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Abstract

In this paper, we describe a method for segmenting fiber
bundles from diffusion-weighted magnetic resonance im-
ages using a locally-constrained region based approach.
From a pre-computed optimal path, the algorithm propa-
gates outward capturing only those voxels which are locally
connected to the fiber bundle. Rather than attempting to find
large numbers of open curves or single fibers, which indi-
vidually have questionable meaning, this method segments
the full fiber bundle region. The strengths of this approach
include its ease-of-use, computational speed, and applica-
bility to a wide range of fiber bundles. In this work, we show
results for segmenting the cingulum bundle. Finally, we ex-
plain how this approach and extensions thereto overcome
a major problem that typical region-based flows experience
when attempting to segment neural fiber bundles.

1. Introduction

Region-based approaches to image segmentation consti-
tute a key methodology for numerous applications. In these
approaches, the objective is to find the segmentation which
optimally separates features exterior to a closed curve or
surface from features contained in the interior. These ap-
proaches have been shown to accurately segment datasets
with low signal to noise ratio, frequently outperforming
edge-based techniques.

For example, in the work by Chan and Vese, a flow is
proposed which optimally separates the first moments of
the intensity distributions [4]. In more recent work, Rathi
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et al. demonstrate a method based on the Bhattacharyya
distance for separating entire distributions [30]. In both of
these cases, features from the entire interior of the curve are
compared against features from the entire exterior.

In this present work, we propose a region-based algo-
rithm for the segmentation of neural fiber bundles from dif-
fusion weighted magnetic resonance imagery (DW-MRI).
Specifically, we describe why classical approaches (i.e.
those which compare features across the full interior with
features from the full exterior) may not be well-suited for
DW-MRI fiber bundle segmentation. Then, we explain how
one can leverage the results of optimal or geodesic path al-
gorithms to locally constrain region-based approaches in
such a manner which will both retain the beneficial at-
tributes of region-based methods while also handling the
challenges posed by DW-MRI data. Starting from an op-
timal path (or anchor tract), a fiber bundle is segmented
using a Bayesian framework. The priors are based on
anatomical knowledge of the bundle being segmented, for
instance, a simple nonlinear anatomically derived function
of the distance to the anchor tract works well for the cin-
gulum bundle. The likelhoods are based on local mea-
sures of tensor compatibility (local uniformity), adapting a
Chan and Vese approach to active contours without edges.
The Bayesian formulation is cast as an energy minimization
problem which is solved using a greedy flood fill motivated
algorithm.

We now briefly describe the remainder of this paper.
First, in Section 2, we provide a literature review and back-
ground of tractography and fiber bundle segmentation algo-
rithms. Second, in Section 3, we motivate our interest in
applying this algorithm to the segmentation of the cingu-
lum bundle. Third, in Section 4, we describe the algorithm
for locally constraining the region-based method. Fourth,
in Section 5, we provide initial results on the segmentation
of the cingulum bundle using a simplistic implementation.
Finally, in Section 6, we provide an extensive explanation
of how these ideas and results may be adapted for use in a
variety of implementations and algorithms.
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2. Background
Since the advent of diffusion weighted magnetic reso-

nance imaging, a great deal of research has been devoted
to finding and characterizing neural connections between
brain structures. Image resolution is typically high enough
so that major white matter tracts, or bundles of densely
packed axons, are several voxels in cross-sectional diam-
eter [20]. The goal of tractography algorithms is to segment
these fiber bundles from the DW-MRI datasets.

Early tractography methods were based on streamlines
which employed local decision-making based on the princi-
pal eigenvector of diffusion tensors [19, 33, 2, 5]1.

In these techniques, tracts are propagated from a start-
ing point until the tracts reach some termination criterion.
Due to the local decision-making process, these methods
have been shown to perform poorly in noise and often stop
prematurely. These techniques do not provide a measure of
connectivity for the resulting tracts. Furthermore, several of
these methods do not use the full tensor, reducing the data
to the principal eigenvectors, and subsequently are unable
to handle fiber crossings, branchings,“kissings,” etc.

