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Abstract
Diffusion tensor imaging (DTI) is widely used to characterize white matter in health and disease.
Previous approaches to the estimation of diffusion tensors have either been statistically suboptimal
or have used Gaussian approximations of the underlying noise structure, which is Rician in reality.
This can cause quantities derived from these tensors — e.g., fractional anisotropy and apparent
diffusion coefficient — to diverge from their true values, potentially leading to artifactual changes
that confound clinically significant ones. This paper presents a novel maximum likelihood
approach to tensor estimation, denoted Diffusion Tensor Estimation by Maximizing Rician
Likelihood (DTEMRL). In contrast to previous approaches, DTEMRL considers the joint
distribution of all observed data in the context of an augmented tensor model to account for
variable levels of Rician noise. To improve numeric stability and prevent non-physical solutions,
DTEMRL incorporates a robust characterization of positive definite tensors and a new estimator
of underlying noise variance. In simulated and clinical data, mean squared error metrics show
consistent and significant improvements from low clinical SNR to high SNR. DTEMRL may be
readily supplemented with spatial regularization or a priori tensor distributions for Bayesian tensor
estimation.

1. Introduction
Diffusion tensor imaging (DTI) provides unique insights into in vivo tissue structure through
contrasts sensitive to the directional diffusion of water within restricted environments [2].
Derived tensor contrasts, including fractional anisotropy (FA) and mean diffusivity (MD),
have been widely applied to characterize cytoarchitectural changes related to damage in
cerebral white matter (e.g. see a review by Horsfield and Jones [11]). At low signal to noise
ratios (SNRs), estimated contrasts tend to systematically diverge from their true values
(increased bias in addition to increased variability), which leads to artifactual changes that
confound clinically significant ones [3]. This study presents a maximum likelihood (ML)
approach of estimating tensors from DTI data that accounts for (1) non-Gaussian distributed
noise and (2) statistical dependence between observations to minimize bias. This novel
approach specifically addresses the joint likelihood of all observations given a tensor model
(as opposed to the marginal likelihood of each observation), denoted Diffusion Tensor
Estimation by Maximizing Rician Likelihood (DTEMRL).

In DTI studies, the degree and orientation of random thermal (Brownian) motion of water
are inferred from the signal intensity obtained during sensitized, “diffusion weighted” (DW)
acquisitions relative to a reference. A typical DTI study consists of a reference image and
series of 6 or more DW images, each of which are attenuated according to the diffusivity
along a particular linear direction. The absolute intensity depends on the local relaxation
properties (e.g., T1, T2, PD) of the tissue which are not directly linked to diffusivity. The
ratio between the DW and reference signals provides the relevant information. The 3D
diffusivity is modeled as a tensor fit to these ratios.
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Current methods of computing tensors do not fully account for the physical noise structure
in magnetic resonance (MR) data. The noise on acquired images is well characterized by
independent Rician distributions [10]. Independence between the noise on the intensities at
the same location in different images is lost when the ratio between DW and reference
images is computed because a common denominator is used. The most prevalent tensor
estimation method, the log-linear minimum mean squared error (LLMMSE) approach [2],
assumes the noise to be independently and identically Gaussian distributed on the logarithms
of the ratios. In support of the LLMMSE approach, Gudbjartsson et al. [10] demonstrated
that the distribution of the logarithm of ratio of Rician random variables is “nearly
Gaussian” for SNRs greater than 2:1.

Methods for compensating for Rician bias in DTI have been proposed primarily in two
categories, (1) characterization of the noise structure in single images and (2) spatial
regularization of DTI data. Sijbers et al. [19] presented an ML approach for Rician bias
compensation of single MR images. Koay et al. [13] demonstrated an exact solution and
extended the method for images from multiple coils. Jones et al. [12] presented an
estimation method that incorporates noise level estimation. Salvador et al. [18] reviews
distribution assumptions and describes a weighted least squares procedure for addressing
non-Gaussianity. Recent abstracts indicate that a Rician noise model is more accurate than
Gaussian estimation (e.g., [1]). Spatial filtering of DTI data to compensate for Rician noise
has been proposed in multiple contexts, including with wavelets [15], variational methods
[22], anisotropic smoothing [8], and edge preserving partial differential equations [6].

In this work, spatial regularization is avoided to demonstrate improvements possible without
compromise to spatial accuracy. The DTEMRL framework can readily incorporate spatial
consistency constraints as in the Frandsen et al. Bayesian tensor field regularization [9] or
the Basu et al. maximum a posteriori smoothness integrating Rician bias compensation [4].
In contrast to these approaches, DTEMRL assesses the likelihood as the joint probability of
observations rather than as a spatial regularization problem given Rician marginal
likelihoods.

