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Abstract

An approach for incremental learning of a 3D scene
from a single static video camera is presented in this pa-
per. In particular, we exploit the presence of casual people
walking in the scene to infer relative depth, learn shadows,
and segment the critical ground structure. Considering that
this type of video data is so ubiquitous, this work provides
an important step towards 3D scene analysis from single
cameras in readily available ordinary videos and movies.
On-line 3D scene learning, as presented here, is very im-
portant for applications such as scene analysis, foreground
refinement, tracking, biometrics, automated camera col-
laboration, activity analysis, identification, and real-time
computer-graphics applications. The main contributions of
this work are then two-fold. First, we use the people in the
scene to continuously learn and update the 3D scene pa-
rameters using an incremental robust (L1) error minimiza-
tion. Secondly, models of shadows in the scene are learned
using a statistical framework. A symbiotic relationship be-
tween the shadow model and the estimated scene geometry
is exploited towards incremental mutual improvement. We
illustrate the effectiveness of the proposed framework with
applications in foreground refinement, automatic segmenta-
tion as well as relative depth mapping of the floor/ground,
and estimation of 3D trajectories of people in the scene.

1. Introduction and Motivation
Ordinary movies and footage from static surveillance

cameras provide a large amount of video data containing

people walking casually in a scene. Processing of such data

(for tracking, segmentation, foreground refinement, etc) can

benefit tremendously from 3D scene information (even ap-

proximate) that can be extracted from such scenes (e.g. see

the elegant exposition by Hoiem et al. [3]). These videos,

in spite of having a virtually unlimited stream of data, are

not commonly used to learn useful scene information apart

from the background model. One reason for this is that ex-

tracting 3D information about a scene from a single view is

an ill-posed problem. To make our goal of online learning

the 3D scene plausible, we utilize the information provided

by people in the scene.

The authors in [5] and [6] have utilized pedestrians in the

scene to estimate the basic 3D scene geometry. The work in

[6] introduced camera auto-calibration using the head-foot

homology obtained from pedestrians in the scene, with an

elegant Bayesian framework. This method requires some

prior information about the unknown parameters and also

priors about the location of people in the scene. The authors

in [5] utilize harmonic homologies as linear constraints on

the unknown camera parameters. The head-foot point pairs

are collected over time and then processed together to es-

timate the camera calibration, using a linear Least-Squares

type of minimization. Authors in [12] propose a method

to estimate camera parameters and light source orientation

from 2 views of the scene containing 2 vertical lines and

their cast shadows. With a similar aim, but a very differ-

ent approach, Hoiem et al. [3], learn a graphical model to

simultaneously model a scene and put known detected ob-

jects (people and cars) in “perspective” in single images.

There have also been a number of interesting recent

works, [4, 8, 9, 10], in the area of automatic shadow de-

tection and removal from foreground, which relate to our

proposed framework. Most of these works assume that pix-

els in the shadow have the same chrominance but reduced

luminance. Horprasert et al. [4], use such a model to clas-

sify a pixel into four categories (including shadows). Re-

cent work in [8] provides a shadow-flow function to detect

shadows. This method requires a weak classifier which is

initialized as the classifier in [4] involving similar assump-

tions about shadows. For a detailed review of shadow de-

tection techniques the reader is referred to [9].

The works mentioned above (with the exception of [3])

treat scene geometry and other scene ingredients (like shad-

ows) in complete isolation and therefore cannot benefit

from one-another. Techniques like [5] and [6] are non-

incremental in nature and therefore are not able to learn or

estimate the scene geometry on-line and benefit from the

virtually unlimited stream of video data. These approaches



also neglect the effect of shadows and reflections, when es-

timating the head-foot locations, which can lead to errors.

For example, at a certain time of the day, all the people in

the scene cast shadows on the ground plane (usually de-

tected as foreground) in the same direction. If the line

connecting the head and foot points is computed using the

second-order moment of the blob as in [6] and [5], then

the second moment will have a decided bias towards the di-

rection of the cast shadow, thereby introducing significant

errors in the geometry estimation. In our proposed system,

we simultaneously learn the scene geometry and shadows

which are used for mutual refinement, leading to a num-

ber of possible applications, some of which are described in

Section 6.

