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Abstract

We propose a new affine-covariant feature, the Sta-
ble Affine Frame (SAF). SAFs lie on the boundary of
extremal regions, i.e. on isophotes. But instead of re-
quiring the whole isophote to be stable with respect to
intensity perturbation as in mazximally stable extremal
regions (MSERs), stability is required only locally, for
the primitives constituting the three-point frames. The
primitives are extracted by an affine invariant process
that exploits properties of bitangents and algebraic mo-
ments. Thus, instead of using closed stable isophotes,
i.e. MSERs, and detecting affine frames on them, sta-
ble affine frames are attempted, on all, even unstable,
extremal regions.

We show experimentally on standard datasets that
SAFs have repeatability comparable to the best affine
covariant detectors tested in the state-of-the-art re-
port [11] and consistently produce a significantly higher
number of features per image. Moreover, the features
cover images more evenly than MSERs, which facili-
tates robustness to occlusion. Without significant com-
putational effort, it is possible to modify the detector to
construct stable homography covariant frames.

1. Introduction

Affine-covariant region detectors have been used
in many computer vision applications including wide
baseline matching [16, 19, 10], object recognition [6, 9,
13, 17], categorization [4, 5, 15], and panorama build-
ing [1]. In a recent study of covariant detectors [11],
the one of the best repeatabilities and region accuracies
was achieved by the maximally stable extremal region
(MSER) detector [10]. However, the evaluation also re-
vealed its weaknesses: a comparatively small number
of detected regions and a high sensitivity to blur.

Boundaries of MSERs are a subset of isophotes
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(iso-intensity curves, intensity contours), namely those
isophotes whose shape is globally stable with respect
to intensity perturbation. In this paper, we propose to
drop the global stability requirement. Instead, prim-
itives are detected in an affine-invariant way on any
stable part of an isophote. From the primitives, affine-
covariant frames (local coordinate systems) are formed.
The frames, consisting of ordered triplets of points, are
more useful than affine covariant regions as they di-
rectly facilitate affine invariant description of the image
signal without any further processing such as detection
of dominant gradient directions.

Experiments conducted on standard datasets con-
firm that the stable affine frames (SAFs) computed
on isophotes have repeatability comparable to the best
affine covariant detectors and produce a higher number
of corresponding features than detector tested in [11].
SAFs also perform well on blurred images, thus over-
coming both above-mentioned weaknesses of MSERs.
The observation that local affine frames can be de-
tected on the boundaries of extremal regions due to
their data dependent shape has been made before and
state of the art results on two object recognition prob-
lems have been reported [13, 14]. We show that detect-
ing stable frames on all isophotes produces significantly
higher quality of output, in terms of repeatability, num-
ber of features and coverage of the image, than detect-
ing frames on globally stable isophotes, i.e. MSERs.

Isophotes are a complete representation of the im-
age and any image can be fully reconstructed from a
set of isophotes [3]. This work is an attempt towards
recovering all affine-covariant structures contained in
the nested sets of isophotes. The computational cost
of the process is not unacceptable; isophotes can be
enumerated in real-time on current CPUs using an ef-
ficient union-find algorithm. Analysis of the isophotes
takes seconds in our implementation, which is not pro-
hibitive in most applications.

The idea of finding covariant frames — structures co-
variant with affine or perspective transformation on
digital curves — is not new. Lamdan et al. [8] pro-



posed construction of affine covariant frame on a con-
tour. A fully perspective canonical frame construction
was proposed by Rothwell et al. [18]. However, all early
approaches required a contour to be extracted a priori,
e.g. by an edge detector or by thresholding, with all the
associated problems like parameter setting and linking
errors. In our approach, we check all isophotes as an
integral part of the process and output any stable fea-
ture. The need for prior segmentation is obviated. The
hard detection decision is based on geometric stability
w.r.t. photometric changes, a quantity that has direct
relevance in many matching applications.

The rest of the paper is structured as follows. Sec-
tion 2 presents the process SAF detection. First, nec-
essary definitions are introduced in 2.1. Two covariant
frame constructions are described in Section 2.2. The
procedure for finding stable frames on isophotes is ex-
plained in Section 2.3. In the experimental Section 3,
the SAF detector is compared to the other state of the
art detectors of affine covariant regions. The paper is
concluded in Section 4.