In the tensor model of diffusion, the probabilistic motion of water is independent along three
orthogonal axes (i.e., tensor eigenvectors) with three independent diffusivities (i.e., tensor
eigenvalues). Since physical diffusivities cannot be negative, tensors that arise from
diffusion must be positive definite. However, common tensor estimation methods, including
LLMMSE, may result in tensors with negative eigenvalues. Nonlinear approaches to limit
solutions to the manifold of positive definite tensors have been proposed by Tschumperlé et
al. [21], Niethammer [14], and Cox et al. [7]. These methods have not specifically addressed
both the eigenvalue constraints and the Rician noise distributions.

Despite the “near-Gaussian” distributions of DTI experimental data, DTEMRL offers
substantial improvements at high SNRs, up to and including 40:1. In simulations, mean
squared error metrics demonstrate consistent and significant improvements with low clinical
to high SNR acquisitions.

2. Theory
2.1. Diffusion Tensor Imaging

The DW images that form the basis of DTI are typically created by augmenting a
conventional spin echo MR study with sensitization magnetic field gradients. Relative to a
traditional spin-echo reference, these “diffusion weighting gradients” produce intensity
changes that are dependent on the orientation of the magnetic field gradients relative to the
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underlying tissue microstructure. The tensor model of diffusion models observed intensities
by the Stejskal-Tanner expression [2],

(1)

where Si is the observed signal for the ith direction, S0 is the reference signal, b is a signal
attenuation constant (the “b-value”), gi is the unit direction vector of ith DW direction, and
D is the diffusion tensor, a symmetric 3×3 matrix,

(2)

The DW directions and b-value are determined by experimental settings and are generally
known before data acquisition. When a set of six or more non-collinear (and not mutually
coplanar) DW directions are acquired, the tensor may be linearly estimated from the
logarithm of ratios [2]:

(3)

Linear regression of the right hand side “G” matrix on the left hand side “log-observations
ratio” vector is an ML estimate of the diffusion tensor when the noise on ln |Si/S0| is
independently and identically Gaussian distributed. The ratio between DW and reference
intensity is known as the apparent diffusion coefficient (ADC).

2.2. Noise in MR Imaging
The physical MR observations of complex-valued Fourier coefficient images are well
described by Gaussian distributions. In DTI however, the reference and DW images are real-
valued magnitude images. Thus, the noise on individual MR observations follows a Rician
distribution,

(4)

where x is the observed signal, ν is the true mean intensity, σ is the standard deviation of
noise on the original complex valued image, and I0 is a zeroth order modified Bessel
function of the first kind. We define SNR as the magnitude of the noise-free signal divided
by the standard deviation of the noise on the original complex image (σ). The distribution of
the ratio of Ricians may be solved for special cases or evaluated numerically, but a
convenient closed form expression is not known. At low SNR, this distribution exhibits
significant non-Gaussian skew. Furthermore, a single common reference image is used for
all DW images to compute ADCs, so the ADCs are not independent observations. Finally,
the LLMMSE model makes no constraints on the eigenvalues of the resulting tensor, while
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physical diffusivities (the quantity associated with the tensor eigenvalues) cannot be
negative.

2.3. Maximum Likelihood Estimation
Consider a DTI study with a reference image and N DW images. Since the noise on each
acquired image is independent, the log-likelihood, L, of the observed data can be computed
by combining Eq. 1 and Eq. 4:

(5)

where D̂ is the tensor estimate, Ŝ0 is the reference signal estimate, and σ̂i is the estimated
noise level on image i. For notational convenience, g0 is defined as the zero vector.

Both the reference signal intensity and noise level are anatomically dependent, spatially
varying, and, in general, unknown. The noise level is independent of DW, so a single σ
parameter per location is sufficient. If different numbers of averages are used for different
images, then the σi parameter may be computed from the single baseline parameter by a
constant scalar. So, the ML approach requires estimating eight parameters as opposed to a
traditional LLMMSE method which only estimates the six tensor parameters.

