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Abstract

Configurations of dense locally parallel 3D curves occur
in medical imaging, computer vision and graphics. Exam-
ples include white matter fibre tracts, textures, fur and hair.
We develop a differential geometric characterization of such
structures by considering the local behaviour of the associ-
ated 3D frame field, leading to the associated tangential,
normal and bi-normal curvature functions. Using results
from the theory of generalized minimal surfaces we adopt
a generalized helicoid model as an osculating object and
develop the connection between its parameters and these
curvature functions. These developments allow for the con-
struction of parametrized 3D vector fields (sampled osculat-
ing objects) to locally approximate these patterns. We apply
these results to the analysis of diffusion MRI data via a type
of 3D streamline flow. Experimental results on data from a
human brain demonstrate the advantages of incorporating
the full differential geometry.

1. Introduction
Configurations of dense locally parallel 3D curves arise

in medical imaging, computer vision and graphics. Exam-
ples include white matter fiber tracts in diffusion MRI [3],
texture patterns on surfaces [13], hair patterns [6], and 3D
streamlines [26]. Whereas the sense of a type of flow in-
duced by such structures is immediate (see Fig. 1), captur-
ing the underlying geometry has proved difficult. Strikingly,
the wide variety of methods proposed in the literature share
the common theme of following only the streamline (tan-
gent) direction. There is in fact rich geometric structure in
the normal and bi-normal directions as well. For example,
a fiber population in diffusion MRI, though approximately
parallel locally, can diverge or branch and distinct fiber pop-
ulations can cross (see Fig. 1). In this article we develop a
differential geometric characterization of such structures by

considering the local behaviour of the associated 3D frame
field. We begin with a brief overview of existing model-
ing techniques in diffusion MRI, which is the application
domain of this paper.

Diffusion MRI exploits the property that fibrous struc-
tures restrict the random thermal motion of water molecules
in live tissue so that it tends to be maximal along their ori-
entation [16]. A variety of representations can be used to
model the diffusion at a given location. While the early
methods impose a 3D Gaussian distribution model, repre-
sented as a diffusion tensor (DT) [3], model-free represen-
tations have now become popular, e.g. Q-ball (QB) recon-
struction [24]. These latter high angular resolution methods
represent the local diffusion profile as a sampled function on
a sphere and allow for a large number of fibre orientations
to be reflected at a single location.

The literature has incorporated geometry at different pro-
cessing stages in order to accomplish the task of modeling
white matter fibre tracts from diffusion MRI data. For ex-
ample, differential geometry has been used to characterize
the shape of individual fibres [4], to cluster together individ-
ual fibres [10], or to compute tensor statistics along fibres
[8]. These techniques typically apply geometrical analysis
on fibre paths that have been obtained in a preprocessing
stage through a fibre tracking algorithm (see [17] for a re-
view). Other studies analyze the geometry of diffusion ten-
sors prior to extracting fibres through tracking algorithms,
by treating diffusion tensors as elements in a Riemannian
space of 3 × 3 symmetric positive-definite matrices. Some
approaches, e.g. [15, 25], use metrics in such spaces to seg-
ment statistically similar groups of tensors. Others, e.g. [2],
design metrics to approximate and interpolate tensor data
using B-splines. These types of approaches have been used
with some success as a preprocessing step for the segmen-
tation of fibre populations. However, statistical approaches
can have difficulty with cases of tensor fields that present
similar statistics but belong to different fibre populations, or
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http://www.VRVis.at/ar3/pr2/laramee/Figure 1. Examples of dense, locally parallel 3D curve flow pat-
terns. Left: Human hair, with a zoom-in on the bottom of the
pony-tail (source: www.search.com). Middle: a rendering in
artificial colour of major white matter pathways in the human brain
(source: www.medical.siemens.com). Right: Visualization
of tumble motion using 3D streamlines and a combination of other
techniques [14] (reproduced with permission from the author).

tensor fields that locally have different statistics but belong
in fact to the same populations (e.g. in crossing regions).

