation:

H ≈ − ln P (Sn
1 )/n − 1 (5)

for small n and common choices of number of pixel inten-
sity classes C < 20.

4.2. Updating the texture model

As the tracking goes on the appearance of the learnt tex-
ture of the target changes due to various lighting conditions.
Measuring these changes and updating the learnt model is
indispensable for a successful tracking. The predicted po-
sition given by the previous tracking stage allows us to cal-
culate the entropy of the current target texture as discussed
above from the log probability of a sequence of pixels. A
second entropy H̃ can be computed from the sequence by
using the prior texture model, T1: H̃ = − ln P (Sn

1 |T1)/n.

0 50 100 150 200
0

0.5

1

1.5

2

sequence length

K
L

 d
iv

er
ge

nc
e

0 50 100 150 200
0

0.5

1

1.5

2

sequence length

K
L

 d
iv

er
ge

nc
e

(a) (b)

Figure 3. H̃ −H for the true and a lousy learnt
model. (a) 0th order model using Eq. 3 to cal-
culate H, (b) 1st order model using Eq. 5 to
calculate H. Red dashed lines are KL diver-
gence of the poor model and the thick solid
line is the KL divergence of the true model.

The difference H̃ − H is known as Kullback-Leibeler Di-
vergence (KLD) or relative entropy and is always a posi-
tive value. The KL Divergence gives a clear measure of
how different our calculated model is from the actual tex-
ture process. We can use the KL Divergence to mix the
current texture and the learnt model in order to update
the model. In that case we use a filter with a parameter
α = 1− exp(− H̃−H−B

τc
) which depends on the KLD mea-

sure. τc is the user-defined time constant that determines the
latency of the filter. In practice we use a small constant B
to compensate the effects of approximations and it is value
is determined manually. We set it to be B ≈ 0.4. The prior
model T1 is thus updated with T ′

1 = α T2 + (1 − α)T1

where T2 is the current texture model. Fig. 3 shows the
curves of H̃ − H for the true and a poor learnt model for
20 < n < 200 derived using Eqs. 3 and 5 for the 0th and
1storder model respectively.

5. Application to tracking and interactive seg-
mentation

In this section we present our experimental results of ap-
plying the proposed method to both tracking and interactive
texture segmentation.

Tracking. To show the effect of the KL divergence in
updating the prior texture model in case of changes in light-
ing we tracked a shiny magazine cover. It reflects light dif-
ferently as the camera moves around it. Moreover, there is a
high amount of motion blur due to the motion of the camera
and the interlaced images. If we use a constant (including
zero, i.e. no update) value for α in the texture update for-
mula T ′

1 = α T2 + (1 − α)T1 of Section 4, tracking fails
after a few seconds (results not shown due to lack of space).
On the other hand, adaptive α derived from the KLD of
the prior learnt model and the current target texture enables
tracking through the whole sequence as shown in Fig. 4. In



frame # 1 frame # 100 frame # 200 frame # 300

Figure 4. Tracking with KLD-based update of the prior model. RANSAC linkage is used to fit straight
lines (red) to the scanstripe probabilities directly which are then used to calculate the pose of the
model.

(a) (b) (c) (d)

Figure 5. Frame # 90 for tracking using different methods: (a) edge-based tracker, (b) scanlines only,
(c) scanstripes only, and (d) RANSAC linkage of scanstripes.

this tracking example, we use the fact that model is made of
straight edges and therefore robustly fit straight lines to the
scanstripe change probability distribution directly using the
RANSAC algorithm [4] instead of HMM linkage.

We have also compared our results with an edge-based
tracker [3] in addition to the cases where we use only
scanlines and where we use only scanstripes without link-
age. We observe that the RANSAC linkage of scanstripes
with the KLD-based update outperforms other methods.
Moreover the speed of the method remains close to real-
time (6-10 fps on a 2.8 GHz Pentium 4). The edge-based
tracker is easily fooled by the strong edges in the cover
of the magazine as can be seen in Fig. 5-(a) for the 90th

frame. The scanline tracker also is lost due to poor esti-
mation of texture parameters for some edges 5-(b). Using
scanstripes improves the results 5-(c), while RANSAC link-
age of scanstripes which enforces the fact that the searched
boundary needs to be a straight lines improves the stability
of the tracking results 5-(d)

Delineation. Because it is fast, our method can also
serve as an interactive texture segmentation tool. Fig. 6
shows some detected texture boundaries starting from an
initial guess –here the circles or straight lines drawn by the
users– which provides the scanstripe directions. Scanstripe

probabilities are then linked using the HMM described in
section 3.3 and the optimal boundary is obtained using the
Viterbi algorithm. The zebra result demonstrates that the
algorithm works well even on non-isotropic textures. More
segmentation results are shown in Fig. 7 where initial guess
in obtained by fitting an spline curve on a few user-provided
points.