2.4. Model Parameterization
The globally optimal ML solution does not depend on the diffusion tensor parameterization,
yet investigation reveals differing susceptibilities to local maxima and sensitivity to numeric
precision (not shown). Diffusion tensors are commonly represented by the six unique matrix
coefficients (Eq. 2). In DTEMRL, diffusion tensor are represented by three degree of
freedom rotation (R) and eigenvalue (Λ) matrices:

(6)

This representation readily enables constraints on the eigenvalues. In particular, the
diffusion tensor is restricted to the space of positive definite tensors by parameterizing each
eigenvalue by its logarithm:

(7)

where li is the ith eigenvalue parameter and eli is the ith eigenvalue. The classical
representation of rotation matrices uses Euler angles. Yet, Euler angles are numerically
difficult to jointly optimize because they are inhomogeneous, correlated, and have numerous
singularities. DTEMRL exploits an alternative representation based on Rodrigues’ analysis
and related to the quaternion form [5]:

(8)

where a, b, and c are the angular parameters, , and a2 + b2 + c2 is restricted
to [0, 1]. The derivatives of the parameters are equal for all parameters, and there is a single
singularity at γ = 0. The remaining two parameters, S0 and σ, in DTEMRL are represented
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in their native forms for efficiency because non-negativity problems were not encountered in
practice.

3. Methods
3.1. Model Initialization

The numeric maximization of likelihood (Eq. 5) requires an initial parameter estimate to
seed the optimization. The initial tensor parameters (l̂10, l ̂20, l̂30, â0, b̂0, ĉ0) were derived
from an LLMMSE tensor estimate. Negative eigenvalues and small magnitude eigenvalues
(less than 1 × 10−6) from the LLMMSE result were replaced with 1 × 10−6. The estimated
reference signal Ŝ00 was initialized to the observed reference signal S0.

Initial estimation of the noise level σ̂0 in DTI is more involved. It has often been proposed to
estimate the noise level from background data [19]. Yet, clinical image reconstruction
programs employ background suppression and signal equalization, especially with parallel
imaging reconstruction (e.g. SENSE [17]). Therefore, the noise level in the background is
not representative of the noise level within tissue. Furthermore, noise level varies with coil
sensitivity, which may be readily visualized on clinical data [12]. In DTI, images are
typically up-sampled by zero-padding complex-valued Fourier coefficient images, so the
local noise structure is highly correlated. Hence, estimation of noise level from local,
homogeneous regions is difficult.

The physical noise level (σ) at any given voxel is not dependent on diffusion weighting.
However, the number of averages used in the observed data must be taken into account. An
additional complicating factor is that signal intensity varies on the reference (S0) and each of
the individual DW images (Si). To overcome this difficulty, an estimate of noise level (σ̃) is
formed based on a repeated acquisition (i.e., a complete duplicate set of reference and DW
images), which is commonly available in practice. For voxels with high signal intensity, the
intensity distribution is approximately Gaussian but with variable mean. The differences
between repeated observations with the same diffusion weighting are also approximately
Gaussian, but with zero mean and  increased standard deviation. Since the distribution of
the difference of Gaussian random variables does not depend on the original mean,
differences from the reference and DW images may be treated as repeated observations from
the same distribution. Accordingly, we form the following estimator of σ̃ based on the
sample standard deviation while correcting for the  increase in standard deviation,

(9)

where di is the difference in signal intensities between the ith repeated pair of images (with
the same diffusion weighting) and ξi is the square root of the number of (k-space) averages
acquired for the ith image.

Estimates of σ̃ using Eq. 9 tend to exhibit low SNR and spatial variations that are
inconsistent with coil sensitivity profiles. Therefore, we regularize the initial noise field σ̃
using Chebyshev polynomial regression on non-background voxels with a third degree two-
dimensional polynomial to create physically realistic noise level estimates (σ̂). Although
other regularizers are possible, we note that Chebyshev polynomials are numerically stable
and have been previously used to model coil sensitivity profiles [16].
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3.2. Maximum Likelihood Estimation
ML estimates of tensor parameters were obtained by numeric optimization of Eq. 5 using the
Nelder-Mead simplex algorithm in Matlab (Mathworks, Natick, MA). To improve stability,
optimization proceeded in three stages. First, a refined estimate of the tensor parameters was
determined by fixing the noise and baseline intensity estimates,

(10)

Second, the estimates of reference intensity and noise level were refined holding the tensor
definition constant,

(11)

Third, the tensor parameters were refined based on the updated estimated reference intensity
and noise level,

(12)

In practice, iterative optimization is possible to avoid local minima. However, empirical
simulations found that a single pass was within 0.02 percent of the maximum likelihood
found after 10 iterations under realistic clinical conditions.

