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Abstract

The aim of this work is to learn generative models of
object deformations in an unsupervised manner. Initially,
we introduce an Expectation Maximization approach to es-
timate a linear basis for deformations by maximizing the
likelihood of the training set under an Active Appearance
Model (AAM). This approach is shown to successfully cap-
ture the global shape variations of objects like faces, cars
and hands. However the AAM representation cannot deal
with articulated objects, like cows and horses. We there-
fore extend our approach to a representation that allows for
multiple parts with the relationships between them modeled
by a Markov Random Field (MRF). Finally, we propose an
algorithm for efficiently performing inference on part-based
MRF object models by speeding up the estimation of obser-
vation potentials. We use manually collected landmarks to
compare the alternative models and quantify learning per-
formance.

1. Introduction

In this paper we pursue the learning of probabilistic mod-
els for object categories using minimal supervision. There
is important need for such methods to facilitate the appli-
cation of computer vision to large scale problems such as
detecting large numbers of objects in images. Recent work
has shown the practicality of learning models of object cat-
egories using sparse features [24], demonstrating good per-
formance for tasks like object recognition and localization.
However, the use of sparse features means that: (i) the mod-
els only exploit a limited amount of the image information,
and (ii) the models are not suited for tasks such as top-down
segmentation, tracking, identification, etc.

There have been a variety of attempts for learning
dense models of objects. Some notable examples include
[27, 14, 9, 25], as well as the Active Appearance Model
(AAM) learning literature, e.g. [23, 4, 1]. But all of these
have some limitations. For example, clean segmentation
maps are required in [27], a movie of the deforming object
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is needed in [14], while other approaches [9, 25] model the
object deformations using generic, smoothness constraints
instead of learning the statistics of the object deformations.

We learn a dense representation of the object by for-
mulating the task as parameter estimation for a generative
model. There are two different types of unknowns: (a) the
model parameters which characterize the possible deforma-
tions of the object category, and (b) the deformation vari-
ables which specify the shape of each object example. We
apply the EM algorithm [6], where the M-step estimates the
model parameters and the E-step takes the expectation with
respect to the deformation variables, which are treated as
hidden variables. Our minimal supervision consists in re-
quiring that the object is present in the image with roughly
constant position and scale but with variable background.

The image representation we use is based on the edge
and ridge primal sketch of Lindeberg [15]. This contains
useful shape-related information about the object as edges
are typically active along object boundaries and ridges indi-
cate the symmetry axes of objects. This representation can
enable both object segmentation and detection, e.g. [13] but
has not yet been used for unsupervised learning. Further, it
is largely insensitive to appearance variation, thereby allow-
ing us to focus on learning deformations. Finally, the edge
and ridge curves can be treated as sets of points; this allows
us to use the clustering procedure of Mean-Shift [2] for two
crucial problems, namely AAM initialization and finding
the object parts.

In Section 2 we first apply our strategy to deformable
objects without articulated parts, which we represent by
AAM’s. We apply the EM algorithm, where the M-step es-
timates the deformation basis elements of the AAM while
the E-step takes the expectation with respect to the AAM
expansion coefficients. AAM’s are good models for certain
types of objects and, as we will show, learning AAM’s is
useful to initialize the learning of more complex models.

In Section 3 we turn to the more challenging task of
learning articulated objects, and represent the object by de-
formable parts with relationships modeled by Markov Ran-
dom Fields (MRF’s). Our strategy is to first model the ob-
ject by a single AAM, which we learn as described above,
and use it as initialization for learning a more complex
model containing multiple parts, which are obtained auto-



matically. Our algorithm proceeds to learn their appear-
ances and spatial relationships, by extending the EM algo-
rithm to estimate the deformations of the parts (E-step) and
the MRF model which describes the spatial relations be-
tween them (M-step). Finally, we propose an algorithm for
efficiently performing inference on part-based MRF object
models by speeding up the estimation of observation poten-
tials.

We validate the merit of our approach by learning models
for a range of different objects, including e.g. cars, hands
and cows. We provide systematic results using as ground
truth manually collected landmarks that we make publicly
available.