All of the above techniques, as well as the modeling
of hair and fur patterns in computer vision and graphics,
could benefit from an analysis of the 3D streamline flow
geometry of fibers, which is the main technical contribution
of this article. We develop a differential geometric model
of 3D streamline flow in Section 2 and introduce a notion
of flow compatibility between nearby orientation measure-
ments, motivated by the literature on minimal surfaces. We
apply these results to the analysis of diffusion MRI in Sec-
tion 3 and conclude with a discussion in Section 4.

2. 3D Streamline Flow

We refer to a configuration of dense, locally parallel
curves or streamlines in three dimensional Euclidean space
E3 as a 3D streamline flow1. Such a flow can bend in the di-
rections tangent, normal and bi-normal to each streamline.
In order to model this behaviour, one needs to introduce an
appropriate representation of the flow. At each point along
each streamline we consider a local frame defined by the
unit tangent, normal and bi-normal vectors. The set of all
these frames is referred to as a “frame field” [19]. The use
of a frame field allows for a natural representation of the
geometric properties of the flow, since it is a generalization
of the concept of the Frenet frame used to describe the ge-
ometry of individual curves. In the following section we
develop the differential geometry of the frame field.

1We note that this construct is distinct from the idea of a flow texture in
graphics, used for fluid flow visualization.
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Figure 2. A 3D streamline flow is represented as a frame field, lo-
cally tangent to the flow streamlines (green). The tangential com-
ponent ET of the frame is defined by orientation functions θ and
φ with respect to a global coordinate system. A small translation
of frame (ET , EN , EB) along vector V results in a new frame
(E′

T , E′
N , E′

B), rotated with respect to the original frame by an
angle determined by the covariant derivative of ET in direction V ,
∇V ET . Expressing this covariant derivative in terms of the frame
itself yields the three curvatures κT , κN , κB .

2.1. Differential Geometry

Consider a frame field given in spherical coordinates in
Euclidean 3D space E3:

ET = (cos φ cos θ, cos φ sin θ, sinφ) (1)
EN = (− sin θ, cos θ, 0) (2)
EB = (− sinφ cos θ,− sinφ sin θ, cos φ) (3)

Here θ and φ are two orientation functions that describe
the orientation of vector ET with respect to a fixed global
coordinate system. Angle φ represents elevation from the
xy plane, and θ represents the angle between the x-axis and
the orthographic projection of ET along the z-axis onto the
xy plane.

Fig. 2 illustrates an example of a (ET , EN , EB) frame
located (without loss of generality) at the origin of the
global coordinate system. We are interested in character-
izing the differential behaviour of the frame as it moves
within a local volume. In particular, we seek a representa-
tion of this behaviour in terms of the frame itself. We begin
by expressing the covariant derivatives of the frame vectors.
Using Theorems 7.2 and 7.3 in Ch. 2 of [19], they are given
by:  ∇V ET

∇V EN

∇V EB

 = Ω

 ET

EN

EB

 , (4)



where

Ω =

 0 cos(φ)dθ(V ) dφ(V )
− cos(φ)dθ(V ) 0 sin(φ)dθ(V )

−dφ(V ) − sin(φ)dθ(V ) 0

 .

(5)
Here ∇V E represents the covariant derivative of vector

E in the (arbitrary) direction V , and dφ(V ) and dθ(V ) are
1-forms such that dφ(V ) = ∇φ · V and dθ(V ) = ∇θ · V .

The (ET , EN , EB) frame is a rigid object, and so its lo-
cal behaviour is captured entirely by the covariant derivative
∇V ET . Since covariant derivation is a linear operation,

∇V ET = ∇aV1+bV2+cV3ET

= a∇V1ET + b∇V2ET + c∇V3ET ,
(6)

where a, b and c are constants, and V1, V2 and V3 are any
set of three linearly independent vectors such that V =
aV1 + bV2 + cV3. A natural choice for a basis of three lin-
early independent vectors are the frame vectors themselves.
Thus, to express ∇V ET in terms of the frame itself, we
write

∇V ET = ∇aET +bEN+cEB
ET

= a∇ET
ET + b∇EN

ET + c∇EB
ET .