In this work, we propose a novel approach for robust,

incremental and online learning of scene geometry and

shadow models in such a way that they share a symbiotic

relationship through online mutual refinement. This ap-

proach exploits information provided by casual walkers in

the scene, to extract 3D information from the video in spite

of using a single static camera. We illustrate the effective-

ness of our framework using real-life applications on com-

mon videos.

2. Framework Overview and Contributions

An overview of the proposed approach is presented in the

block diagram of Figure 1. All the blocks in this figure de-

scribe processes that occur online. The videos are assumed

to be shot from a single static camera during a period of time

where no significant illumination changes occurred.1 The

first step is to subtract the background in order to analyze

the information provided by people in the foreground (ex-

plained in Section 4.1.1). Once the foreground is extracted,

a rough bounding box (b) is defined around it, as shown in

Figure 2. The next step, computing the head and foot loca-

tions for the current observation (used to improve the cam-

era and shadow model parameters), requires three inputs:

1) the bounding box b; 2) the previous estimate of the cam-

era and shadow parameters; and 3) the current observation

itself. See Section 4 for details. Finally, closing the loop,

new estimates for the camera and shadow model parame-

ters are computed from the foot and head locations and the

shadow direction just computed (Section 3 and Section 5).

This learning process is carried out online and in an incre-

mental fashion. Thus the geometry estimation and shadow

model share a symbiotic relationship. The rest of the paper

is organized as follows. Section 3, Section 4 and Section 5

briefly describe each of the blocks mentioned above. Sec-

tion 6 shows the results obtained by the framework and il-

lustrative applications, and Section 7 concludes with a dis-

1Though this issue is not handled here for simplicity, our framework

can be easily modified to deal with slow temporal changes.

Input Video: Background Modeling And
Subtraction:

- =

Continuous On-Line Scene Learning Refinement:

a

b

c

d

a. Initial guess of bounding-box and head-foot position.
b. Learning shadow parameters from detection.
c. Using head-foot locations to learn scene geometry
d. Combining b. and c. to refine the estimated head-foot 

locations using a statistical model.

Applications:

Foreground Refinement
Scene Metrology
Ground/Floor Segmentation
Relative depth mapping of floor
Mapping people trajectories in 3D

Figure 1. Block diagram of the proposed framework.

a) d)c)b)

Figure 2. Selection of the initial (rough) bounding boxes. a) Orig-

inal image. b) Detected foreground. c) Columns having sufficient

foreground content. d) Person’s bounding box (in yellow) and area

to be explained by the model (green box).

cussion and suggested future work, including preliminary

results on reflection modeling for indoor scenes.
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Figure 3. Using people observations for camera calibration. Three

different observations of the same person are used to produce three

different horizon points (in blue). These, in turn, are used to find

the horizon (in red) and the two vanishing points (vp) in the x and

y directions (in green).

3. Scene Geometry Estimation

A large component of scene understanding is learning

the geometric transformation from the image plane to the

three dimensional world coordinates. In order to infer true

(world) sizes from image measurements, a model for this

transformation is necessary. In this work, we make some

reasonable, yet simple assumptions regarding the input

video (as in [3]). In most videos (surveillance or movies)

the camera is positioned in such a way that the people in the

scene look upright. Hence we make the assumption that the

camera vertical is roughly aligned with the scene vertical.

Furthermore, we assume that all those verticals are parallel

in the Euclidian sense, implying that the vertical vanishing

point lies at infinity. These assumptions are general enough

to include most surveillance and still camera videos. Our

approach for estimating the scene geometry can be divided

into three steps: 1) finding the vanishing line (or horizon)

for the floor/ground-plane; 2) composing the camera ma-

trix; and 3) scaling the world coordinate axes. First, to find

the horizon, we exploit the homology between the head and

foot locations, as suggested by [6]. Assuming the height of

a person does not change too much from frame to frame,

two observations of the same person provide two parallel

horizontal lines that intersect at the horizon (see Figure 3).

