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Abstract

The standard graph cut technique is a robust method for
globally optimal image segmentations. However, because of
its global nature, it is prone to capture outlying areas sim-
ilar to the object of interest. This paper proposes a novel
method to constrain the standard graph cut technique for
tracking anywhere from one to several objects in regions of
interest. For each object, we introduce a pixel penalty based
upon distance from a region of interest and so segmentation
is biased to remain in this area. Also, we employ a filter
predicting the location of the object. The distance penalty
is then centered at this location and adaptively scaled based
on prediction confidence. This method is capable of track-
ing multiple interacting objects of different intensity profiles
in both gray-scale and color imagery.

1. Introduction
Tracking an object in video has been the focus of much

research, and the problems accompanying this key task are
well-known. For example, the object might have weak
edges causing a given edge-based active contour segmen-
tation method to leak out into the surrounding area, or the
object may suddenly move outside the algorithm’s region of
detection, or the object may be near other objects of similar
intensity causing unintended objects to be tracked. Multi-
object tracking raises additional concerns such as the inter-
action among objects.

Various methods have been proposed to overcome these
difficulties. To keep segmentations from spilling over ob-
ject boundaries, learned shape priors constrain segmenta-
tion to a set of possible shapes [8, 9, 14]. To account for
object movement, motion models can predict the likely lo-
cation of the object in subsequent frames [7, 11]. When
adjacent regions are similar to the object of interest, multi-
ple hypothesis trackers can keep track of each region while
determining the most likely in each frame based on some
criteria [1, 12, 15, 19]. To segment multiple unique objects
simultaneously, techniques have been developed to take into

Figure 1. Tracking two interacting soccer players among others
of similar intensity: no distance penalty and applying distance
penalty to track one or two players (left to right). Without the
distance penalty, multiple non-intended regions were captured.

account the interaction among objects [23].
Graph cut techniques have received considerable atten-

tion as robust methods for energy minimization. Despite
their success for such key vision tasks as image segmen-
tation and stereo disparity, graph cuts have received little
attention with respect to tracking. This is largely due to the
global segmentations they produce which tend to catch un-
intended regions that are similar to the object of interest.
For example, the standard graph cut technique for image
segmentation [4] finds regions with high likelihood given
intensity priors. Figure 1 shows an example where there are
multiple regions of similar intensity. The standard graph
cut algorithm captures such regions. Post-processing must
be performed to filter out those regions that are not part of
the object. However, this same feature, that of capturing
such regions anywhere in the image, naturally addresses the
problem of large object movements. The graph cut will find
the object even if it moved far relative to its location in the
previous frame. The problem is now one of constraining the
graph cut to capture only the objects of interest, even if they
made large movements yet ignoring other regions of similar
intensity. Hence a spatial constraint is needed.

Several techniques have used graph cuts for segmenta-
tion in visual tracking applications. In [24] the segmenta-
tion is constrained to a narrow band. For each frame, suc-
cessive graph cut segmentations converge on a final seg-
mentation, each pass constrained to a narrow band around
the cut boundary resulting from the previous pass. This
method is dependent upon initial contour placement and re-
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quires repeated cuts on this reduced domain. In [10] the au-
thors use one graph cut for each frame to both estimate the
optical flow and object position despite changes in illumi-
nation. However, since optical flow requires the multi-label
graph cut technique [6] and the graph proposed has such
dense neighborhoods, the current approach requires about a
minute per frame. Also, due to the local nature of optical
flow, the technique cannot handle large movements.

Besides tracking, work has been done to constrain seg-
mentation based on a user selected region. The work of
[20] begins with a rectangle bounding the object, while the
work of [2] uses a narrow band. Both perform successive
graph cut segmentations incorporating additional user inter-
action with each pass. Neither method is targeted towards
tracking per se, but instead seeks a perfect segmentation.
In these works, hard constraints confine the segmentation
within a user-selected region and multiple graph cuts are
performed. In our work, the object may be found a distance
from the predicted centroid depending on the scale of the
distance penalty, and segmentation is performed only once
per frame. None of these methods has been generalized to
simultaneously segment multiple unique objects.

