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Abstract

In this paper we present a new method for construct-
ing diffeomorphic statistical deformation models in ar-
bitrary dimensional images with a nonlinear generative
model and a linear parameter space.

Our deformation model is a modified version of the
diffeomorphic model introduced by Cootes et al. The
modifications ensure that no boundary restriction has
to be enforced on the parameter space to prevent folds
or tears in the deformation field.

For straightforward statistical analysis, principal
component analysis and sparse methods, we assume
that the parameters for a class of deformations lie on a
linear manifold and that the distance between two de-
formations are given by the metric introduced by the
L2-norm in the parameter space. The chosen L2-norm
is shown to have a clear and intuitive interpretation on
the usual nonlinear manifold.

Our model is validated on a set of MR images of
corpus callosum with ground truth in form of manual
expert annotations, and compared to Cootes’s model.

We anticipate applications in unconstrained diffeo-
morphic synthesis of images, e.g. for tracking, seg-
mentation, registration or classification purposes.

1. Introduction

Registration is the problem of establishing corre-
spondence between points in different images. It has
been used for building models of variation in groups
of images for several years. Cootes et al. proposed
the very successful active appearance models in 1998
[3], which, once trained, can establish correspondence
between points in the model and the images using a
piecewise affine mapping. Rueckert et al. presented a
statistical deformation model based on registrations of
an atlas to the images of the group [9]. Joshi et al.

demonstrate how to construct an unbiased atlas from
a population [5], and Cootes et al. presented a guar-
anteed diffeomorphic shape model [2] by using smooth
kernels for interpolating a warp field and putting re-
strictions on the variation of the parameters. Vester-
Christensen et al. have presented an accelerated ver-
sion of this algorithm [10], which is based on the inverse
compositional method by Baker et al., which we have
also made extensive use of in the presented work [1].

2. Methods

We define image registration as the identification of
correspondence between positions in images. In the
current work we address problems where the correspon-
dences can be represented by a diffeomorphic function
f ∈ H, where H denotes the infinite dimensional group
of diffeomorphisms on R

N . The mapping from one im-
age to the other is differentiable and the inverse exists
and is also differentiable. Popular speaking this limits
the problem of registration to the problem of finding
smooth warps without folds or tears. More precisely
this is fulfilled, when the Jacobean of the warp field is
positive and well defined.

In the statistical analysis of the warp functions we
are interested in estimating an unbiased atlas of the
structures we are registering. We identify such an atlas
as the groupwise maximizer of similarity between the
atlas R and the deformed images Ii, while minimizing
the deformation fields φi.

[φi, R̂] = min
φi,R̂

∑
i

S[R̂, Ii ◦ φi] + αD(φi)2 . (1)

where S denotes the similarity measure and D(φ) de-
notes the regularization term, introduced to regularize
the warp φ further than just restricting it to the space
of the parameters, and α is the regularization parame-
ter.
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2.1. Parameterized diffeomorphisms

Fletcher et al. have investigated geodesic curves
on the nonlinear manifolds of the parameters of the
M-reps parameterization [4]. Most of the current sta-
tistical analysis, however, is based on the assumption
that the data is located on a linear manifold with the
Euclidean metric, e.g. principal component analysis
(PCA) and independent component analysis (ICA),
which have nice properties as analytical tools. This
is our motivation for introducing a function G which
identifies R

M with a (hopefully interesting) subset of
diffeomorphisms.

Let H(RN ) denote the set of diffeomorphisms (f :
R

N → R
N ). Now let G be a bijective mapping:

G : R
M → Ht . (2)

where Ht = G(RM ) ⊂ H. We let Ht inherit the Eu-
clidean metric from the parameter space R

M

d(G(t1),G(t2)) ≡ d(t1, t2) = ‖t1 − t2‖2 ,

t1, t2 ∈ R
M and G(t1),G(t2) ∈ Ht , (3)

from which we conclude that G is a homeomorphism,
and that the spaces Ht = G(RM ) and R

M are topolog-
ically equivalent. To conclude it can be observed that
the defined metric on the space of parameterized warps
is the L2 norm on R

M as intended.

2.1.1 Composition of warps

The composition of more diffeomorphisms is diffeomor-
phic, which is a very important property of diffeomor-
phisms in the present context.

fi ∈ H , i ∈ {1, 2, . . . , n}
φ = fn ◦ fn−1 ◦ . . . ◦ f1 ⇒ φ ∈ H (4)

This allows for the construction of diffeomorphisms of
higher complexity by the composition of several simpler
warps. We shall assume we are dealing with parame-
terized warp functions, and our statistical analysis of
warps can be reduced to the analysis of the warp pa-
rameters, in line with (3). For all images in our set the
warp parameters shall warp from our reference, R, into
the current target, I. In order to be able to compare pa-
rameters from different warp compositions it is evident
that all our parameters exist in the same space. This is
achieved by ensuring that all warps fi in a composition
warp from the reference coordinate system[2].