2. Learning AAMs

2.1. Previous Work

The AAM representation [3, 23] captures the variability
of a deformable object in terms ofshapevariations andap-
pearancevariations. Both are expressed by expansions on a
linear basis, but their combination yields a nonlinear model.
The appearanceT (x) is synthesized on a deformation-free
(‘template’) grid and is then warped onto the image coordi-
nate system, using a deformation fieldS:

S(x; s) ≡ (Sx(x; s), Sy(x; s)) =
NS∑

i=1

siSi(x), (1)

wheres are the shape coefficients, andS1, . . . ,SNS are the
shape basis elements. The deformationS brings the image
pixel (x + Sx(x; s), y + Sy(x; s)) in registration with the
template pixelx = (x, y), where its appearanceT (x) is
predicted.

If the parameters of the AAM are known (i.e.T (x) and
{Si(x) : i = 1, ..., NS}), then we can fit an input image to
the model by minimizing a least squares criterionE(s) with
respect to{si : i = 1, ..., NS}, where:

E(s) =
∑
x

(I(S(x; s))− T (x))2 (2)

It has been observed [1] that this criterion can be linked to
the Transformed Components Analysis (TCA) method [8]
by interpreting the criterion as the negative log-likelihood
of a probability model.

Even though the literature on AAM fitting is well-
developed, the task of learning an AAM is less explored.
In the seminal work of [23] a bootstrapping method was
devised for learning AAMs by iteratively fitting the images
with the model and then updating the AAM model using op-
tical flow. However, the optical flow calculation is nontriv-
ial and is not guaranteed to decrease some global goodness
of fit criterion. An elegant formulation for AAM learning is
proposed in [1] which is also intuitively similar to EM, but

the procedure used to estimate the deformation eigenspace
is different. First deformation fields are estimated sepa-
rately for each image and then they are projected on a PCA
basis; this is not guaranteed to decrease their goodness of
fit criterion monotonically and as we show, one can directly
minimize this criterion w.r.t. the shape basis elements.

In [4], the authors minimize an information-theoretic cri-
terion using diffeomorphisms in conjunction with an MDL
term to enforce simplicity of the learned model. However,
the resulting model is not of the typical AAM form, since
the deformations generated even by a simple model do not
necessarily lie on a low-dimensional linear space.

2.2. Learning Linear Deformation Models with EM

We now address the learning of AAM’s by our EM strat-
egy. We formulate this problem as probabilistic estimation
using a generative model for the data images{Iµ}:

P (Iµ|S, sµ, T ) ∝ exp− 1
σ2

∑
x

(Iµ(S(x; s))− T (x))2(3)

P (sµ|σ) ∝ exp−λ
∑

i

(sµ
i )2

σ2
i

, (4)

whereT is the appearance model,S(x; s) =
∑NS

i=1 sµ
i Si(x)

as in (1), {Si} are the deformation basis elements,{sµ
i } are

the shape coefficients, andσ is the assumed noise variance.
The deformation variables are assumed to be drawn from
the Gaussian prior of (4), where the parameters{σi} are the
variances of the expansion coefficients andλ is a design pa-
rameter, determining the tradeoff between data fidelity and
the prior.

Given a dataset of images{Iµ : µ = 1, ..., N}, and a set
of shape coefficientssµ, the observation likelihood is given
by

∏N
µ=1

∑
sµ P (Iµ|S, sµ, T )P (sµ|σ). Inspired from [18]

we treat the shape coefficients as hidden variables, so that
the EM algorithm [6] can be applied to find the parameter
estimatesT , {Si} that lie on a local maximum of this ex-
pression.

Specifically one can formulate the EM algorithm in
terms of minimizing a free energy functionF [{Si}, T ; Q]
with respect to both{Si}, T and Q [16], with Q(.) =∏

µ Qµ(.) whereQµ(.) is an unknown probability distribu-
tion on the shape coefficientssµ. The negative of the free
energy is:

N∑
µ=1

∫

sµ

Qµ(sµ) log P (Iµ|Ssµ, T )P (sµ|σ) +
N∑

µ=1

H(Qµ),

whereH(Qµ) =
∫
s
Qµ(s) log Qµ(s) is the negative en-

tropy of the distributionQµ.
We restrict the family of distributions to whichQµ(.)

belongs to be of the form:Qµ(s) = δ(s− sµ), wheresµ is
a parameter vector, andδ(.) is the delta function.