3.3. Simulation Study
Simulation experiments were performed with prolate tensors (i.e., tensors with identical
second and third eigenvalues). The maximum (parallel) diffusivity was set to 2 × 10−3 mm2/
s and the radial diffusivities were adjusted to create tensors with fractional anisotropies of 0,
0.2, 0.5, and 0.8. Simulated DTI studies were conducted at b-value of 1000 s/mm2 with the
30 DW directions described by Jones and tabulated by Skare et al. [20]. One thousand
Monte Carlo iterations were performed at each of 36 linearly spaced noise levels between
5:1 and 40:1. First, the reliability of LLMMSE and DTEMRL tensor estimation methods
were assessed when noise estimates were correctly initialized (σ̂ = σ). Second, the
simulations were repeated with the initial noise level randomly set to either 80 percent or
120 percent of the correct value (σ̂ = σ ± 0.2σ). Note that DTEMRL adapts its estimate of
noise level based on observed data (Eq. 11) both when the noise level was correctly and
incorrectly specified. Both methods were evaluated in terms of the mean squared errors
(MSEs) on the tensor coefficients and derived scalar measures.

3.4. Empirical Study
Repeated acquisitions of a single subject were acquired from the Biomedical Informatics
Research Network (BIRN) repository (http://www.nbirn.net). Briefly, the dataset consists of
15 DTI scans of a healthy 24 year old male volunteer, acquired using a 1.5T MR unit
(Intera, Philips Medical Systems, Best, The Netherlands) with body coil excitation and a six
channel phased array SENSE head-coil for reception. Each DTI dataset was acquired with
the following imaging protocol. A multi-slice, single-shot EPI (SENSE factor = 2.0), spin
echo sequence (90° flip angle, TR/TE = 3632/100 ms) was used to acquire 25 transverse
slices parallel to the line connecting the anterior and posterior commissures, with no slice
gap and 2.5 mm nominal isotropic resolution (FOV = 240 × 240, data matrix = 96 × 96,
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reconstructed to 256 × 256). A slice at the level of the corpus callosum was selected for
comparative processing. Diffusion weighting was applied along 30 DW directions described
by Jones et al. [20] with a b-value of 1000 s/mm2. Five minimally weighted reference
images (S0) were acquired and averaged on the scanner as part of each DTI dataset. The
SNR on the resulting S0 images was approximately 23:1 within the corpus callosum (white
matter). The total scan time to acquire one DTI dataset was 2 min 18s. DTI data were
corrected for subject motion with a public DTI software package.

Empirical noise level was estimated by computing the standard deviation on each voxel
measurement type (15 observations per voxel per image), averaging across all images (1
reference and 30 DW images), and fitting a Chebyshev model. The pairwise noise
estimation procedure was evaluated on all 105 combinations (15 choose 2) of two data sets
to evaluate its reliability.

LLMMSE and DTEMRL methods were run on each of the 15 datasets. As the noise level
initialization procedure requires two datasets, an arbitrary second dataset was used in the
noise field initialization stage. To provide a “high SNR” comparison, both methods were
also run on all acquired data (15 reference images and 450 DW images).

4. Results
4.1. Simulation

Simulations with correctly initialized noise level (σ̂0 = σ) demonstrate that DTEMRL
exhibits two distinct modes of behavior depending on the relationship between SNR and FA
(Fig. 1 A, B, D, E). When SNR is above a threshold, then DTEMRL results in substantial
improvement in the estimation of tensor coefficients. The simulated methodological
differences with SNR greater than 20:1 demonstrate a mean improvement in tensor
coefficient MSE of 4.4±1.7%, 6.9±1.1%, 20.3±1.3%, and 33.3±1.68% (mean± standard
deviation) for tensor FAs of 0, 0.2, 0.5, and 0.8, respectively (Fig. 1 B). At SNRs less than
18:1, 13:1, 10:1, and 6:1 for tensor FAs of 0, 0.2, 0.5, and 0.8 respectively, DTEMRL
reliability is less than that of LLMMSE.

Initialization with an incorrect noise level degrades DTEMRL performance, which
corresponds to approximately a 5:1 decrease in SNR. Yet, we observe the same bimodal
behavior as with correctly initialized simulations. Above an SNR of 25:1, there are mean
changes in tensor coefficient MSE of −2.1±3.1%, 4.4±0.92%, 19.8±1.2%, and 33.1±1.5%
(mean± standard error) for tensor FAs of 0, 0.2, 0.5, and 0.8, respectively (Fig. 1 C). Mis-
specification decrease performance in isotropic areas, yet differences after compensating for
the SNR shift are not significant for FA≥0.2 (p=0.08, 0.78, 0.94 for FA=0.2, 0.5, 0.8). For
isotropic tensors, reliability is significantly degraded (p≤0.05).