Recently, we began work to constrain the standard graph
cut segmentation for tracking by predicting object location
and forming a basin of attraction at the predicted location
[18]. Using the binary graph cut method, the proposed tech-
nique was able to track one object among background clut-
ter. We also demonstrated tracking multiple objects, how-
ever, this worked only if the objects were all of similar in-
tensity and did not interact. This present work extends our
preliminary results by generalizing the technique to capture
an arbitrary number of objects. Considering each region to
have its own label, the multi-label graph cut lends itself nat-
urally to segmenting multiple interacting objects, each with
unique intensity profile.

In this present work, the basic algorithm is as follows.
First, for each object, we first incorporate a distance penalty
into the graph cut algorithm to bias segmentations to a re-
gion likely to contain the object. Second, we present a sim-
ple filter to predict the location of that object based on the
location of the previous segmentation and a moving aver-
age of the object’s velocity. The distance penalty is then
centered at the predicted object centroid and extends out-
ward forming a basin of attraction. Third, to further inte-
grate the filter with the distance penalty, the scale of this
distance penalty, and hence the slope of its surface, is adap-
tively set based on the prediction error. Finally, the interac-
tion among objects is naturally handled as segmentation is
performed in one cut using the standard multi-label graph
cut algorithm.

The method presented here represents several useful con-
tributions to the field of visual tracking. First, to bias graph
cut segmentations to regions of interest, the distance penalty

introduces a per-object spatial prior based on predicated lo-
cation. Second, the graph cut edge weights are adaptively
determined by the prediction error. And lastly, the multi-
label graph cut technique uniquely captures multiple inter-
acting objects in one cut.

The rest of the paper is organized as follows. Section 2
outlines the standard graph cut segmentation framework.
Section 3 describes the distance penalty constraining seg-
mentation. Section 4 defines the filter used to predict the
object centroid. Section 5 integrates the filter prediction er-
ror with the distance penalty. Next, in Sections 6 and 7,
we present our algorithm and results. Finally, in Section 8
we summarize our work and describe some possible future
research directions.

2. Graph cuts
In this section, we briefly outline the standard multi-label

graph cut technique; for more details see [2, 3, 4, 6, 20] and
the references therein.

Taking advantage of efficient algorithms for global min-
cut solutions, we cast the energy-based image segmentation
problem in a graph structure of which the min-cut corre-
sponds to a globally optimal segmentation. Evaluated for an
assignment A of each pixel to a label f ∈ F , such energies
are designed as a data dependent term and a smoothness
term. The data dependent term evaluates the penalty for
assigning a particular pixel to a given label. The smooth-
ness term evaluates the penalty for assigning two neighbor-
ing pixels to different regions, i.e. a boundary discontinuity.
These two terms may be thought of as a regional term and
a boundary term, often weighted by λ ≥ 0 for relative influ-
ence:

E(A) = ∑
p∈I

Rp(Ap)+λ ∑
(p,q)∈N

Ap 6=Aq

B(p,q) (1)

where I represents all image pixels, N all unordered neigh-
borhood pixel pairs. The choice of neighborhood size and
structure has a large influence on the solution as smaller
neighborhoods tend to introduce metrication artifacts [5].

To construct the graph representing this energy, each
pixel is considered as a graph node in addition to an ex-
tra node for each region label f ∈ F , e.g. background, first
object, second object. The data dependent term is imple-
mented by connecting each pixel to these extra nodes with
non-negative edge weights Rp( f ) representing the penalty
for assigning pixel p to the region f . Lastly, the smoothness
term is implemented by connecting each pairwise combina-
tion of neighboring pixels (p,q) with a non-negative edge
weight B(p,q) representing the penalty for assigning pixels
p and q to different regions. The min-cut of the weighted
graph represents the segmentation that best separates the re-
gions. See [4, 6] for more details.
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Figure 2. Tracking a bear near other regions similar to its fur: no
distance penalty, distance penalty φ with isocontours, and apply-
ing distance penalty (left to right). Without the distance penalty,
multiple non-intended regions were captured.