The M-step, minimizing F [S, T , σ; Q] with respect to
S, T , σ with Q fixed, then leads to minimizing:

N∑
µ=1


∑

x

[Iµ(S(x; sµ))− T (x)]2 + λ
∑

j

(sµ
j )2

σ2
j


 . (5)

We minimize with respect toS by steepest descent, tak-
ing the derivative with respect to thei-th basis element at
locationx, (Sx,i(x),Sy,i(x)), to obtain the update rule

dSi = −
(

∂E

∂Sx,i(x)
,

∂E

∂Sy,i(x)

)
, where (6)

∂E

∂S·,i(x)
=

N∑
µ=1

sµ
i

∂I

∂·

∣∣∣∣
Sµ

[Iµ(S(x; sµ))− Tµ(x)] (7)

Above ∂I
∂·

∣∣
Sµ

denotes the derivative ofI along dimension

· after warpingI to the template grid usingS(x; sµ); the
update step is estimated using line search.

The minimization with respect toT yields:

T (x) =
1
N

N∑
µ=1

Iµ(
NS∑

i=1

sµ
i Si(x)). (8)

As mentioned, we discard a significant part of appearance
variation by using the edge and ridge maps of [15] instead
of the image intensity. The appearance model thus uses only
the mean template instead of a linear expansion, as in typi-
cal AAMs. However, the EM approach can also be applied
to learning an AAM which models the image intensity.

The E-stepcorresponds to finding the best fit for the
shape coefficients in terms of the current estimates forS
andT . This is done using typical AAM fitting [3]. The
initialization is performed by settingT to be the average of
the set of data images; initial estimates forS are obtained
as described below.

2.3. Extensions and Practical Issues

We now present refinements that make the EM algorithm
effective for this task, namely (i) guaranteeing that the de-
formations do not cause the disappearance of template fea-
tures (ii) using mean-shift to initialize the basis elements.

2.3.1 Feature Transport PDE

Non-trivial deformations result in local contractions and ex-
pansions. These naturally capture object scalings but can
have a negative side effect, namely making object features
disappear or inflate. For this reason we want the deforma-
tion fields to have zero acceleration in the direction perpen-
dicular to image features; this guarantees that the features
are only ‘transported’, without being distorted.

This requirement can be phrased as follows: consider a
deformation fieldh = (hx, hy) = (x + gx, y + gx); gx

andgy are the deformation increments calculated from the
PCA synthesis. This deformation field moves features along
orientationnx, ny by gxnx + gyny; if this term is constant
it means that the motion of features in this orientation is
purely transporting them. Our constraint thus requires that
the directional derivative of this function equals zero, i.e.

∂x (gxnx + gyny)nx + ∂y (gxnx + gyny) ny = 0. (9)

and can be imposed by projecting the available(gx, gy)
fields onto the closest deformation field(fx, fy) satisfying
(9).

In the supplemental material we use calculus of varia-
tions to prove that this projectionf of g can be obtained by
numerically solving the following PDE with respect toλ:
∑

i,j=(1,2)

ninj [∂1,j(λn1ni) + ∂2,j(λn2ni)]=
∑

i,j=(1,2)

∂jfininj

and then settingfi = gi − ∂λ
∂xi

, i = 1, 2. Above we replace
thex, y indexes with1, 2 for notational simplicity.

It is convenient that linear expansions are used to syn-
thesize any object deformation: constraining all shape basis
elements to have zero acceleration automatically guarantees
that this holds also for any synthesized deformation. We
thus solve this problem by updating the basis elements ac-
cording to (7) and then projecting them onto the space of
functions as above.

We note that this solution works because the edge and
ridge maps are thin structures, obtained by smoothing the
maxima contours of [15] with a small Gaussian. This allows
the locally accurate estimation of orientation and makes the
requirement of feature transport meaningful.