(7)

In other words, ∇V ET is expressed as a sum of three vec-
tors, each of which describes the covariant derivative of ET

in the directions of ET , EN and EB , respectively.
This leads to the definition of the magnitude of the tan-

gential, normal and bi-normal curvature functions:2

‖κT ‖ = ‖∇ET
ET ‖ = ‖cos φdθ(ET )EN + dφ(ET )EB‖

‖κN‖ = ‖∇EN
ET ‖ = ‖cos φdθ(EN )EN + dφ(EN )EB‖

‖κB‖ = ‖∇EB
ET ‖ = ‖cos φdθ(EB)EN + dφ(EB)EB‖.

(8)

These curvature functions describe the differential be-
haviour of ET , and thus the (ET , EN , EB) frame as it
moves within a local neighbourhood. Fig. 2 provides
the intuition of how a small translation of the frame
(ET , EN , EB) along vector V results in a rotation deter-
mined by ∇V ET .

The differential geometry developed thus far applies to
the analysis of 3D streamline flow curves that have been
provided as input. In practice, however, we are faced with a
type of “chicken-and-egg” problem. With input data in the
form of local orientation measurements the underlying 3D
streamline flow must first be inferred. We approach this
problem by developing a notion of transport along a 3D
streamline flow. The key technical contribution is to adopt
an appropriate osculating object model and to relate its pa-
rameters to the curvature functions developed above.

2Adding a sign to each specifies the direction of bending with respect
to the frame field at the origin.

2.2. Transport

For planar curves in 2D Euclidean space E2, the Eu-
clidean curvature κ at a point provides the osculating disc
by which a tangent measurement can be transported to ob-
tain nearby tangents on the curve, as exploited in [20]. For
non-planar curves in E3, a notion of transport is provided
by an osculating helix, as used in [21] for 3D curve infer-
ence in diffusion MRI. The more general case of 2D stream-
line (or texture) flow has been addressed in [5], where a
right helicoid model has been used as an osculating object.
Extending these ideas to the case of 3D streamline flow is
non-trivial and a key contribution of this paper is the use of
minimal surface theory to resolve this question. To illus-
trate some of the complexity, the (ET , EN , EB) frame field
is described by two orientation functions, θ and φ, defined
over a volume in E3. Thus, a dual representation of the
(ET , EN , EB) frame field is that of two hypersurfaces in
E4: θ(x, y, z) and φ(x, y, z). We seek a “minimal” osculat-
ing object model, i.e., one that determines these hypersur-
faces and which has three degrees of freedom, each related
to one of the curvature functions of Eq. (8).

Without loss of generality, we assume that the point
along the 3D streamline flow for which an osculating ob-
ject model is sought is located at the origin. Results from
the theory of minimal surfaces combined with the differen-
tial geometry of 3D streamline flow leads to the following
propositions.

Proposition 1 A generalized (or “stacked”) helicoid model
for θ, given by

θ(x, y, z) = tan−1

(
KT x + KNy

1 + KNx−KT y

)
+ KBz, (9)

with KT ,KN ,KB as constants, is a minimal hypersurface.

Proposition 2 Equating φ with θ leads to the following
relationship between the constants KT ,KN ,KB of the
stacked helicoid and the curvatures (via Eq. (8)) of a unique
3D streamline flow:

κT (0, 0, 0) =
√

2‖KT ‖

κN (0, 0, 0) =
√

2‖KN‖

κB(0, 0, 0) =
√

2‖KB‖. (10)

Osculating Object Using these propositions, an osculat-
ing object for 3D streamline flow is obtained by a frame
field defined by Eqs.(1)-(3), with orientation functions θ =
φ specified by Eq. (9).