2. Stable Affine Frames on Isophotes
2.1. Definitions

In the continuous domain, an isophote is defined as a
curve of constant intensity. We will adapt this concept
for a discrete image using the framework of extremal
regions [10]. Let image I be a mapping I : D C Z? —
S. Extremal regions are well defined on images if

1. Set S is totally ordered, i.e. reflexive, antisym-
metric and transitive binary relation < exists.
In this paper only finite set of intensities S =
{0,1,..., N} is considered.

2. A binary spatial adjacency (neighbourhood) rela-
tion ¢ C D x D is defined. In this paper 4-neigh-
bourhoods are used, i.e. p,q € D are adjacent
(poq)iff 7 pi —ai| = 1.

Let us identify an image I with a rectangular grid
of pixels. Let L = (V,E) be a planar graph where
V C Z? is a set of pixel corner coordinates in the
grid and E = {{a,b}: a,b € V,a ¢ b} is a set of pixel
edges. When refering to the pixel coordinates, we re-
fer to its upper left corner. A common edge e(p,q)
of two neighbouring pixels p,q € D with coordinates

p= (p1,p2),q = (q1,92) is e(p,q) = {vi,v;} such that

vi =q,vj = (q1,q2 +1) if p1 <qi,p2 = qo,

v =p,vj = (pr,p2+1) if p1>qi,p2 = g, (1)

vi=q,v; = (q1+1,q2) if p1=q,p2 <q,

v =p,v; = (p1 + 1,p2) if p1=qi,p2 > qo.
Region Q is a subset of D such that for each p,q € Q
there is a sequence p, a1, as,...,a,,qand poay,...,a;o

Qit1,...,0n © @, l.e. region is a connected component
in terms of adjacency relation ©.

Region Boundary. Let Q be a region and L = (V, E) a
rectangular grid of an image I. A simple closed path
of vertices 0Q = (vi,...,vn), ¢; = {vj,vi41} € E| is
a region boundary iff for each e; = e(p,q) € 0Q,p €
Q,q € D\ Q,qo p, i.e. region boundary consists of
common edges between region pixels p and pixels ¢
outside the region.

Extremal Region. Let Q C D be a region, and Qg =
{¢g:qe D\ Q,3p € Q,poq} set of pixels neighbour-
ing with Q. We denote region Q an extremal region iff
forall p € Q,q € Qg : I(p) > I(¢) (maximum inten-
sity region) or I(p) < I(¢) (minimum intensity region).
We denote a pair of extremal regions Qp, Qs nested
extremal regions iff @1 C Q.

Outer Region Boundary. Let 0Q be an extremal re-
gion boundary oriented (ordered) in a way that each
pixel p € Q is on the right-hand side of the path. 0Q
is an outer region boundary Bg iff it has clockwise
orientation in right-handed coordinate system. If 0Q
has counter-clockwise orientation we denote it a region

hole.

Intensity Adjacency Relation. Let Q1 C Qs be two
nested extremal regions. 91, Qs are intensity adjacent,
denoted Q1 <1 Qq iff 1O, 01 C Q C Q2,0 # Q1,0 #
Q5. Thus there exists exactly one intensity value s €
1(Q3),s ¢ I(Q1), where I(X) C S is set of intensities
in region X.

Discrete Isophote. Let Q be an extremal region.
We denote its outer region boundary Bgo a discrete
isophote. Thus, discrete isophotes are enumerated us-
ing an effective algorithm for enumeration of extremal
regions introduced in [10].