2.3.2 Basis Initialization using Mean Shift

As in [23] for algorithm stability we use a basis pursuit-
type algorithm which introduces basis elements iteratively.
At each iteration a new basis element is introduced into the
model and then the EM learning loop is iterated until con-
vergence. The new basis elementSi should be in a direc-
tion that improves the registration of the training images. To
achieve this, for example in [23] optical flow is used to align
each image separately with the template image, followed by
PCA to yield a new basis element.

Instead, we exploit the versatile nature of the primal
sketch representation. Apart from 2-D images, the primal
sketch provides us with 1-D curves, which can in turn be
represented as sets of points. We can then see the task
of registering the image sketches as clustering these points
onto sharp, template contours. For this we use the Mean
Shift algorithm [2] which is a non-parametric clustering al-
gorithm that is ideally suited for our task.



Initial After Mean Shift
Figure 1:Using Mean-Shift Clustering for aligning sketch
contours. Left: superimposed edge contours from the whole
car training set, as aligned by the previous AAM learning
iteration. Right: after 6 iterations of Mean-Shift clustering.

Specifically, the previous iteration’s AAM deformation
estimates align to some extent the edge and ridge contours
of the initial images. After this alignment, we take the
points lying on these contours and represent them by a fea-
ture vector(x, y, θ, s), which encodes their position(x, y)
their orientation estimateθ, obtained from the local curve
structure, and their widths, estimated by the method of
[15]. Ridges and edges are then separately clustered using
Mean Shift. An essential modification is that we restrict the
motion of points so that they can only move perpendicular
to the curves they are on. This is required to prevent the
curves from contracting to points.

The output of this stage is a set of thin contours as shown
in Fig. 1. The motion of the sketch points of each training
image thus provides an estimate of the deformation incre-
ment. We extend these increments to the rest of the image
domain to obtain a dense deformation field and use PCA
over the whole training set to derive the new deformation
basis element.

Summarizing, the location of the previous material in
the procedure that produces the basis elements is given by
the following pseudocode:

S = BASIS(I)
for i = 1 to NS do

Basis pursuit:
IntroduceSi (2.3.2)
EM update:
S1...,i ⇐ EM(S1...i, I)

end for

S = EM(S, I)
repeat

E-step:
s = AAM FIT(S, I) [3]
M-step:
S=UPDATE(S, s, I) (2.2)
S=PROJECT(S) (2.3.1)

until convergence

2.4. Experimental Results on Learning the AAM

Our main interest has been to apply our framework to
real, noisy, unsegmented images and see whether shape
information can be extracted without manual annotation.
We have therefore applied the AAM learning algorithm
described above to five object categories, namely Caltech
faces, UIUC cars, IMM hands, ETH cows and Weizmann
horses.

In order to systematize our evaluation we have manually
placed landmarks on 50 images of each object category; we

make the annotations available from our website.
To evaluate the performance of AAM fitting, we examine

how close they are brought to each other by the AAM learn-
ing. Several measures for evaluating learning performance
have been proposed, e.g. in [5, 19] but for simplicity we
use the following procedure. First, we backward wrap the
images to the template coordinate system, using the AAM-
based deformations. Then we estimate the covariance ma-

trix Ci for each object landmarki, and use
√
|C

1
2
i | as a

measure of registration quality, as it is coarsely proportional
to the radius of a circle enclosing the points. For brevity
we call this measure Radius from Covariance Determinant
(RCD).

In Fig. 2 we plot the values of RCD for three differ-
ent scenarios: (i) AAM with 7 basis elements trained with
ground truth deformations (ii) AAM utilizing only transla-
tion (iii) AAM with 5 learned basis elements. The perfor-
mance of the first is used as a reference to assess the dif-
ficulty of the considered dataset. As we see, the results of
(iii) are closing the gap between (i) and (ii), while for the
easier classes, namely cars, faces and hands, (i) and (iii) are
very close. We also observe, as expected, that the results
for cows and horses are poor at specific landmarks, which
correspond to the feet locations.

We visually verify the registration of the data in Fig.2,
by comparing the mean feature mapsT (x) obtained by us-
ing only translation (mid-row) and the deformation basis
learnt by our approach (bottom-row). The templates re-
sult from averaging the backward-wrapped edge and ridge
maps, where the deformations are estimated by the AAM.
We observe that the average back-projections using our
model are significantly sharper, indicating that the model
has captured the shape variations better. But for com-
plex categories like cows or horses the averaged back-
projections are fuzzy at complex areas, like feet.