Proof of Proposition 2 Eq. (10) can be obtained by
computing the gradient of θ(x, y, z) in Eq. (9) and noting
that at the origin, ∇θ(0, 0, 0) = (KT ,KN ,KB). Since



θ(0, 0, 0) = 0 = φ(0, 0, 0), this aligns the (ET , EN , EB)
frame at the origin with the global (x, y, z) coordinate sys-
tem, so that ET = (1, 0, 0), EN = (0, 1, 0) and EB =
(0, 0, 1). Eq. (10) follows from substituting the values for
ET , EN , EB , ∇θ and ∇φ into the curvature functions of
Eq. (8).

Sketch of Proof of Proposition 1 In order to show that
the model for θ presented in (9) is a minimal hypersurface
in E4, consider that the term tan−1

(
KT x+KN y

1+KN x−KT y

)
rep-

resents a right helicoidal surface over the xy plane in 3D
Euclidean space [5], which is known by the classical theo-
rem of Catalan to be a minimal surface in E3 (see e.g. [1]).
The addition of the KBz term in (9) adds a linear coordinate
function along the z axis, so that θ(x, y, z) is a generalized
helicoid hypersurface in E4 that can be expressed with a
parametric equation

(x1, x2, x3, x4) = (u cos(t1s), u sin(t1s), t2s, v), (11)

where x1, x2, x3, x4 are coordinate functions, u, v, s are
parameters ∈ R, and t1 and t2 are real constants.

The concept of generalized helicoids in En space has
been studied in [7, 22, 1, 9]. Blair and Vanstone show in [7]
that complete ruled minimal n-dimensional hypersurfaces
Mn in En+1 are products of En−2 and a helicoid in E3. In
particular, in E4, a generalized helicoid is the product of a
helicoid in E3 and the real line. Barbosa et al. [1] and Thas
[22] independently derive the parametric equations of such
minimal generalized helicoids (see also [23]), which in the
case of E4 work out to be Eq. (11) [1, 22, 23]. The first,
second and third parametric equations together represent a
helicoid in E3, and the fourth parametric equation is a linear
coordinate function.

Remark 1 There is an apparent relation of this result to
the work of Hayden [11] on generalized helical curves.
Hayden proves that in Riemannian spaces of n dimensions,
where n is even, there does not exist a non-degenerate gen-
eralized helix, i.e., at least one of its curvatures must vanish.
One can deduce from this result that in E4, a generalized
helix can have non-null curvature and torsion, but higher-
order curvatures must be null. Thus, in E4, a generalized
helix must be the ordinary 3D helix with a linear coordinate
function describing its fourth dimension.

Remark 2 The differential geometry of streamline flows
in 2D has been developed in [5]. Motivated by energy min-
imization considerations, and the desire to maintain a con-
stant ratio of tangential vs. normal curvature, the right heli-
coid

θ(x, y) = tan−1

(
KT x + KNy

1 + KNx−KT y

)
(12)

is used as an osculating object. Here, the osculating object
θ is a surface in E3, and KT and KN represent the values
of the tangential and normal curvatures, respectively, at the
origin. It turns out that the curvature functions used in [5]
are a special case of the more general curvatures defined
by Eq. (8). Observe that in the case where φ = 0 every-
where, ET lies in the xy plane, the problem is reduced to a
two-dimensional one and Eq. (8) reduces to κT = dθ(ET ),
κN = dθ(EN ) (κB vanishes). These are precisely the defi-
nitions of the tangential and normal curvatures proposed in
[5] for 2D streamline flow analysis.

3. Applications
3.1. Generalized Helicoids

The first natural application of the above osculating ob-
ject model is its use in generating various 3D streamline
flows, each corresponding to a different set of curvature
choices. We combine the two orientation functions θ and
φ to represent spherical coordinates and to generate a vec-
tor field that corresponds to the tangential ET component
of the frame field (ET , EN , EB). Fig. 3 visualizes the vec-
tor field (x, y, z) = (cos φ cos θ, cos φ sin θ, sinφ), where θ
and φ are defined as in Eq. (9), for three different combina-
tions of values for (KT ,KN ,KB). The visualization shows
three orthogonal slices passing through the origin, which is
located at the central voxel of each neighbourhood. ET at
the origin is set parallel to the x axis. As expected, one ob-
serves vector fields with smoothly varying orientations but
with rich geometry controlled by the curvature choices. In
the top row, for which KT = 0.2, KN = KB = 0, one
observes no changes in the vectors in the yz slice, as ex-
pected, since the EN and EB frame vectors at the origin
(not shown) are aligned with the y and z axes, respectively.
In the xz slice, change is observed as the vector location
moves along the x axis but not along the z axis. In the mid-
dle row, where KN is non-null, but KB = 0, one starts
to observe a change in the vector direction as the location
moves along the y axis, associated with EN at the origin.
Finally, when all of (KT ,KN ,KB) are non-null, one al-
ways observes changes in the vector directions as their lo-
cation moves in space.