Despite the shortcomings of this approach, due to its
ease-of-use, streamlining has quickly become the most pop-
ular method for fiber segmentation. To infer fiber bundles
from streamline tractography results, several groups have
successfully worked on methods for fiber clustering. The
goal of clustering is to capture group behavior of a popula-
tion of streamlines and to use this group behavior to drive
fiber bundle segmentation. The end result of clustering al-
gorithms has been shown to accurately capture many neural
fiber bundles, see for example [22, 18].

Recently, another line of work has emerged which seeks
to avoid the use of the problematic streamlines. Tractogra-
phy advances have been made which provide full brain opti-
mal connectivity maps from predefined seed regions. These
methods are more robust to noise and depending upon the
underlying metric, may be able to more fully use the com-
plete DW-MRI data. These approaches can be subdivided
into stochastic and energy-minimization approaches.

Stochastic approaches produce probability maps of con-
nectivity between a seed region and the rest of the brain.
Parker et al. developed PICo, a probabilistic index for stan-
dard streamline techniques [24]. Perrin et al. presented
probabilistic techniques for untangling fiber crossings using
q-ball fields [26]. In other work, Friman et al. proposed a
method for probabilistically growing fibers in a large num-
ber of random directions and inferring connectivity from the
resulting percentages of connections between seed and tar-

1The diffusion tensor is one of the simplest diffusion models. It is
estimated from a set of diffusion weighted images, each probing the water
diffusion in a different spatial direction. In the three-dimensional case the
diffusion tensor is a 3 × 3 symmetric, positive definite tensor. For details
see [3].

get regions [7]. While providing a measure of connectivity
between brain regions, these stochastic approaches do not
provide an explicit segmentation of the fiber bundle itself
and often do not explicitly provide the optimal connection
between regions of the brain.

Energy-minimization techniques have also been devel-
oped. Parker et al. proposed fast marching tractogra-
phy which minimizes an energy based on both the posi-
tion and direction of the normal to a propagating front [25].
O’Donnell et al. cast the tractography problem in a geo-
metric framework finding geodesics on a Riemannian man-
ifold based on diffusion tensors [23]. Similarly, Prados et al.
and Lenglet et al. demonstrated a Riemannian based tech-
nique, GCM (Geodesic Connectivity Mapping), for com-
puting geodesics using a variant of fast marching methods
adapted for directional flows [29, 15]. Jackowski et al.
find Riemannian geodesics using Fast Sweeping methods
as given by Kao et al. [8, 11, 12]. Pichon et al. and Mel-
onakos et al. use the more general Finsler metric to find
optimal connections [27, 28, 17, 16]. Finally, Fletcher et al.
propose a new Hamilton-Jacobi-Bellman numeric solver on
the graphics processing unit to find Riemannian geodesics
in near real-time speeds [6]. In each of these cases, an opti-
mal path is found which represents the best connection be-
tween the two regions under the given metric.

3. The Cingulum Bundle
In this section, we motivate the problem of segment-

ing the cingulum bundle. The cingulum bundle is a 5-7
mm in diameter fiber bundle that interconnects all parts of
the limbic system. It originates within the white matter of
the temporal pole, and runs posterior and superior into the
parietal lobe, then turns, forming a ”ring-like belt” around
the corpus callosum, into the frontal lobe, terminating ante-
rior and inferior to the genu of the corpus callosum in the
orbital-frontal cortex [32]. Moreover, the cingulum bun-
dle consists of long, association fibers that directly connect
temporal and frontal lobes, as well as shorter fibers radiat-
ing into their own gyri. The cingulum bundle also includes
most afferent and efferent cortical connections of cingulate
cortex, including those of prefrontal, parietal and temporal
areas, and the thalamostriatae bundle. In addition, lesion
studies document a variety of neurobehavioral deficits re-
sulting from a lesion located in this area, including akinetic
mutism, apathy, transient motor aphasia, emotional distur-
bances, attentional deficits, motor activation, and memory
deficits. Because of its involvement in executive control and
emotional processing, the cingulum bundle has been inves-
tigated in several clinical populations, including depression
and schizophrenia. Previous studies, using diffusion tensor
imagery, in schizophrenia, demonstrated decrease of frac-
tional anisotropy in the anterior part of the cingulum bun-
dle [13, 34], at the same time pointing to the technical lim-
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itations restricting these investigations from following the
entire fiber tract.