Summing up, the EM algorithm is successful for learn-
ing the AAM for certain types of objects. The results are
good for cars, faces, and hands, but are weaker for artic-
ulated objects like cows and horses, for which the AAM
representation is inherently inadequate.

3. Learning Part-Based Models

We now proceed to the more challenging task of learn-
ing part-based models of articulated motion. AAM’s are
poorly suited to modeling articulated objects because global
eigenvectors cannot easily capture the variety of local de-
formations than can occur, for example, at the legs of a
cow. Moreover, parts of articulated objects can become self-
occluded and AAM’s are not designed to deal with this ei-
ther.

Instead we use a part-based representation of deformable
objects, that models motion separately within each part, us-
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Figure 2: AAM Learning performance: On the top row we compare the Radius of Covariance Determinant (RCD) measure
for three different registration scenarios: using an AAM trained with ground truth landmarks (red), an AAM accounting only
for translation (green) and an AAM using the learned deformation basis (blue) - less is better. The learned AAM exhibits
almost equally good performance as the manually trained one. Bottom rows: the improvement of the estimated deformations
using the shape model leads to sharper template features: starting from a messy average, a clean ‘mean sketch’ is obtained
where symmetry axes and structures like reveals object parts like eyes, lips, car wheels, finger tips, etc. Edges are shown in
black and ridges in red. (Most improvements are only visible in color)

ing a Markov Random Field (MRF) model to enforce the
consistency of the estimated deformations. At the high level
we proceed along the same lines as in the previous part
of the paper. We learn the parameters of the deformable
part model with an EM strategy by iteratively matching the
model to the dataset images (E-step) and then estimating its
parameters (M-step).

To the best of our knowledge this is a problem that has
not been dealt with previously. Other work, e.g. [7, 20, 22],
requires manual annotation of training data sets, which has
constrained the application of such models to a few impor-
tant applications such as hand or person tracking. In [14] a
movie of a deforming object is used to determine its rigidly
moving parts, and an additional system is used to estimate
an MRF model for its parts. Using motion information sim-
plifies the problem, since it gives reliable information about
the position of the boundary and it also means that only
small deformations must be estimated for each time step.
The object variation is also only learned from a specific
member of the object category. By contrast, our approach
uses images from different members of the same category
that do not have to be in related, consecutive poses.

3.1. Part-based Models of Deformations

Part-based deformable models have become popular in
the articulated object detection/tracking literature e.g. [7,
20, 26], as composite motions can be explained in terms

of simpler motions of the object parts. For example in [7,
26], the deformation of each part is described in terms of
translation, rotation, and scaling along either of its two axes;
in the coordinate system determined by theith box’ center
and axes, the object pointx = (x, y) is mapped to the image
pointx′ = (x′, y′):
[

x′

y′

]
=

[
sx

i cos(θi) −sy
i sin(θi)

sx
i sin(θi) sy

i cos(θi)

] [
x− xi

y − yi

]
(10)

=
[

1 0 x y 0 0
0 1 0 0 x y

]
ci, (11)

where(sx
i , sy

i ), θi, and(xi, yi) are the scaling, rotation and
translation parameters respectively, whileci, is used for an
equivalent parametrization of the deformation; see e.g. [26]
for details. The composite deformation of the object is syn-
thesized by subjecting each pointx to transformation (11),
wherei is the part containing the point.

This clarifies a relationship with the AAM’s used earlier:
Both models pertain to estimating a deformation of a pro-
totypical object to an observed image instance. AAM’s do
so by generating a deformation field with a linear model us-
ing global, object-specificbasis elements, while deformable
parts models with MRF’s do so by usinglocalized, generic,
basis elements. A part-based model using MRF’s is there-
fore advantageous in that the locality of the models allows
relatively simple models to account for complex motions, in
a divide-and-conquer strategy. Further, one can treat each



Figure 3: Object parts found by Mean Shift clustering of
50 ridge maps, subsequent to AAM registration.

part separately, allowing it e.g. to be missed, or lying at a
different layer, which is not straightforward when using an
AAM.