2.2. Construction of Affine Frames

The geometric transformation between two corre-
sponding planar patches acquired by a perspective
camera can be locally approximated by an affine trans-
formation [7]. A two-dimensional affine transformation
possesses six degrees of freedom, six independent con-
straints are required to determine it. Numerous affine
covariant frame constructions have been proposed in
the literature [8, 18, 13]. We use only two construc-
tions, one based on properties of bitangents, the sec-
ond exploiting covariant properties of first and second
algebraic moments. We chose the two constructions
since (i) they typically cover different parts of a con-
tour and are thus not redundant, (ii) together they
provide more features than any method tested in [11]
and (iii) one depends only on local properties of the



Figure 1. Example of stable affine frame construction: (a) each 10" isophote on a part of an image, (b) entry and exit
points (white) and the farthest point (green cross) from a bitangent (green hair lines) constructed on isophotes, (c) SAFs;

white lines connecting points (1,0)%, (0,0)” and (0,1)”
isophote whereas the other one on quantities derived
from the whole isophote.

Detection of bitangent lines on concavities (see
Fig. 1(b)), exploits the fact that affine transformation
preserves tangency. First, curvature sign is estimated
and inflection points located (the curvature sign of the
curvature is preserved by affine transformations with
positive determinant). A local descent to the nearest
bitangent, as in [2], is employed to find all bitangents
on the concavity. Each local concavity is endowed with
entry, exit and farthest point from the bitangent.

Affine covariant frames are represented as a ma-
trix of the affine transformation which maps points
(1,0)",(0,0)",(0,1)" from a normalized coordinate
system into image coordinates. The construction pro-
duces three points p, q,r — entry, exit points and far-
thest point on a concavity. The affine transformation
A representing this covariant frame is computed as

—1 -1
Mai Moy Mag P1oq@1 T
A= M3z Mz Mas y,M=1 p2 q@ m
0 0 1 1 1 1

(2)
Note that the construction can be easily extended
to efficiently compute a perspective covariant canonical
frame of Rothwell et al. [18] where all steps, including
selection of primitives, are performed invariantly to a
homography.
Our second construction combines covariance ma-
trix £(Q) with two points — the centre of gravity p(Q)
of region @ and a point of extremal curvature g,

|Q|Zq, |Q|Zq (g —p)'

qeQ qeQ
(3)

in the frame coordinate system.

The center of gravity p(Q) provides two constraints,
i.e. resolving translation. The symmetric 2 X 2 matrix
Y (Q) of second central algebraic moments gives three
constraints. Together, the centre of gravity and the
covariance matrix fix the affine transformation up to
an unknown rotation. Normalization by the covariance
matrix therefore allows affine-invariant measurement of
distances, angles and curvatures.

To find local extrema of curvature g, we need to
estimate curvature at each point of the discrete curve
— isophote. Curvature estimation via curvature scale-
space [12] is time consuming. Rather an approximation
of the continuous curve is computed by smoothing the
discrete curve with a Gaussian kernel, as in [20]

Co(t) = Bo(t) * G(t,0), (4)

where By is a discrete curve, ¢ a curve parameter; o is
set to a small value to filter quantisation effects. The
approximated continuous isophote Cg, is normalized
using p(Q) and X(Q) to allow affine-invariant measure-
ment of angles

No(t) = (Co(t) = (Q))T7*(Q). ()

The local curvature x(t) is then computed from the
angle between vectors 1, r of a fixed length cast in
opposite directions from point Ng(t) along the curve
Ng. The curvature s is estimated from the angle
cosa(t) = (I.r) /(|| r]), as follows

a(t) = 6(t)1+cosa(t)

2
1
-1

Each of the local maxima ¢, of x(t) provides the re-
maining constraint for the affine transformation and
thus fixes one affine covariant frame.

, where (6)

if lyrg —lory >0
otherwise



In this construction the shape-normalizing transfor-
mation M does not scale the regions (we are ignoring
one additional constraint — the scale of the covariance
matrix)

B 21/2(Q)

M= —=, and

VIZQI

where |X(Q)| is the determinant of ¥(Q). The rota-
tion angle ¢ = tg~!(uz/u1) is computed and the shape
normalization matrix M is combined with the rotation
and scaled by |ul:

() —sin0)
v (5 e )

Finally, the transformation A is computed

u=M"(g. —u(Q) (7)