4. The Algorithm
In this section, we present our method for applying local

constraints to region-based flows.

4.1. Motivation for Local Constraints

An implicit assumption of classical (i.e., those which
compare features across the full interior with features from
the full exterior) region-based approaches is that the en-
tire interior of the contour contains fairly homogeneous fea-
tures, such as mean intensity. Under this assumption, these
algorithms proceed by evolving the closed curve or surface
to minimize an energy defined over these features.

However, if there are no homogeneous features across
the entire interior or exterior of the object of interest, it
becomes difficult to define a region-based approach which
will accurately segment the image. For instance, in the case
of the cingulum bundle which curves around the ventricles,
the tensors across the fiber bundle vary in both anisotropy
and orientation across the length of the bundle, as shown
in Figure 1. In this sagittal view, we see that it is difficult
to define a feature on the space of tensors which uniquely
separates the entire interior of the cingulum bundle from the
exterior. However, we also notice that the tensor shape and
anisotropy vary smoothly across the bundle. Hence, locally
across the fiber one can define tensor features which are dis-
tinguishable from the exterior.

4.2. Prior Work

Surface evolution approaches have been described for
fiber bundle segmentation. Rousson et al. [31] use a multi-
variate Gaussian distribution of the tensor components in a
geodesic active region model to drive a surface evolution
towards the segmentation of fiber bundles. The method is
applied to the segmentation of the corpus callosum, but is
unable to fully capture its curved character as discussed by
the authors. In a follow-up paper [14] a similar segmen-
tation framework in combination with a geodesic distance
between tensors is shown to yield superior segmentation re-
sults, in particular, when segmenting curved fiber bundles.
Jonasson et al. propose two different ways to address the
segmentation of curved fiber bundles in a surface evolution
setting: (i) a local approach [9], where the surface evolution
speed is influenced by the similarity of a tensor in com-
parison to its interior neighbors, and (ii) a region-based ap-
proach, where the similarity measure is based on the no-
tion of a most representative tensor within the segmented
region [10]. In the latter case, capturing highly curved fiber
bundles will be problematic. In both cases the segmenta-
tion algorithm is combined with a surface regularization to

prevent leaking. The approach proposed in this paper is
related to Jonasson’s work [9] in as much as it uses local
tensor similarities to drive the segmentation, however, no
surface evolution is used and a tensor similarity measure
is combined with prior information as given by an initially
computed anchor tract (also preventing large-scale leaking).
The extension of the approach proposed in this paper (see
Section 6) can be seen as complementary to the method by
Lenglet et al. [14]. Instead of disentangling tensor shape
and orientation through an appropriate tensor distance (and
statistic) the anchor tract may be used to warp the space
initially, thus effectively removing large orientation differ-
ences2. Further, due to the absence of a surface evolution,
our approach is computationally very efficient.

4.3. Bayesian Framework

In this section, we describe how the algorithm can be for-
mulated in a Bayesian framework. We follow the approach
by Mumford [21] and cast the Bayesian estimation problem
into an energy minimization. The probability of observing
the classification C, consisting of points belonging to the
fiber and points belonging to the background given the ten-
sor information T is (using Bayes’ formula):

p(C|T ) =
p(T |C)p(C)

p(T )
∼ p(T |C)p(C), (1)

where C is an element of the set of all possible assign-
ments of voxels to the fiber and the background respectively,
p(T |C) is the likelihood of observing T given the classifi-
cation C and p(C) is the prior. By taking the logarithm
on both sides and noting that p(T ) is independent of the
classification C, Equation (1) can be written as an energy
minimization problem [21]