Typical applications of graph cuts to image segmenta-
tion differ only in the definitions of Rp and B(p,q). For
example, in the case of the binary foreground/background
segmentation problem, the authors of [4] use the negative
log-likelihood of a pixel’s intensity to compute the regional
weights while intensity contrast is used in the boundary
term:

Rp( f g) = − lnP(I p| f g), Rp(bg) = − lnP(I p|bg),

B(p,q) = exp(−‖I p−I q‖2

2σ2 ) 1
‖p−q‖ (2)

where ‖p− q‖ is the standard L2 Euclidean pixel distance
in the image and σ2 =

〈
‖Ip − Iq‖2/‖p−q‖2

〉
, the average

contrast over all (p,q)∈N . Initialization proceeds as in [4]
where the user marks regions of foreground and background
to generate the intensity histograms for each region.

3. Distance penalty
The standard graph cut technique is capable of finding

regions matching the object intensity located anywhere in
the image. However, by penalizing pixels based on their dis-
tance from the expected location, a potential well is formed
biasing segmentation to a region of interest. Figure 2 shows
segmentation with and without such a penalty in the pres-
ence of unintended regions similar to the object.

The distance penalty φ is formed from a base mask M
predicting the object shape. Centering that mask M at the
predicted object location and assigning it zero penalty, each
pixel x outside the mask is assigned its distance from the
nearest masked pixel mx ∈ M, i.e. φ(x) = ‖x−mx‖ or zero
if x ∈ M. Such a construction can be quickly computed
with the Fast Marching algorithm [21, 25]. In this work, we
used the initial user segmentation as the base mask M; how-
ever, several methods are available for representing more
deformable shapes [10, 17, 22].

4. Location prediction
It is often the case that the object makes a large move-

ment, large enough at times to place it in an area of high
distance penalty. To overcome this problem, we predict the
location of the object in each frame based on its previous

Figure 3. Without location prediction, tracking can fail when the
target makes sudden movements. Here the tracker catches a de-
fender as the target passes (left to right).

Figure 4. Effect of adaptive α on tracking: non-adaptive alpha (as-
sume zero error) (top, left to right), alpha with prediction error
(bottom, left to right). Tracking fails without using error feedback
to scale distance penalty. Centroid is shown as blue dot.

location and center the distance penalty at this predicted lo-
cation.

To demonstrate the need for some form of prediction, we
experimented with the assumption that the object has not
moved: the distance penalty is centered at the last known
object position. Figure 3 shows the failure to track after the
object has made a sudden move, despite the use of adaptive
α scaling described in Section 5. The movement placed the
object too far outside of the basin of attraction.

Introducing simple prediction, we assume the object is
traveling with continuous velocity, hence we predict the
next object location c̃t+1 based on projecting forward by the
average displacement in the past few frames.

5. Error feedback
We now have the distance penalty constraining segmen-

tation and the filter predicting where to center this distance
penalty, but what if the filter is wrong? Figure 4 shows just
such a case. The object has made a sudden move outside
the predicted basin of attraction.

What is needed is a way of adaptively scaling the dis-
tance penalty based on the prediction error. In this work,
we take the error in prediction to be the distance between
the predicted c̃ and actual c centroids. The distance map is
then scaled by α(‖c̃− c‖) taken from an exponential distri-
bution of the prediction error α(x) = exp(−x2/ρ2), where
ρ is user specified based on empirical motion. The effect
is that when the filter is off in its predictions of the object
centroid, the distance penalty is lowered to hopefully still
capture the object. After locking back onto the object, the α

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 25, 2009 at 14:58 from IEEE Xplore.  Restrictions apply. 



automatically raises the distance penalty back up to tighten
around the object as the prediction error decreases. Figure 4
shows how, despite incorrectly predicted centroids, the sys-
tem is able to recover by adaptively widening the distance
penalty.

6. Proposed algorithm
For each new frame and for each object, the algorithm

predicts the object location, determines the distance penalty
scaling based on prediction error, computes edge weights
for the graph, and performs a graph cut segmentation. For
initialization, the user is required to roughly mark in the first
frame the object and background. This initialization defines
both the intensity priors used in the regional edge weights
(2) as well as the base mask M for each object.