Each pair of observations (of the same person) then, pro-

vides a (noisy) point on the horizon, that we collect in a

set H . From the assumption about the vertical vanishing

point, the horizon is known to be a horizontal line in the

image. We define it to be the horizontal line whose total

L1 distance to the set H of horizon points is minimal. It is

well known that the median is the statistic that minimizes

this distance. We compute the median online by maintain-

ing a sorted running list of N horizon point observations

(e.g. N = 1000).2 Once we have an estimate of the hori-

zon, the second step is to construct the camera matrix. This

2If the number of observations is greater than N we remove equal num-

ber of observations from each end of the list to maintain its constant size.

z

Camera center

H

W

y
Figure 4. Finding the scale for the y-axis. The ratio of the person’s

height (H) and width (W ) is used to estimate the viewing angle

α, and this angle is used to relate the camera height (Δz) to the

distance to the person along the y-direction (Δy).

matrix has, as its first three columns, the image coordinates

of the vanishing points of the 3D world axes. The fourth

column of this matrix contains the image coordinates of the

world origin (see [2] for details). The world origin can be

arbitrarily chosen in the floor plane; we choose it to be the

center of the visible part below the horizon. The direction

of the first two axes can also be arbitrarily chosen by plac-

ing their corresponding vanishing points on the horizon line.

We chose the y-vanishing point to be the intersection of the

middle vertical in the image with the horizon line, and the x-

vanishing point to be the point at infinity of the horizon line

(due to the symmetry). The z-vanishing point, as mentioned

before, is the vertical point at infinity (Figure 3). The third

step in the camera calibration procedure is scaling the axes.

This is necessary to make approximate inferences about the

size of objects or structures in the scene. To scale the axes,

the median observed human height and width serve as a ref-

erence in the z and x directions respectively. Two different

methods were tested to estimate the scaling along the y axis

(αy). The first method relates αy to the camera height by

means of the angle formed by the horizontal and the line

connecting the person’s feet and the camera center (α in

Figure 4). This angle is itself estimated from the ratio be-

tween the observed person’s height and width. The second

method fixes αy so that the average (ground) speed of the

people in the video is 0.5 heights per second. Better results

were obtained with the second method (used to generate the

results in Section 6), although this scaling constant is ad-

mittedly less exact than the other two.

4. Localizing People
Accurately detecting the head and foot locations of the

people in the scene is an important ingredient of our ap-

proach, since we are using the head-foot locations to esti-

mate the scene geometry (Section 3) as well as estimating

the shadow model (Section 5). To correctly locate the feet of
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Figure 5. Probabilistic model to localize the person’s feet. a) Orig-

inal image with the person enclosed in the bounding box b (in yel-

low). The green bounding box contains the data that the model has

to “explain”. b-d) The log-probabilities that each class assigns to

the observed data. e-f) The prior probability of each class. These

are functions of the feet position f (marked with a cross), and the

shadow direction d. The prior for the background is omitted since

it can be computed by imposing that the priors at every pixel add

to 1. g) The final labeling of the pixels.

a person in the person’s bounding box3 (shown in yellow in

Figure 1d and Figure 5), we design a model to “explain” the

set of pixels X observed in the larger bounding box around

the person (in green in figures 1d and 5). Figure 5 shows

the different parts of this model. We assume that the color

C(x) of each pixel x could have been generated by one of

three possible classes (or color models), namely, the back-

ground, the foreground or the shadow color model. Each

pixel x has an associated label, L(x) ∈ B,F, S indicating

the best class assignment for the pixel. Each class defines

a distribution in the color space,4 given by P (C(x)|L(x)).
Furthermore, each pixel x has a prior probability of belong-

ing to each of these three classes, depending on the feet

position f , shadow direction d, and the box b containing the

person. This prior is given by P (L(x)|x, d, f, b), described

in Section 4.2. Under the usual assumption of independence

of the pixels, conditioned on their labels, the likelihood of

3We use a simple constraint on the proportions of the bounding box

to eliminate non person detections. Since our goal is not to track people,

unreliable observations can be discarded without further consequences.
4Throughout this work we use the RGB color space.

the observed pixels is given by:

P (C(x);L, f, d, b) =
∏

x∈X

P (C(x)|L(x))P (L(x)|x, d, f, b).