3.2. Diffusion MRI Regularization

3.2.1 Methodology

We now use our generalized helicoid osculating object to
infer 3D flow patterns from incomplete 3D orientation data,
i.e., diffusion MRI datasets. It is incomplete in the sense
that the data is spatially discretized, i.e., it is defined on a
3D cubic lattice. The data also has a limited angular resolu-
tion which depends on acquisition parameters. Finally, the
diffusion profile is related to the underlying fibre structure,
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Figure 3. Three examples of a generalized helicoid osculating ob-
ject for 3D streamline flow analysis, each visualized in three mutu-
ally orthogonal slices of a 5× 5× 5 volume. Top row: KT = 0.2,
KN = KB = 0. Middle row: KT = KN = 0.2, KB = 0. Bot-
tom row: KT = KN = KB = 0.2.

but there can be also diffusion unrelated to fibre geometry,
which can introduce ambiguities.

At each location (voxel) in the discretized 3D volume,
the data is represented as an antipodally symmetric func-
tion on a sphere, called the diffusion orientation distribution
function (ODF) [24]. In a manner similar to that of [21], the
diffusion ODF is sampled along a fixed set of m directions,
providing a measure of confidence in the presence of a fi-
bre oriented along each direction. An iterative relaxation
labeling process [12, 5, 21] is set up so that orientations
that are supported by other nearby orientations via the heli-
coidal model gain confidence, while others are suppressed.
Since a priori the parameters (KT ,KN ,KB) of the oscu-
lating object that describes best the flow pattern associated
to orientation λ at voxel i are not known, we begin by gen-
erating a set of osculating objects, defined through Eq. (9),
for a discretized range of values for (KT ,KN ,KB). These
osculating objects, which are 3D vector fields like the ones
illustrated in Fig. 3, are sampled at the centre of each voxel
in a neighbourhood of a given size. Each such sampled vec-
tor field represents a particular combination of values for
(KT ,KN ,KB) and is thus referred to as a ‘curvature class’.
Then, for a given orientation λ at a given voxel i, for each
curvature class, a support measure si(λ) is calculated as

si(λ) =
∏
j

c · pj(λ′), (13)

where index j ranges over all voxels in the neighbourhood

of i, and λ′ is the index of the direction among the m sam-
pling directions that is closest to the osculating object vector
at location j (each voxel j may have a different λ′). pj(λ′)
denotes the value of the ODF at voxel j sampled along its
direction λ′, and c is a normalizing scalar constant. This (lo-
cal) support function is then incorporated in a global mea-
sure of average local support

A =
n∑

i=1

m∑
λ=1

pi(λ)si(λ), (14)

which is defined over the entire volume and is maximized
using an iterative relaxation labeling algorithm3 [12]. The-
oretical considerations [12] show that maximizing A is
equivalent to solving a system of variational equalities and
has the effect of regularizing the data. At each iteration,
the sampled ODF values pi(λ) are updated (see Algorithm
8.2 in [12]) as a function of the support si(λ) they receive
via the flow model, and this leads to an overall increase of
the value of A. Since the iterative process is an any-time
algorithm, it is not necessary in practice to attain a maxi-
mum of A, and it can thus be stopped at a desired level of
regularization.

3.2.2 Experimental Results

Fig. 4 shows the result of applying the above 3D streamline
flow analysis to diffusion MRI data from a human brain. It
consists of two co-registered datasets, one with DT data and
one with QB ODFs, and was obtained as described in [21].