4.2. Noise Level Estimation
The empirically estimated (“high SNR”) noise level (Fig. 2 A) demonstrates strong spatial
variability, with the noise level near the center of brain more than double that in the cortex.
The spatial variability and general structure of the noise field are preserved with Chebyshev
polynomial regularization (Fig. 2 B). The bias between the high SNR regularized noise level
(Fig. 2 B) and the estimated regularized field from pairs of DW datasets is less than 5
percent bias (Fig. 2 C), which indicates a high degree of accuracy even when using limited
data. The reliability of estimates from pairs of DW datasets is very high; variability across
the brain was much less than 5 percent (Fig. 2 D), except near the frontal poles which are
highly susceptible to distortion artifact.
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4.3. Tensor Estimation with Acquired Data
The LLMMSE and DTEMRL methods demonstrate consistent differences even when using
all available clinical data. FA was higher in white matter structures (Fig. 3 A, B) with the
degree of difference proportional to tissue anisotropy. On single datasets, LLMMSE resulted
in higher FA in gray matter (note putamen and globus pallidus) and lower FA in white
matter (Fig. 3 C, D). Variability of the LLMMSE was greater across the brain except for the
ventricles (Fig. 3 E, F).

To assess systematic differences in estimated FA with LLMMSE and DTEMRL, voxels
were binned by the FA estimated with DTEMRL. For voxels in each bin, the mean
methodological differences in FA was computed. These mean differences are indicative of
the known systematic bias with LLMSE and depend on FA (Fig 4). At low FA, the bias is
slightly positive, with DTEMRL resulting in slightly lower FA. At increasing FA, the bias
shifts negative with DTEMRL resulting in higher FA.

The DTEMRL variability of tensor coefficients was reduced by more than 40 percent in
white matter, unchanged in gray matter, and increased in the cerebrospinal fluid (Fig. 5 A).
The DTEMRL variability of MD was slightly reduced in white matter and substantially
increased in the cerebral spinal fluid (Fig. 5 B).

The “shape” of a diffusion tensor (i.e., orientation and eigenvalues) may be visualized by
rendering the directional ADC functions. The visual variability of ADC functions estimated
from distinct datasets provide a qualitative sense as to degree of improvements with
DTEMRL over LLMMSE (Fig. 6). The illustrations show representative white matter
regions of interest. DTEMRL results in more reliable orientation estimates (a narrow angular
spread of the major axis of the “peanuts”) and eigenvalues (consistent size of the “peanut”
along each axes).

5. Discussion
5.1. Tensor Estimation

Simulations demonstrate that tensor estimates may be considerably improved by exploiting
the Rician noise distributions of MR data (Fig. 1). However, using this information requires
estimating two additional parameters (the intensity of the reference signal and noise level)
which are not needed for LLMMSE. Thus, a minimum of seven diffusion weighted images
and a reference image are required. At moderate and high SNR, DTEMRL improves the
reliability of tensor estimation, and the magnitude of improvements is greater for tensors of
high anisotropy. For very low SNR, simulations indicate that the DTEMRL method may
reduce estimation performance, likely due to variability introduced with the additional
parameters. These results suggest the need for regularization of DTEMRL when the SNR is
very low or, similarly, when very few DW images are acquired. Experiments with clinical
data demonstrate consistent improvements with DTEMRL. DTEMRL operates in the stable,
“high SNR” regime for DTI studies using only one acquisition at 1.5T. Typically, 3 to 5
averages are acquired at 1.5T to improve SNR by 70 to 120 percent. Simulations indicate
that improvement in SNR would reduce the likelihood that DTEMRL would continue to out
perform LLMMSE without decreasing proportional improvement of DTEMRL over
LLMMSE.

Experiments with clinical data demonstrate that DTEMRL remains robust in spite of the
approximate nature of the tensor model, presence of artifact, and spatially heterogeneous
tissue. Reproducibilities of FA (Fig. 3 E, F), tensor coefficients (Fig. 5 A), and MD (Fig. 5
B) are greater (lower standard deviation) for DTEMRL than LLMMSE. The percent
improvements are greatest for tensor coefficients in white matter. Negative impacts of
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reduced SNR are mitigated by high FA. Once data is of sufficient SNR for DTEMRL to
offer improved reliability, the proportional benefits are essentially constant across SNR
while the magnitude of the improvement increases with FA (Fig. 1 B, E). Although numeric
optimization depends upon the initialization accuracy, DTEMRL tensor estimates remain
stable in spite of a 20 percent mis-specification of initial noise level (Fig. 1 C, F).