6. Conclusion

We have proposed an approach to contour-based object
tracking and texture segmentation that relies on detecting
texture boundaries in a given search region and direction.

The reliability of the algorithm lies on the way it aggre-
gates scanline information. Scanstripes are used to estimate
texture parameters and assign all pixels in the search re-
gion a texture change probability. These probabilities are
then further linked using an HMM or RANSAC algorithm
depending on the object’s geometric model. We have also
shown that the probabilities that appear in this computation
closely relate to texture entropy and Kullback-Leibler diver-
gence, a property we use to compute and update dynamic
texture models.

The HMM posterior can be used to extract the most



Figure 6. Fast interactive texture segmentation. An initial guess is given by the user (thin circles
or straight lines). The HMM is used to link scanstripes and the Viterbi algorithm gives the final
texture boundary shown as a thick curve. In the case of the zebras, note that the algorithm finds the
boundary between similar textures of different orientations.

Figure 7. More interactive texture segmentation results with initial curve defined by an spline. The
black curve on white band marks the detected outline and the thin gray line is the spline curve.

probable texture boundary efficiently using the Viterbi al-
gorithm. This serves as an interactive texture segmentation
tool where the user roughly provides the scanstripe direc-
tions and the search region. The time of calculation of the
texture boundary is typically less than a second depending
on the length of the initial curve. Moreover, this is a generic
tool and does not rely on a training database, unlike conven-
tional texture segmentation techniques.

Our implementation for tracking is also fast and can be
optimized to process several frames per second. This is
partly thanks to the novel formulation that considers uni-
form prior for all texture distributions and does not assume
a prior texture distribution model.

References

[1] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Inter-
active image segmentation using an adaptive gmmrf model.
In European Conference on Computer Vision, volume 1,
pages 428–441, 2004.

[2] Y. Boykov and M. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.
In International Conference on Computer Vision, pages Vol
I:105–112, Vancouver, Canada, July 2001.

[3] T. Drummond and R. Cipolla. Real-time visual tracking of
complex structures. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7):932–946, july 2002.

[4] M. Fischler and R. Bolles. Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Im-

age Analysis and Automated Cartography. Communications
ACM, 24(6):381–395, 1981.

[5] G. D. Forney. The Viterbi algorithm. In Proceedings of
IEEE, volume 61, pages 268–278, March 1973.

[6] H. Gupta, A. Roy-Chowdhury, and R. Chellappa. Contour
based 3d face modeling from a monocular video. In British
Machine Vision Conference, pages 367–376, Kingston Uni-
versity, England, 2004.

[7] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):147–159, 2004.

[8] E. Ozyildiz, N. Krahnstoever, and R. Sharma. Adaptive
texture and color segmentation for tracking moving objects.
Pattern Recognition, 35(10):2013–2029, 2002.

[9] C. Rother, V. Kolmogorov, and A. Blake. ”GrabCut”: In-
teractive Foreground Extraction using Iterated Graph Cuts.
ACM Transactions on Graphics, 23(3):309–314, 2004.

[10] A. Shahrokni, T. Drummond, and P. Fua. Texture Boundary
Detection for Real-Time Tracking. In European Conference
on Computer Vision, pages Vol II: 566–577, Prague, Czech
Republic, May 2004.

[11] C. Taylor, J. Malik, and J. Weber. A real-time approach to
stereopsis and lane-finding. In Intelligent Vehicles, pages
207–212, 1996.

[12] A. Thayananthan, P. Torr, and R. Cipolla. Likelihood mod-
els for template matching. In British Machine Vision Con-
ference, pages 949–958, 2004.

[13] N. Vasconcelos, P. Ho, and P. Moreno. The kullback-leibler
kernel as a framework for discriminant and localized repre-
sentations for visual recognition. In European Conference
on Computer Vision, pages Vol II:430–441, Prague, Czech
Republic, May 2004.