E(C) = − log(p(C, T ))
= − log(p(T |C))− log(P (C))
= Ed(T,C) + Ep(C), (2)

where Ed(T,C) denotes the data energy and Ep(C) the
prior (or regularization) energy. Instead of solving the
Bayesian estimation problem (1) directly we may thus in-
stead minimize the energy (2). Which leaves us with defin-
ing these energies. We use a flood-fill algorithm approach
that solves the energy minimization problem (2) for an in-
dividual point only considering its local neighborhood N .
In what follows we first describe the continuous setting, to
make connections with existing approaches, and then de-
scribe the discrete implementation in the context of the pro-
posed Bayesian flood-fill algorithm. Given the local neigh-
borhood N of a point x we want to decompose it into a sub-
region belonging to the fiber and a subregion belonging to

2Our approach may also be combined with the method proposed
in [14].
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Figure 1. Example of the need for local constraints on region-based segmentation algorithms which attempt to segment the cingulum
bundle. Notice that tensor anisotropy and orientation vary across the length of the cingulum bundle.

the background. The goal of our algorithm is to make each
of these two subregions individually as uniform as possi-
ble, while at the same time using anatomically meaningful
prior information. The prior information is encoded based
on the distance of the pre-computed anchor tract, which is
the lowest cost path connecting two maximally spaced-out,
pre-defined regions of interest of the fiber bundle of interest
(in our case the cingulum bundle). Specifically, we choose
p(C) as

p(x) = sG(d(x)), (3)

where d(x) is the distance of point x from the anchor tract
and

sG(r) = Gσ ∗


1 for |r| > µmin

1
2 for µmin ≤ |r| ≤ µmax

0 otherwise,

where Gσ is a Gaussian with standard deviation σ and ∗
is the convolution operator; µmin and µmax are set to the
range of expected radius values. Note, that the prior could
also be replaced by a probabilistic atlas. Equation (3) de-
scribes an initial zone of high fiber confidence close to the
anchor tract, a transitioning region (where p(C) = 1/2)
where the prior information will not be used3, and an
anatomically implausible region, where the prior probabil-
ity decreases to zero. The prior energy is then defined as

Ep(C) =
1
|N |

(∫
Nf

1− p(x) dΩ +
∫

Nb

p(x) dΩ

)
, (4)

where Nf is the region belonging to the fiber Nb is the re-
gion belonging to the background and | · | denotes cardinal-
ity, i.e., |N | is the volume of the neighborhood. Given a

3If p(C) = 1/2, the prior energy (4) is independent of assigning the
candidate flood-fill point to the fiber or the background.

measure of uniformity D : T × SN 7→ R+
0 mapping from

the space of tensors T and the space of neighborhood sets
of tensors SN 3 T (N) := {T (x) ∈ T |x ∈ N} to a non-
negative real value, we write the data energy as

Ed(T,C) =
1
|N |

(∫
Nf

D(T (x), T (Nf )) dΩ

+
∫

Nb

D(T (x), T (Nb)) dΩ
)

, (5)

where T (x) denotes a tensor at position x and T (N) de-
notes the set of tensors in the region N . This is an energy
similar to the one proposed by Chan and Vese [4] for the
segmentation of intensity images4. Note, however, that in-
stead of using this energy globally to perform tensor seg-
mentation, we are proposing to use this energy in a local
neighborhood to make a local decision for a flood-fill al-
gorithm, thus avoiding global tensor orientation issues for
strongly curving fiber bundles. To minimize this energy in
the discrete flood-fill setting, we simply compute the dif-
ference of the energies when adding the voxel in question
to either the fiber (resulting in energy Ef ) or to the back-
ground (resulting in energy Eb). The difference of these
energies ∆E = Eb − Ef corresponds to a discretized gra-
dient. Since our goal is to minimize the overall energy, a
voxel x will be added to the set of fiber voxels if ∆E > 0.
All integrals in Equations (4) and (5) become sums in the
discretization. Many uniformity measures are possible (see
for example [10, 9, 1] for some ideas on how-to compare
tensors), we constructed a simple one based on fractional