Without a valid ground truth, the full reliability cannot be assessed with in vivo data. The
“high SNR” estimates are not a suitable proxy because the estimates with LLMMSE and
DTEMRL are different. In LLMMSE, including additional observations reduces the
variability in the DW image intensity, but also reinforces bias on each DW image. With
DTEMRL, additional observations enable refinement of the noise estimate, and reduce both
variability and bias in the estimated DW image intensities during tensor estimation. Low
SNR tends to positively bias FA in regions of low anisotropy and negatively bias FA in
regions of high anisotropy with the LLMMSE method [12]. The systematic bias between FA
estimated with LLMMSE and DTEMRL (Fig. 4) is in the opposite direction, which suggests
that DTEMRL would reduce bias in the estimated tensors. However, additional acquisitions
using k-space averaging and/or complex-valued imaging data are required to generate
unbiased, high SNR clinical data and verify potential DTEMRL bias correction properties.

5.2. Noise Level Estimation
The underlying noise estimation procedure (Fig. 2) is stable, accurate, and does not depend
on spatial correlations or the existence of a background region. It also avoids dealing with
spatially correlated noise, which is common in DTI due to up-sampling and/or interpolation.
With the widespread use of parallel imaging methods, this noise level estimator – while
specifically developed for use in our improved tensor estimation procedure – could also
have far wider utility beyond diffusion tensor imaging.

5.3. Conclusion
The bimodal performance of DTEMRL suggests an opportunity for a hybrid approach to
tensor estimation even when SNR is unknown. Simulations indicate that DTEMRL either
substantially improves tensor estimation or results in degraded reliability (Fig. 1) which is
influenced by initialization. The newly presented noise level estimation method provides a
robust SNR estimate that does not depend on tensor estimation, while the LLMMSE method
estimates FA. Together, these estimates may enable a decision framework to transition
between DTEMRL and LLMSE based on expected performance.

DTEMRL provides a platform on which to develop ML approaches for robust DW image
analysis, regularization, and spatial filtering. MR images are often corrupted by artifacts
which are not well modeled by additive or Rician noise. Detection and/or removal of these
artifacts could be accomplished directly with likelihood measures. Alternatively, DTEMRL
could be desensitized to outliers through use of a robust likelihood function. Furthermore,
prior probabilities could be associated with spatial distribution for tensor field regularization
or with the tensors themselves to transform this maximum likelihood approach into a
Bayesian maximum a posteriori approach. To facilitate clinical applications and further
research, the DTEMRL research software may be optimized, as the current Matlab
implementation requires 200 ms per voxel on a PC.
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Figure 1.
Simulation results. DTEMRL consistently improves tensor reliability in terms of tensor
coefficients (A–C) and FA (D–F) when SNR is above an FA dependent threshold. Typical
clinical DTI studies exhibit SNR greater than 20:1. Mis-specification of the noise level
raises the threshold for improvement (B vs. C and E vs. F), but improvement magnitude is
unchanged for anisotropic tensors (FA≥0.2).
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Figure 2.
Reliability of noise level estimation. Empirical noise (A) shows clear spatial dependence.
Regularization of the empirical noise (B) preserves spatial structure. The proposed noise
estimation method demonstrates reliability. Both the mean difference between estimate
noise and regularized empirical noise (C) and the estimated noise variability (D) are within 5
percent.
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Figure 3.
FA estimates with acquired data. Systematic bias is seen between DTEMRL and LLMMSE
when simultaneously using all 15 datasets (A,B). Mean differences (bias) between methods
are preserved when single datasets are analyzed (C,D). Variability of DTEMRL is lower
throughout the brain (E,F).
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Figure 4.
Systematic bias in FA. Mean FA binned by FA for DTEMRL and LLMMSE are shown
(±standard error).
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Figure 5.
Estimation variability. Plots show the MSE of DTEMRL minus the MSE of LLMMSE for
tensor coefficients (A) and MD (B). Dark tones indicate improvement with DTEMRL.
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Figure 6.
Representative tensor estimates. Renderings show all estimates for 4 voxels with DTEMRL
(left) and LLMMSE (right) in the corpus callosum (A) and internal capsule (B).
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