Nii N2 pr
A= Na1 Nz po |. 9)
0 0 1

2.3. Stability of the Affine Frames

To identify stable affine frames, we need to form

sequences of related frames on intensity adjacent
isophotes and to define similarity of affine covariant
frames. From a feature matching perspective, the nat-
ural choice for a similarity measure would be a func-
tion of descriptors computed in the normalized frame
coordinates such as correlation of normalized patches
or distance of SIFT descriptors. However, evaluation
of this function would be time consuming. Hence, we
adopt the following “geometric” similarity.
Let A{,As be transformation matrices of two frames
and P = {(1,0)",(0,0)", (0,1)"} be points in the nor-
malized coordinate system. Similarity of the frames
d(A1,Az) is then

d(A1,As) = max ||p — A1_1A2p||. (10)
peP

In other words, each point p is expressed in the other
frame coordinates and the maximum distance over all
points is the geometric similarity of the frames!.

The intensity adjacency relation, the partial order-
ing introduced in section 2.1, allows sorting of isophotes
in terms of spatial and intensity adjacency. Two ex-
tremal regions Q; < Qs determining two isophotes
Bg,, Bg, are contained one in the other Q; C Qs and
they differ exactly in pixels of one intensity. Let us
now define a sequence of corresponding affine frames.
Let extremal regions Qg, ..., Q, be intensity adjacent

We do not use the term ”distance’ as d(A1,Az) is not sym-
metric.

Ql < Q27Q2 < Q37~~~7Qn71 < Qn Let A17~-~7An
be local affine frames of one type of construction, con-
structed on isophotes Bg,, ..., Bg, respectively. A se-
quence of affine frames (Aq,...,A,) is a sequence of
corresponding affine frames iff

Vi,j, Ql < Qj : d(Ai,Aj) < 9[,, (11)

where 6, is the parameter of the method determining
the maximum allowed displacement of pair of frames
between two intensity adjacent isophotes.

The stability of an affine frame A; is es-
tablished as follows. The longest subsequence
(A, Az, . A), 1 < k <1 < n of corresponding
frames (A1, ..., A,) on intensity adjacent isophotes sat-
isfying

ilrzlcaxld(Ai’Am) < Og (12)
is found. g is the parameter of the method — spatial
displacement allowed within subsequence (Ag,...,A;).
Stability of the frame A, is defined as the length of the
stable subsequence S, = [—k. A frame is stable if S, >
A, where A is the stability threshold and S, is locally
maximal in the sequence of corresponding frames. The
sensitivity of the SAF detector is thus controlled by
a single parameter A. For intensity perturbations of
size A, positional variation of a stable frame is smaller
than 0g.

3. Experiments

The repeatability of the proposed SAF detector is
evaluated in Section (3.1). The evaluation follows a
standard protocol introduced in [11]. In Section 3.2,
SAFs are compared with the MSER+LAF method [13]
that computes local affine frames on MSERs. The test
highlights the difference between detection of affine
frames on stable isophotes and detection of stable
frames on (possibly unstable) isophotes. We show that
the “commutation” of the stability operation leads to
higher repeatability for the same number of detected
structures. Finally in Section (3.3), we show that SAFs
are detected in areas where the MSER detector has no
responses. The experiment demonstrates that areas
with unstable isophotes (thus without MSERs), but
with stable parts of isophotes are common — e.g. in
natural scenes, blured images or images with smooth
gradients. All experiments are conducted on standard,
publicly available image sets® used in [11].

Parameter setting. In all experiments, parame-
ters of the SAF detector were set as follows: the frame
geometric localisation stability threshold s = 0.25
(Eq. 12) and inter-intensity frame similarity threshold
0, =1.205 (Eq. 11).

®http://www.robots.ox.ac.uk/~vgg/research/affine/
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Figure 2. The GRAFFITI scene: (a) repeatability score p, (b) number of correspondences.
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Figure 3. The BIKES scene: (a) repeatability

3.1. Repeatability Evaluation

To allow comparison of performance of the detector
with the state of the art methods, we used the test pro-
tocol proposed by Mikolajczyk et al. [11]. The test sets
contain sequences of six images with increasing effects
of given transformation (viewpoint change GRAFFITI,
scale change BOAT, blur BIKES, intensity change CARS
and compression UBC). A groundtruth homography
transformations are provided between first image of the
sequence — reference image and other five test images.
Mikolajczyk et al. defined a repeatability score based
on overlap error €

Reg, N RHl—zT EoH !