The top row in Fig. 4 shows a region of interest (ROI)
delimited with a white rectangle in the anatomical and the
RGB image of the data, with the corresponding unregular-
ized DT and QB data. The RGB image encodes the princi-
pal diffusion direction of the DT dataset, so that in this view,
green denotes left-right orientation, blue denotes up-down
orientation, and red denotes orientation out of the page. In
this ROI one observes a crossing between the cortico-spinal
tract (CST, blue), which fans out to the cortex and the su-
perior longitudinal fasciculus (SLF, green). For clarity, both
the unregularized DT and the unregularized QB datasets are
visualized after subtraction of the minimal inscribed sphere.
One can immediately see that the DT dataset, due to its rep-
resentational limitations, cannot capture the intricate struc-
ture of the fibres that the QB dataset shows evidence for.

The bottom row shows the output of the 3D curve in-
ference algorithm of [21] run on the DT dataset, followed
by the output of our 3D streamline flow regularization algo-
rithm run on the DT and QB datasets. To generate the latter
two results, our 3D flow regularization algorithm used os-
culating objects that were sampled in a 3×3×3 neighbour-
hood, with values for KT , KN , KB ranging from −0.1 to

3Although we adopt a relaxation labeling framework, quadratic pro-
gramming and belief propagation algorithms could be used in its place.



Figure 4. Inference of 3D flows in diffusion MRI data. Top row, from left to right: an ROI delimited by a white rectangle in the anatomical
image (1) and the RGB image (2), followed by the unregularized DT dataset (3) and the unregularized QB dataset (4). Bottom row, from
left to right: regularization results in this ROI, obtained by running 3D curve inference [21] on the DT dataset (1), and by 3D streamline
flow inference on the DT dataset (2) and on the QB dataset (3). See the text for further details.

0.1. These figures also show the osculating objects associ-
ated with the ODF maxima in the circled voxels. For each
ODF maximum in the selected (circled) voxel, we visualize
those elements of the 3 × 3 × 3 osculating object that are
located within the slice of the ROI. Since these are oscu-
lating objects computed for the circled voxels, they are not
expected to precisely match the ODF maxima in neighbour-
ing voxels.

Observe that 3D streamline flow regularization of the DT
dataset infers ODFs with multiple maxima that are qualita-
tively very similar to those in the QB dataset. Thus, it better
captures the underlying fibre structure than the unregular-
ized DT dataset. Since the unregularized QB dataset con-
tains a lot more structural information than the DT dataset,
the difference with the QB regularization result is less ap-
parent. Regularizing the QB dataset has the effect of sharp-
ening the ODFs and enhancing certain maxima that were
originally less obvious, e.g., the voxels in the bottom right
part of the ROI. The output of the 3D curve inference al-
gorithm [21] run on the same DT dataset does capture the
fibre geometry, but has more difficulty recovering some of
the crossings in that area. In part this can be explained by
the fact that the 3D streamline flow gains stronger support
when locally parallel curve configurations are present.

To provide a stronger sense in 3D of the inferred flows,
Fig. 5 takes the blue, green and red osculating objects
shown for the two circled ODFs in the DT regularization
result (Fig. 4, second row, middle), supersamples and vi-
sualizes them, using the same colours, in a manner similar
to that of Fig. 3. To obtain a consistent visualization, for
each osculating object the tangential component of the flow
at the origin is aligned with the x-axis, and the neighbour-
ing components are visualized in three mutually orthogonal
slices, each oriented along one of the three coordinate axes.
The curvature parameters for these osculating objects work
out to be KT = 0.1, KN = 0.1, KB = −0.1 (red, top
row); KT = 0.1, KN = 0, KB = 0 (green, middle row);
KT = −0.1, KN = 0, KB = 0 (blue, bottom row).