3.2. Initialization Strategy

We use the AAM learning results to initialize the MRF
model learning, by pre-registering the objects and remov-
ing global pose variation. We next proceed to do mean-shift
clustering on the ridge contours which respond to symme-
try axes, and therefore can indicate the object parts. After
converting the registered ridge curves into a set of points
and clustering them as in Sec. (2.3.2), we repeat the cluster-
ing, but this time constraining the motion to be onlyalong
the orientation of the curves, thereby collapsing straight-
line segments to points. The output is a set of points, repre-
senting different clusters of ridge curves from the data im-
ages.

This gives us both the number and extent of the parts as
shown in Fig. 3, by using the average scale of the ridges
to determine the part width. We note that these parts are
not always in strict correspondence with the actual object
parts; still, they indicate areas of the object that should move
rigidly, and can therefore successfully initialize EM.

3.3. EM Learning of the Part-Based Model

3.3.1 M-step

For learning the MRF structure and clique potentials we rely
on the work of [7], due to its simplicity and clarity: The
kinematic constraints among partsi, j are expressed using
a potential of the form

φi,j(ci, cj) = − log N(Ti,j(ci)− Tj,i(cj), 0, Σi,j) (12)

whereTi,j andTj,i are linear transformations that map the
part parametersci, cj to their locations, scale, and orienta-
tion in the image – andN(x, µ, σ) is the value of the Gaus-
sian distribution with meanµ and varianceσ, evaluated at
x. Since this is a model for the relative motion of artic-
ulated parts, it will assign high likelihood to observations
from pairs of parts forming actual joints, since the underly-
ing model will be valid, while its predictions for unrelated
parts will be almost random. As in [7], the Minimum Span-
ning Tree algorithm is used to construct a tree-structured
graph connecting all MRF nodes.

Finally, due to computational efficiency considerations
described below, a binary pattern is desirable, indicating
areas where there should be edges/ridges and where there
should not. These are obtained by the thresholding with the
Niblack method [17] the templates obtained by registering
the whole training set. For example, a binary template ob-
tained for a cow’s head is shown in Fig.4.

3.3.2 E-step

The E-step amounts to estimating the posterior distribution
on part positions conditioned on the observed image and the
current MRF parameter estimates. This requires performing
inference on the MRF; since we have a tree structured MRF
we can apply Belief Propagation (BP) to derive the required
marginal distributions. BP employs a distributed message
passing scheme, where each nodei sends to its neighbors
N (i) messages computed as:

mi,j(cj) =
∑
ci

Φi(ci)Ψi,j(ci, cj)
∏

k∈{N (i)\j}
mk,i(ci). (13)

The belief for each stateci of nodei is estimated as the
product of the incoming messages with the potential func-
tion Φi, Bi(ci) = Φi(ci)

∏
j∈N (i) mi,j(ci) and for a tree-

structured graphBi(ci) will equalP (ci|I).
The computational burden in (13) lies in the summation

over the state spaceci, which entails estimating the sum-
mand for every possible rotation, scaling and translation of
the corresponding part. Particle filtering methods for gen-
eral graphical models like NBP/PAMPAS [21, 11, 20, 10]
deal with this problem, using sampling-based approxima-
tions to the messages and posteriors, and focusing on a
smaller region of the state space; we use the efficient im-
plementation of NBP made available by [10].

Still, the evaluation of observation potentials for all sam-
ples can render the approach impractical due to the large
number of operations needed to compute the observation
likelihood. We address this in the following

Efficient estimation of the observation potentials:Here
we use the efficient technique introduced in [13] to estimate
observation potentials; hand-crafted templates for generic
features were used there, while here we use it for the auto-
matically constructed part templates.

This technique is based on extending the integral image
technique using Stoke’s theorem, which allows to express
are integrals in terms of curvilinear ones:

∫∫

S

f(x, y)dxdy =
∫

∂S

Pdx + Qdy =
∫ l

0

(P,Q) · T ds.