In the prediction step, the centroid from the previous
frame’s segmentation is used as a measurement c. The fil-
ter predicts the object centroid location in this new frame c̃
from a moving average of displacements.

The α(·) scaling function for the distance penalty is cal-
culated from an exponential distribution of error ‖c̃− c‖.
Since the proposed simple filter is unstable against large
displacements, we found the need to limit this distance in
practice to a user-defined γ so that the distance penalty is
not driven completely to zero. The α(·) used is then:

α(x) = exp
(
−min(x,γ)2/ρ

2) . (3)

We propose a new regional edge weight to augment
the standard weight in (2). Our goal is to determine
P( f |I ) for each pixel, and Bayes rule tells us that P( f |I ) ∝

P(I | f )P( f ). If we assume P( f ) is uniform, then its nega-
tive log-likelihood is zero, and so it falls out of the expres-
sion as in the standard regional term (2). Here, we assume
a non-uniform object prior P( f ) and claim: − lnP( f ) ∝

α(‖c̃ − c‖)φ. We assume the background region to still
be uniformly distributed and so it does not have a distance
penalty prior. Introducing a weight β > 0 for relative dis-
tance penalty influence, we have a new regional term:

Rp( f ) = − lnP(I p| f )−β lnPp( f )
= − lnP(I p| f )+β α(‖c̃− c‖)φ(p) (4)

For all experiments, we use the standard intensity contrast
smoothness term B(p,q) in (2). Finally, we take the min-cut
of this graph to yield a multi-region segmentation.

7. Results
Tracking was performed on color and gray-scale videos

and representative frames chosen to exhibit clutter with ob-
jects of similar intensity.

Parameters are defined as follows. For all experiments,
we set λ = 10 in (1). Also for all experiments, objects are

Figure 5. Tracking two opposing players from the soccer sequence.
Despite prolonged contact and occlusion, the technique is able
to uniquely track the two targets. Full image (left) and selected
cropped frames (right).

Figure 6. Tracking the bear and man in color. Due to large move-
ments and changes in shape, at several points the tracker is partly
thrown off, yet it recovers fully. Full image (left) and selected
cropped frames (right).

assumed to not move more than 5 pixels between frames so
γ = 5 in (3) and in practice ρ = γ/2 is quite robust. In (4),
we set β = 10 for gray-scale imagery and β = 2 for color.

On a standard workstation, the current system tracks two
objects at roughly two frames per second fluctuating little
based on the neighborhood chosen. The choice of neigh-
borhood also affects the smoothness of the segmentation
with smaller neighborhoods tending to introduce irregular
segmentations [5]. It is important to note that, since the
segmentations for sizes 4 and 8 were not as smooth, they
introduced larger variations in the calculated centroid and
hence larger prediction errors. Increased smoothing (λ)
was required to maintain track with smaller neighborhoods.
Tracking with size 4 or 8 was therefore not as robust as size
16. Unless otherwise noted, results are shown with a neigh-
borhood of size 16.

The gray-scale video sequence involves several soccer
players of similar intensity, yet the intensity profile of each
team differs enough that opposing players can be distin-
guished. Figure 5 shows tracking of a player from each
team amidst occlusion and contact with several other play-
ers of similar intensity.

The color video sequence is a commercial faking a fight
between a bear and a man. Figure 6 shows tracking of the
bear and man as they make sudden movements or change
shape. These sudden changes throw the tracker off but in
all cases the tracker recovers fully in a few frames.
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8. Conclusion

This paper demonstrates a distance penalty to constrain
the standard graph cut segmentation to regions of interest.
An observer is proposed to predict object locations while
the prediction error is used to scale the distance penalties
forming basins of attraction that are adaptively sized. The
multi-label graph cut algorithm is then used to find the ob-
jects in one pass.

There are several future directions of research.
Anisotropic distance penalties may be used to bias
certain directions based on expected object trajectory.
Instead of rebuilding the graph from scratch for each
frame as in the current system, speed can be enhanced
by updating the graph in place from frame to frame [13].
Furthermore, segmentation may be made more robust for a
larger class of imagery by tracking in a feature space with
more information than simple intensity [16].
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