€(Re,,Re,) =1 ;o (13)

RE1 U RHsz EoHo,!
where Rg represents the elliptic region defined by
' Rgx = 1 and Hip is a homography between ref-
erence and test image. To compensate for different

(b)
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score p, (b) number of correspondences.

sizes of regions from different detectors, a scale factor
is computed, that transforms region Rg, it into nor-
malized size (equivalent to radius 30 pixels). Region
Re, is rescaled using the same factor before evaluating
the overlap error. One-to-one correspondences are es-
tablished by finding minimum overlap errors between
reference and test image regions and pairs with € < 0.6
are kept. The repeatability score p is then the ratio
between number of corresponding pairs and the num-
ber of all regions detected in common part of the scene
i.e. the part visible in both images. Two factors are
evaluated: (i) the repeatability score, which estimates
the probability that a region will be detected in both
images and (ii) the number of correspondences which
is related to region density. Both factors are impor-
tant and closely related, setting sharper thresholds for
many detectors results in smaller number of features
and higher repeatability and vice versa lower thresh-
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Figure 4. Repeatability vs. number of correspondences for different stability thresholds: (a) BIKES, (b) GRAFITTI, (c) BOAT.
Percentage of correct matches in all tentative matches vs. number of correct matches: (d) BIKES, (e) GRAFITTI, (f) BOAT.

[ Scene “ SAF [ MSER [ HesAff [ HarAff [ IBR [ EBR ]
Grafitti 2 1 3 5 4 6
Bikes 3 5 1 4 2 6
Boat 3 2 1 4 6 5
Cars 2 1 3 4 6 5

Table 1. Ranking of affine detectors[11] on standard scenes?

based on the repeatability score.

[ Scene ][ SAF | MSER [ HesAff [ HarAff | IBR | EBR ]
Grafitti 1 4 2 3 6 5
Bikes 1 6 2 4 3 5
Boat 1 5 2 3 6 4
Cars 1 5 2 3 6 4

Table 2. Ranking of affine detectors[11] on standard scenes?

based on number of correspondences.

olds provide more features but the repeatability often
drops as more spurious detections are obtained [11].
The stability threshold A of the proposed SAF de-
tector was set to A = 10. With this setting, the number
of features and the repeatability score is comparable to
other feature detectors. On the GRAFFITI scene Fig. 2,
the SAF detector outperforms most of the state of the
art methods both in terms of repeatability and number
of corresponding features. On the blur scene - BIKES,
the transformation, the MSER method is sensitive to,
SAF detector performs reasonably well in terms of re-
peatability score and more important provide signifi-

cantly higher number of corresponding features.

Results on some other scenes from [11] are compared
in Tables 1 and 2. The rank is the average rank of
a detector on all image pairs of given sequence. Ta-
ble 1 shows that proposed detector delivers repeata-
bility score comparable to the state of the art meth-
ods. Moreover, Table 2 shows that the SAF detec-
tor provides the highest number of correspondences on
all scenes, while maintaining comparable repeatability
score.

3.2. Comparison with the MSER+LAF method[13]

Although the method for evaluating repeatability
used in previous experiment is well established for
comparing affine regions, fully affine structures do not
fit well into the framework. Mikolajczyk et al. [11]
characterize affine covariant regions by the center of
gravity and an ellipse, which fix only five degrees
of freedom of the affine transformation. Both SAFs
and MSER+LAF detectors provide full affine covari-
ant frames, i.e. they resolve also the “orientation” of
the ellipse. The computation of repeatability score was
thus modified as follows. Let A, As be transformation
matrices of two frames and Hj, the groundtruth ho-
mography matrix. Let P = {(1,0)",(0,0)",(0,1)"} be
points in the normalized coordinate system. “Overlap
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Figure 5. Image coverage, BIKES scene images 1 and 4. White areas are not covered, darker areas are covered with higher
number of frames. (a) reference image 1, (b) MSER+LAF method: 251 repeated (32.85% of detected) frames, (c) SAF

method: 319 repeated (44.74% of detected) frames.
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Figure 6. Image coverage, GRAFFITI scene images 1 and 5. White areas are not covered, darker areas are covered with higher
number of frames. (a) reference image 1, (b) MSER+LAF method: 586 repeated (33.01% of detected) frames, (c) SAF

method: 665 repeated (47.94% of detected) frames.