AboveT is the tangent vector,l is the curve’s length, and
Q andP must satisfy∂Q

∂x − ∂P
∂y = f(x, y), e.g.Q(x, y) =

1
2

∫ x

0
f(x, y)dx, P (x, y) = − 1

2

∫ y

0
f(x, y)dy. This only
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∫
S1∪S2∪S3

RdS and in its complement∫
T\{S1∪S2∪S3}RdS, can be calculated using curvilinear in-

tegrals, based on Stoke’s theorem.

requires retrieving the values of the integral imagesP, Q on
the starting points of the arrows, instead of summing over
the whole image domain. The use of this efficient method
is facilitated by the construction of binary ridge and edge
masks in the M-step.

For a proposed part location, (particle) the sum of
ridge/edge strength lying inside and outside the predicted
template borders is estimated and used as a feature sum-
marizing the image strength as shown in Fig.4. The ex-
tracted measurements are input to a classifier that estimates
the probability of the part being present given the feature
values. The classifier is trained using the feature values ex-
tracted at part locations estimated at the previous EM iter-
ation as positives and features extracted by randomly per-
turbing these estimates as negatives. Details are given in
the supplemental material.

Avoiding Part Collision: A problem we have encoun-
tered is the ‘collision’ of distinct object parts onto the same
image locations; for example both front cow feet often lock
onto the single foot where the feature strengths are larger,
leaving the other unmatched. A more accurate shape model
may deal with this problem by penalizing such configura-
tions, but in our case this is not given beforehand.

In [22] a single part is allowed to explain each observa-
tion by accounting for self-occlusion in the likelihood cri-
terion. In brief, a hidden variable is introduced indicating
whether an observation can be modeled by one part, or is
already modeled by another. This allows for a distributed
inference scheme that repels collapsing parts, since once a
part has ‘occupied’ an image location, there is no gain in
likelihood for the other parts by modeling that area. Details
can be found in [22].

To use curvilinear integrals for estimating the observa-
tion potentials we slightly modify this idea. We use the
edge and ridge strengths predicted by each part to block
other parts from falling on the same locations as follows:
For each part we use the particle from its marginal distribu-
tion with the highest posterior likelihood, and back-project
its template onto the image according to that particle’s pa-
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Figure 5: Evaluation results comparing the RCD for man-
ually constructed AAM, part-based (MRF-M) and learned
part-based (MRF-L) model; less is better. The learned MRF
typically performs worse than the manual MRF and better
than the manual AAM models.

rameters. This gives us a mask indicating the features ex-
plained by that part. We discount feature strength on these
locations, by multiplying the strength with a small constant
smaller than one. This often resolves the collision problem.

3.4. Experimental Results

We first build a part-based model using manually deter-
mined parts and deformation parameters estimated from the
ground truth data. We then perform NBP on its MRF and
compare its performance with that of an AAM trained using
the same deformations. As is shown in Fig.5 the part-based
model performs typically better than the AAM on the hard
parts, namely the legs, where the RCD measure peaks for
AAMs.

We also evaluate the performance of the part-based
model using the automatically learned clique potentials and
object parts. As we show, it performs worse than the man-
ually trained model, but better than the manually trained
AAM. The gain compared to the AAM model is mainly due
to the ability of the parts to move independently, which is
the case for both part-based models.

In Fig. 6 we show top-down matching results of our part-
based model to the primal sketch maps computed from an
image, demonstrating our model’s ability to act as a genera-
tive model for the image sketch. Matching results are shown
in Fig. 7, using -for visualization- a model with manually
delineated parts, but with MRF parameters learned without
supervision, using EM. Similar deformations are estimated
using the automatically learned parts.

4. Conclusions

In this work we have pursued the automated construction
of generative models for object deformations, demonstrat-
ing that this is feasible for a broad set of object categories.
We have used dense feature maps extracted from real, noisy
images, and demonstrated that unsupervised learning of
AAM and part-based models can be accomplished with



Figure 6: Top-Down synthesis (left) of the object sketch
(right) using the marginal distribution of the part-based
model. Object-related image information is synthesized ad-
equately well.

Figure 7:Additional Matching results on horses and cows.

minimal manual annotation. This allows for the construc-
tion of more accurate models of complex objects, which we
intend to use for tasks like object detection and top-down
segmentation.
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