(1)

To estimate the unknown parameters L(x), f , and d, the ex-

pression in Equation 1 has to be maximized. This is done

by searching in a grid of (f, d) pairs. Valid directions are

restricted to lie in a band around the predicted shadow di-

rection (see Section 5.2). The width of this band is reduced

as the confidence in the prediction increases. L(x) is cho-

sen, at each pixel and for each combination of (f, d) values,

as the label that gives the highest pixel probability (“best

explains” the pixel value). In the rest of this section we ex-

plain each of these model parts and the online procedure for

learning each one of them.

4.1. Color Models

4.1.1 Background Color Model

As explained above, each class defines a probability density

in the color space. The color of each background pixel is

modeled by a Gaussian distribution whose mean is the color

most frequently seen at that pixel location. The covariance

matrix is assumed to be the same for all pixels (captured

by a given camera) and is estimated offline from a video of

a completely still scene.5 Figure 5b shows the probability

of a sample frame according to this model. More sophisti-

cated models could have been used instead (e.g. [7]), but

we found that the model just described is extremely simple,

robust, amenable to an online implementation, does not re-

quire initial “empty” frames, and works sufficiently well for

our purposes.

4.1.2 Shadow Color Model

We assume (as in [3]) that the color of pixels under cast

shadows is the original background color attenuated by a

global attenuation factor A (which we learn, as explained in

Section 5.1), that is dependent only on the ambient lighting

conditions at a given time. Thus shadow pixels are modeled

using a Gaussian distribution having the same covariance

matrix as the background pixels, but the mean of the distri-

bution (μS(x)) is the attenuated background color (μB(x))
corresponding to the pixel (i.e. μS(x) = μB(x)A). Figure

5c shows the probability of a sample frame according to this

model.

4.1.3 Foreground Color Model

Having no a priori information about the foreground colors,

one way to proceed is to model its color by a uniform distri-

bution (in the color space). This choice is equivalent to set-

5The covariance was computed only once and works well for all videos.



ting a threshold, and assigning to the foreground class every

color that is not well explained by the previous two models.

This procedure does not yield good results, because the dis-

tribution of foreground colors is not really uniform in real

videos. In practice, we observed a wide range of thresh-

olds produced similar results. Consequently we discrimi-

natively selected a threshold and used the same value for

all the videos. Figure 5d shows the probability of a sample

frame according to this model.

4.2. Location Priors

Given values of f , b, and d,6 pixels are not equally likely

to have been generated by all three color classes. Pixels in a

band in the direction d, containing the point f , are obviously

more likely to be part of the shadow (Figure 5e). Similarly,

pixels above the feet location are likely to belong to the per-

son (foreground). To encode this prior for the foreground,

we learned from hand labeled examples, a template in nor-

malized coordinates with respect to the box b (see Figure

5f). This prior was learned offline and only once for all the

movies in this paper. For each person detection, this tem-

plate is stretched vertically to find the feet position that best

matches the observation. The background prior (not shown

in the figure) is computed so that the three priors add to one.

5. The Shadow Model
Having a good shadow model is key for the accurate

location of the person’s feet. Learning this model for the

shadow implies learning two different components: the lu-

minance attenuation A, produced by the shadow cast on the

background pixels, and the vector field of shadow directions

on the ground D. As explained in Section 4, each person de-

tection consists of three parameter estimates: 1) the feet lo-

cation f ; 2) the shadow direction d; and 3) a labeling matrix

L. These estimates are used to improve the shadow model

(both A and D).

