Loading [a11y]/accessibility-menu.js
Applications of parametric maxflow in computer vision | IEEE Conference Publication | IEEE Xplore

Applications of parametric maxflow in computer vision

Publisher: IEEE

Abstract:

The maximum flow algorithm for minimizing energy functions of binary variables has become a standard tool in computer vision. In many cases, unary costs of the energy dep...View more

Abstract:

The maximum flow algorithm for minimizing energy functions of binary variables has become a standard tool in computer vision. In many cases, unary costs of the energy depend linearly on parameter λ. In this paper we study vision applications for which it is important to solve the maxflow problem for different λ's. An example is a weighting between data and regularization terms in image segmentation or stereo: it is desirable to vary it both during training (to learn λ from ground truth data) and testing (to select best λ using high-knowledge constraints, e.g. user input). We review algorithmic aspects of this parametric maximum flow problem previously unknown in vision, such as the ability to compute all breakpoints of λ and corresponding optimal configurations infinite time. These results allow, in particular, to minimize the ratio of some geometric functional, such as flux of a vector field over length (or area). Previously, such functional were tackled with shortest path techniques applicable only in 2D. We give theoretical improvements for "PDE cuts" [5]. We present experimental results for image segmentation, 3D reconstruction, and the cosegmentation problem.
Date of Conference: 14-21 October 2007
Date Added to IEEE Xplore: 26 December 2007
ISBN Information:

ISSN Information:

Publisher: IEEE
Conference Location: Rio de Janeiro, Brazil

References

References is not available for this document.