Observe how the red osculating object in Fig. 4 (bottom
row, middle and right) approximates the ascending U-fibre,
while the two others capture the crossing between the CST
and the SLF. Such inferred flow patterns can potentially be
developed and used in an algorithm that would segment dif-
ferent fiber pathways based on 3D streamline flow coher-
ence. Although outside the scope of this paper, the prob-
lems of fibre segmentation and clustering are of current in-
terest in diffusion MRI analysis (e.g., see [18]), and the os-
culating objects inferred by 3D streamline flow could play
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Figure 5. Each row shows one of the inferred flows for the cir-
cled voxels in Fig. 4 (bottom row, middle), supersampled in three
mutually orthogonal slices through a 5 × 5 × 5 neighbourhood,
centered at the origin and aligned at the origin with the x axis (for
consistency in the visualization). The colours of the flow corre-
spond to the colours in Fig. 4 (bottom row, middle).

an important role. Below we sketch a simple method based
on 3D streamline flow for clustering.

The idea is to group ODF maxima together based on ori-
entation and osculating object coherence. Two neighbour-
ing ODF maxima are considered part of the same cluster, or
fibre tract, if they belong to a similar curvature class, and
if they are well aligned with one another’s osculating ob-
jects. A measure of alignment between an ODF maximum
m′ defined at voxel i, and the osculating object of a neigh-
bouring ODF maximum m′′ defined at location j is given
by the angle between m′ and the sample of the osculating
object associated with m′′ that corresponds to location i.

As an illustrative example, one can start with the left-
most circled voxel in Fig. 4 (bottom row, middle), and for
each ODF maximum recursively group together neighbour-
ing ODF maxima that obey the criteria of similarity in cur-
vature classes and similarity in orientation with the underly-
ing osculating objects. Fig. 6 shows the resulting clustering
of ODF maxima in two groups: in blue, those that are asso-
ciated with the CST and in green, those that are associated
with the SLF. A 10-slice cluster volume is shown (Fig. 6,
top) projected on a planar set of ODFs in a coronal slice
from the regularized DT dataset discussed above (in rela-
tion to Fig. 4). To give a stronger sense of the 3D nature
of the cluster volumes, Fig. 6 (bottom right) shows a zoom-
in viewed from an angle. In both cases, the circled voxel

Figure 6. An illustration of ODF maxima clustering based on os-
culating object coherence. Starting from the leftmost circled voxel
in Fig. 4 (bottom row, middle), neighbouring ODF maxima are lo-
cally clustered as belonging to the CST (blue) or the SLF (green).
Top: a volume of clustered ODF maxima is projected onto a coro-
nal slice through the regularized DT dataset (see text). The circled
voxel is the same as in Fig. 4 (bottom row, middle). Bottom row:
the slice through the ODF dataset is indicated with a white rectan-
gle in the RGB image (left); a zoom-in on the circled voxel viewed
from an angle is provided (right).

(and the colour coding of ODF maxima) is the same as the
leftmost circled voxel in Fig. 4 (bottom row, middle). The
set of ODFs viewed in Fig. 6 (top) is delimited with a white
rectangle in the RGB image of the ODF dataset (Fig. 6, bot-
tom left), in which blue denotes up-down orientation, and
green denotes orientation out of the page. These clusters
are 3D vector fields, and their projection on the image plane



causes perspective effects. These are preliminary results,
and though visually plausible (see the RGB image) claims
of anatomical validity would be premature. Nonetheless,
they demonstrate the usefulness of our differential geomet-
ric characterization of fiber tracts as a 3D streamline flow.

4. Conclusion
Fibre tracts, hair and fur patterns follow a 3D charac-

terization of the Frenet geometry. We have developed the
local structure for these patterns as a generalized helicoid
and have demonstrated how it could be used in the context
of diffusion MRI regularization for inferring the structure
of crossing and curving fibre tracts, as well as the associ-
ated local 3D streamline flow patterns. We foresee a fur-
ther application of the theory developed in this paper to the
problems of fibre segmentation and clustering. Finally, ap-
plications to problems in computer vision, computer graph-
ics and visualization exist as well. For example, articulated
2D patterns moving in space/time would follow similar ge-
ometry, which suggests a new foundation for use in object
tracking.
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