5.1. Shadow Attenuation

To learn the luminance attenuation, A, we proceed as

follows: 1) for each new detection, collect the attenuations

(Â(x) = μS(x)/μB(x)) of the ‘Shadow’ pixels (according

to L); 2) assign a weight to each of these values accord-

ing to the shadow prior (see Section 4.2) (i.e. pixels in the

locations most likely to be shadows are given more impor-

tance); 3) keep a histogram of previously observed attenua-

tions and insert the new ones as they arrive; and 4) set A to

be the value of the most populated bin (found to be robust

enough). The rationale behind this procedure is that only

shadow pixels will be concentrated in the histogram. An

exception are background pixels that due to noise produce

6Recall that f is the foot position, b is the bounding box and d is the

shadow direction.

Figure 6. Histogram of shadow attenuations. The position of the

maximum is the chosen shadow attenuation.

3D Scene
Geometry

People 
Detections

Shadow
Model

Figure 7. Information flow in the system. The people detections

are used to learn the geometry, which in turn is used to learn the

shadows, which are used to help in the detections.

attenuation values close to one (which are ignored). An ex-

ample of the histogram obtained for the video of Figure 8b

is shown in Figure 6.

5.2. Shadow Direction Field

To learn the shadow direction field D, we define a grid

on the floor plane and learn a shadow direction for each grid

point. Each new person observation casts a vote for the es-

timated direction d, at the estimated feet location f . The

voting function is given by an anisotropic7 Gaussian placed

at the point f with principal axis d (this is an anisotropic

regularization). These Gaussians live on the floor plane

which is estimated as part of the scene geometry (Section 3).

Votes for directions are accumulated in all the grid points.

The direction (at each grid point) that gets the most votes

is selected to be the shadow direction at that grid point.

This closes the loop for the feedback interaction between

all components of the framework (Figure 7). In the next

section we show the shadow direction fields obtained for

different videos.

6. Results

We now present results of the proposed framework on

two different videos shot on two different locations un-

der different illumination conditions (different shadow di-

rections and attenuations). Both videos are of resolution

360x240. These scenes were specifically chosen to lack

reflections (that currently our system can not handle) and

features that are commonly used to learn the scene geom-

etry (e.g. straight lines, repeating or symmetric structures,

etc.). In particular, the video corresponding to Figure 8a

has almost no features at all, except for those on the people.

Especially challenging is the correct feet localization in the

7Since the direction of the shadows D(f) changes the least along the

direction of the field.
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Figure 8. Camera geometry results. The horizon (in green) estimated from the horizon points (a small fraction is shown in red) is used to

define a coordinate system in two different videos. The coordinate system is represented by the world origin (on the floor) and one unit

vector along each axis: x (in red), y (in blue) and z (in yellow). The unit of measurement is an average person’s height. White labels

indicate the distances estimated by the framework (see text for details).

Distance True (m) Estimated
Lamp post height (P1) 4.18 ± 0.10 3.94
Lamp post height (P2) 4.26 ± 0.10 4.38
Lamp post height (P3) 4.38 ± 0.10 4.39
Lamp post height (P4) 4.13 ± 0.10 3.92
Path width (W1) 7.30 ± 0.02 7.53
Path width (W2) 7.38 ± 0.02 8.31

Figure 9. Comparison of real and estimated measurements in the

3D scene.

video corresponding to Figure 8b, due to the strong shad-

ows in the forward direction whose color is often very close

to that of the people in the foreground. Also the camera is

quite distant, rendering the people to be as small as 40 pix-

els. Composite frames from each of these videos are shown

in Figure 8a and Figure 8b. In the same figure, the hori-

zon lines and estimated world coordinate systems are also

shown. As explained in Section 3, these coordinate systems

use the average observed human height as the unit of mea-

surement. Using the metrology techniques in [1] we can

contrast ground truth measurements in the scene of Figure

8b against distances estimated from the video, as shown in

the table in Figure 9 below. These values were computed as-

suming an average human height of 1.75m. Please note that

this was the only measurement input to the system. No other

user input was required in these calculations. Also note that

if the shadows were not properly handled, the bias they in-

troduce will render the average human height dependent on

the time of the day. Figure 10 shows a shadow detection

comparison of our learning based method with that of [4],

which is used as a benchmark. We compare with this ap-

proach which uses global estimates of shadow attenuation

(like we do), unlike [8] which uses separate shadow models

for each pixel. Figure 10a and Figure 10b show a qualita-

tive comparison with [4]. Note that we are only using the

learned shadow attenuation to compute our shadow region

without additional help from the learned shadow direction.