4To favor “smooth” discrete boundaries, a local boundary length term
can be added.
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anisotropy and the major diffusion direction:

D(T (x), T (N)) =
1
2

(
DFA(T (x), T (N))

+ De1(T (x), T (N))
)

,

where

DFA(T (x), T (N)) = |FA(T (x))− FA(T (N))|

measures the uniformity in fractional anisotropy and

De1(T (x), T (N)) = 1−
√

FA(T (x))FA(T (N))

× e1(T (x))T λ1(T (N))e1(T (N))
‖λ1(T (N))e1(T (N))‖

measures the uniformity in direction. Fractional anisotropy
(FA) is defined as [3]

FA =

√
3
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2√

λ2
1 + λ2

2 + λ2
3

where e1(T ) denotes the major unit eigenvector of the ten-
sor T , λi(T ) its eigenvalues (with λ1 ≥ λ2 ≥ λ3 ≥ 0),
and the overhead bar signifies the mean5. De1 is scaled by
fractional anisotropy to discard tensors that are close to be-
ing isotropic, since in these cases eigenvector computations
become numerically problematic. The continuous approach
could alternatively be implemented using fast marching or
level sets. In this work, we use a very simple flood-fill ap-
proach which propagates away from the anchor tract. Cer-
tainly other methods would offer a more continuous and nu-
merically accurate approach. However, our simple flood-fill
implementation is sufficient as a proof-of-concept.

The algorithm proceeds in the following steps:

(i) Declare all voxels on the anchor tract as fiber voxels.

(ii) Consider all 6-connected neighbors to the fiber voxels
that are not fiber voxels themselves as candidate vox-
els.

(iii) Decide whether a candidate voxel should belong to the
fiber based on the simple local energy minimization
described above (where the neighborhoods Nf and Nb

are given by the voxels in the current neighborhood
N that already belong to the fiber or are so far classi-
fied as background respectively). If a candidate voxel
should be part of the fiber according to the local energy
minimization, add it as a fiber voxel.

5FA may be computed directly from the tensor components without
computing the tensor eigenvalues first [3].

(iv) Repeat from step (ii) until no more new fiber voxels
are found.

Using the Bayesian framework, the outward propagating
front stops once the Bayesian detection threshold is reached,
i.e., once all boundary voxels are in locally minimal energy
configurations.

5. Experiments
In this section, we show results of the algorithm applied

to DW-MRI datasets of 51 sampling directions. We used the
Finsler tractography method proposed by Melonakos et al.
to compute the anchor tracts or optimal paths between two
input seed regions [16]. The seed regions were manually
segmented, one under the anterior tip of the ventricles and
the other under the posterior tip of the ventricles.

Using precomputed anchor tracts, we were able to con-
struct our priors using the function shown in Figure 2, as
previously described (mean radius r = 3 mm, µmin =
1
2r = 1.5 mm, µmax = 3

2r = 4.5 mm, σ = 1
8r = 3

8 ). Ap-
plying this function to a distance map from the anchor tract,
the prior image is as shown on the left side of Figure 3. The
white colored area is where the uniform priors are centered
on the mean value of the cingulum bundle radius, which we
take to be 3 mm as described in Section 3. In the middle of
Figure 3, we show the likelihood energy gradient computed
from the evolution (where positive values are likely to be-
long to the bundle and negative values are not likely to be-
long to the bundle). Notice how the likelihood energy func-
tion captures an appropriate boundary across a majority of
the cingulum fiber bundle. The orientation dependent terms
had the strongest influence on the inferior edge against the
corpus callosum. The anisotropy dependent terms had the
strongest influence on the superior edge. On the right side
of Figure 3, we show the posterior energy gradient, which
results from the combination of likelihood energy and prior
energy terms.