error” of the frames §(A1, Ag) is then

§(A1,A2) = max [lp — A7 'H; Agp|. (14)
peEP

Two frames are considered corresponding if their “over-
lap error” §(A1,As) < 0.3. Both compared detectors
produce structures of similar size and thus there is
no reason for the rescaling to a common region size.
Frames computed using different constructions do not
interfere. One-to-one frame correspondences are there-
fore computed separately for each type of frame con-
struction.

The detectors are compared on three pairs of
images selected from the defocused blur sequence
BIKES (image 1 vs. 4), the viewpoint change sequence
GRAFFITI (1 vs. 5), and the scale change sequence
BOAT (1 vs. 3). In Fig. 4, the trade-off between the
number of correspondences and repeatability for dif-
ferent stability thresholds A € {4,6,8,...,20} is com-
pared. Results clearly show the substantial improve-
ment of repeatability of SAFs w.r.t. MSER+LAF.

To verify the performance in a matching experi-
ment, we adopted the descriptor used in [14]. The

descriptors were computed on square spanning from
(=1,—-1)" to (2,2)" in the frame coordinate system.
Tentative matches were established as mutually near-
est neighbours and verified by the groundtruth homog-
raphy, i.e. a pair of frames A;, Ay is a correct match
if 6(A1,Az) < 0.3. Hence for each threshold, we ob-
tained the number of correct matches and the ratio of
the number of correct to the number of all tentative
matches. Fig. 4(d-f) shows that descriptors computed
on SAFs are more discriminative and more reliable
than descriptors computed on MSER+LAF frames.

3.3. Image Coverage

Previous experiments focus on evaluation of repeata-
bility and the number of responses of affine covariant
detectors. However, there are other important prop-
erties of a detector, such as speed and the property
we call coverage — the spatial distribution of detector
responses. Computational complexity of the SAF algo-
rithm is higher than of MSER+LAF method, e.g. on
the images of the BIKES scene (800x600) SAF detec-
tor runs about five seconds vs. 600ms for MSER+LAF



method. On the otherside, features of a fast detec-
tor are fruitless if all responses are concentrated in
a small area. This is a well known problem encoun-
tered in tracking and narrow-baseline stereo applica-
tions. There are many scenes where almost all features
are located on a prominent textured object, such as a
tree or a bush. Parts of the image without any detected
features are “invisible” to the higher level algorithms.
We are not aware of a qualitative test for the coverage
— our evaluation is therefore rather informal.

The test is carried out on two image pairs (from
experiment 3.2): BIKES and GRAFFITL. Affine frames
are detected using MSER+LAF and the SAF meth-
ods. Frames detected on the reference image that have
a correspondence in the test image were identified us-
ing known groundtruth homography as in 3.2. Each
frame that is detected in both images is visualised in
the reference image i.e. it increases all pixel values in-
side the triangle it covers by 1. The final ”coverage”
is shown in Figures 5 and 6 for MSER+LAF (b) and
SAFs (c). We see clearly that uncovered area is much
smaller for the SAF method than for the MSER+LAF
method.

4. Conclusions

A new affine-covariant detector of the Stable Affine
Frame (SAF) was proposed. We showed how to con-
struct SAF's on isophotes by maximisation of their ge-
ometric and photometric stability. Instead of using
only stable isophotes (MSERs), stable affine frames are
sought on all, even unstable, isophotes.

We showed experimentally on standard data that
SAFs have a repeatability comparable to the best affine
covariant detectors [11] and consistently produce a sig-
nificantly higher number of features per image. Com-
pared with MSERs, SAF have the following two advan-
tages: (i) they cover images more evenly, which might
positively affect robustness to occlusion and precision
of multi-view geometry estimation, and (ii) perform
well on images that are blurred. Overall, SAFs pro-
vide a strong alternative to MSERs (combined with
local affine frame constructions) in applications where
the longer running time is not an issue.
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