If we also use the shadow direction information this shadow

detection can be improved further so as to remove the small

amount of self-shadows on the person (Figure 10b). To

show a quantitative comparison, we manually segmented

shadows in 200 video frames (100 each for the two scenes

shown in Figure 10). Figure 10c gives a comparative plot of

the false alarms generated with our approach (red) against

the benchmark (blue). Figure 11 shows the learned shadow

directions. The red lines indicate the shadow-field. Observe

that the estimated shadow direction field is consistent with

the shadows observed in the scene.

Another possible application of the proposed framework

is shown in Figure 12. The top row shows, with different

colors, the observed trajectories of the people in the scene

obtained from the detected feet location (from the camera

perspective). From each pixel in the image, we compute

a weighted distance8 (second row) to the trajectories, as in

[11]. A simple thresholding of this distance is used to seg-

ment the floor (third row). Note that the floor segmented in

this way includes only pixels that have been “stepped on”

(and pixels close to them in both location and color), un-

like what would be obtained if all foreground pixels were

included. This segmentation evolves as more trajectories

are observed. Figure 13 shows two of these trajectories on

the ground/floor, inversely warped using the estimated cam-

era transformation. These trajectories can be verified from

the uploaded videos. Notice that the person on the right

is a biker, who was still correctly exploited by the system

towards the estimation of the scene geometry.

8The weight is given by the magnitude of the image gradient.



7. Discussion and Future Directions
In this paper we demonstrated the robust extraction of

useful 3D information from ordinary scenes by exploit-

ing information provided by people in the foreground and

the large amount of such observations that a video con-

tains. 3D characteristics of the scene like its geometry and

shadow model are estimated in a mutually beneficial fash-

ion, which leads to a number of useful applications such

as accurate foreground detection; relative depth mapping of

the ground plane along with the trajectories of the people

on the ground, leading to better analysis of the scene; and

scene metrology.

The automatic detection and joint modeling of reflec-

tions (especially in indoor scenes) and shadows is an im-

portant future direction of work, which as shown in the case

of shadows, will also have a symbiotic relationship with the

geometry estimates. Contrary to shadows, the reflection lo-

cation is completely specified once the camera geometry is

known. Models could exploit this fact, together with the

shadow information, to locate the feet position more accu-

rately. We show preliminary results in this direction in Fig-

ure 14. This type of on-line joint modeling of 3D scenes

from single views will also allow for real-time person in-

sertion in live videos (along with their shadows and reflec-

tions). Results in these directions will be reported else-

where.
Acknowledgments: Work partially supported by ONR, NSF,
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Figure 11. Shadow direction fields computed for two different videos. The red lines represent the shadow directions in the floor points

where the lines start.

a) b)

Figure 14. A challenging scene containing shadows and reflections. a) Original image. The yellow circle shows the detected feet position.

b) Background Log-Probability. Note that part of the reflection of the person in the floor is as unlikely background as the person itself, but

the feet position is still correctly located.

Figure 12. Floor segmentation. a-b) Observed people tracks as

computed from the detected feet position. c-d) Weighted distance

to the tracks (see text for details). e-f) Segmented

467
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Figure 13. Aerial view of the tracks of two people. Note that one

of them is a biker. The estimated camera matrix was used in the

projective transformation to warp the floor to its true size. Frame

numbers (relative to the video uploaded as supplemental material)

are shown next to the tracks to allow the verification of the trajec-

tories.