In Figure 4, we show a 3D model view of the result-
ing segmentation. Then, in Figure 5, we show three sepa-
rate time steps in the flood-fill evolution. The first column
is at 1 iteration, the second column is at 3 iterations, and
the final column is at 18 iterations-where all three methods
had converged. The top row shows the evolution using only
the priors. Notice how the result is a smooth tube exactly
matching the prior that is too wide for this individual and
ends up overlapping proximal anatomy, such as the corpus
callosum. The middle row shows the evolution using only
the likelihoods. While this result appropriately captures the
majority of the bundle, it is subject to a few leaks as shown.
The bottom shows the evolution using the Bayesian combi-
nation of the likelihoods and priors. This result shows an
appropriate combination of the likelihood boundary stop-
ping and the prior leakage constraints.
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Figure 3. The prior energy (left), likelihood energy (middle), and posterior energy (right).

Figure 4. A 3D view of the result.

Figure 5. Front evolution time steps: Top Row is the evolution with only the priors. Middle Row is the evolution with only the likelihoods.
Bottom Row is the evolution from the Bayesian inclusion of both the likelihoods and priors.
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Figure 2. The prior profile: Blue is the initial step function, Red is
the actual profile after smoothing. Note the region of uniform pri-
ors (0.5), centered around the clinically defined mean fiber radius.

We also note that the few parameters used in this method
can be chosen given anatomical information about the mean
radius of the fiber bundle. The prior energy function is only
dependent upon this parameter, as mentioned previously.
Also, the neighborhood size is chosen to be large enough
so that at least 20% of the neighborhoods on the first it-
eration include voxels exterior to the fiber bundle. In this
case, we chose a neighborhood radius of 7 mm. No other
parameters were needed in this computation.

6. Future Work and Conclusions
This paper proposed a novel segmentation method for

diffusion tensor images. The approach is based on a
Bayesian region growing, where the prior depends on the
distance to a pre-computed anchor tract. The anchor tract
is given by the optimal path in a Finsler metric (though any
other robust method giving a representative fiber path could
be used), utilizing the full diffusion profile. The likelihood
is determined based on the consistency of a candidate voxel
with its neighbors that are already part of the segmentation.
(i.e. the likelihood is dynamically updated as the region
is growing.) The Bayesian combination of likelihood and
prior allows for a balanced combination of local consistency
and distance from the optimal path, which also inhibits seg-
mentation leakage. The approach is computationally effi-
cient.

Region-based segmentation algorithms have been highly
successful in segmenting uniform (in a given measure) re-
gions. Translating this global region-based approach to dif-
fusion weighted imaging for the segmentation of fiber bun-
dles is challenging, since it is not obvious how to define a
criterion to incorporate shape and directional information
over an entire region. In particular, many fiber bundles in
the brain curve strongly (e.g. the cingulum bundle, the arcu-
ate fasciculus, the corpus callosum). Figure 6 shows some

Figure 6. Tensors aligned along the anchor tract (top) and tensors
aligned along the anchor tract warped to a straight line (bottom).
Warping the tensors based on the geometry of the anchor tract
greatly simplifies the tensor segmentation problem.

exemplary tensors aligned along an anchor tract. Warping
the anchor tract to a straight line may greatly simplify the
design of region-based statistics, by “flattening” the geom-
etry to remove large-scale deformation. Further, by estab-
lishing correspondences between the anchor tract and the
rest of the domain, other interesting neighborhoods may be
defined. This will be the topic of future research.

Many more extensions are conceivable, such as the use
of more sophisticated distance and similarity measures.
The locally-constrained method proposed as well as global
region-based segmentation methods will benefit from sim-
ilarity metrics using the complete tensor information. In
particular, more suitable tensor-based statistics may be ex-
plored in this framework, such as those shown by Lenglet
et al. [14]. Further, a continuous formulation, based on a
variant of the Eikonal equation or as a complete surface
evolution (with the easy possibility of directly integrating
smoothing terms) will be desirable, and validations with re-
spect to manual segmentations should be performed.
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