2.1.2 Grid based diffeomorphisms

Several grid based representations of diffeomorphisms
have been presented and they are commonly used at

different levels of detail and composed succeedingly
[2, 7, 9]. A general trait of the grid methods is that they
manipulate the parameters of the functions describing
the diffeomorphism, and that the functions have a local
support in the image, either as points defined in the im-
age or as basis functions with support around a control
point. Often this parameterization of the grid is linear
in the parameters and this obviously imposes some re-
strictions on the parameters to produce diffeomorphic
warps. Cootes et al. specify a cut-off at displacements
larger than 1

π of the cosine based kernel [2] and Lee
et al. find a threshold bound on the B-spline parame-
ters to secure that the B-spline based warp function is
diffeomorphic [6].

2.1.3 A proposed G
Let F be the function mapping from a real parameter
space R

M into the space of functions from R
N to R

N ,
e.g. in case of the B-spline warps, F maps from the
parameter space into the space of N -dimensional B-
spline functions f : R

N to R
N , the image ofF , K can be

shown to contain functions that are not diffeomorphic.
As discussed in the previous section there can for

some parameterized warps be specified a threshold such
that P = ]−τ1, τ1[ × · · ·× ]−τM , τM [ and F : P → Ht,
where Ht ≡ F(P) ⊂ H. In the current study we have
investigated the use of a function g : R

M → P , that is,
a bounded monotonic injective function into the space
of thresholded displacement parameters. Constructing
G = F ◦ g, where G : R

M → Ht gives us the desired
function G, namely a homeomorphic mapping from the
parameter space R

M into the space of diffeomorphisms.
As an example of the function g we have chosen a set of
hyperbolic tangent function, because the range where
it is close to linear is large. The composed mapping G
and the different ranges are illustrated in Figure 1.

We define g coordinate-wise by

g = {g1, ..., gM} where gi : R→ ]−τi, τi[

si = gi(ti) = τi tanh aiti , for i ∈ {1, ..., M} (5)

where τi are the threshold parameters reducing the dis-
placement parameter space of the warp to P ⊂ R

M ,
s = {s1, ..., sM} ∈ P are the displacement parameters
and ai are constants ensuring that the impact of each
ti is of the same order of magnitude.

2.1.4 Properties of the g mapping

Before we continue with an empirical validation of our
proposed mapping we will make some theoretical con-
siderations over the choice of homeomorphic mapping
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Figure 1. Illustration of the mapping G from R
N to G, along

with our proposed composed mapping G = F ◦ g

.

g. For small values t ∈ R
M the L2 norm in R

M is equiv-
alent to a scaled L2 norm in g(RM ) to a first order. In
other words, relating this to diffeomorphic warps, for
small deformations the defined norm is equivalent to
the usual metric applied in analysis of the warp fields
[2, 9].

2.1.5 The parameter distribution

We believe that the distribution of the parameters
is well described by normal distribution, and we will
show what distribution this describes in the displace-
ment parameter space of the warp function. Let fti

be the marginal distribution of the parameter ti and
fgi be the marginal distribution of the warp parameter
si = gi(ti), then

fi(ti) =
1√

2πσ2
i

e
− t2i

2σ2
i (6)

fgi(si) =
1

2ai · τi

√
2πσ2

i

(
e
− g−1(si)

2

2σ2
i +

e
µ2

i
2σ2

i

2
e
− (g−1(si)−µi)

2

2σ2
i +

e
µ2

i
2σ2

i

2
e
− (g−1(si)+µi)

2

2σ2
i

)
(7)

where µi = σ2
i ai

2 and this distribution is seen to be the
composition of three Gaussian distributions scaled by
g−1. For small µi this is approaching the Gaussian dis-
tribution which is often the distribution for the warp
parameters in the small deformation domain and for µi

big the two µi displaced distributions dominate, and
we observe a high concentration of parameters around
the threshold τi. In the presence of strong deformations
this also what we expect when imposing a threshold on
the warp deformation parameters. Based on these con-
siderations we expect an M -dimensional normal distri-
bution of our parameters to be well suited for modelling
the distributions of the observed deformations.

2.1.6 Statistical deformation model

In the previous section we argued that the expected
distribution of warps could be modelled as an M -
dimensional normal distribution. If this is the case
PCA is known to be the optimal choice of analysis tool
for creating a compact model of the observations, and
is therefore the method of choice in the current imple-
mentation.

3. Implementation

To validate our approach for construction of diffeo-
morphic deformation model we have adapted the grid
based diffeomorphisms by Cootes [2] with our g map-
ping. These diffeomorphisms can be viewed as an ex-
tension to standard linear interpolation, where the in-
terpolation coefficients are transformed by a suitable
kernel k(r) which ensures smoothness across the grid
boundaries. The displacement of a 2D point x ∈ R

2 is
given by

u(x, d) =
1∑

m=0

1∑
n=0

kn(v)km(w)di+n,j+m

=
1∑

m=0

1∑
n=0

ai+m,j+n(x)di+n,j+m (8)

=
[
a(x)� 0

0 a(x)�

]
d (9)

where k0(r) = k(r), k1(r) = 1−k(r), i and j is the local
indices of the neighboring grid points, v and w are rel-
ative positions of x in the neighborhood and d and di,j

are all the displacements and the displacement of the
(i, j)-node, respectively. By substituting the displace-
ments d with the g mapping with a suitable threshold
τ , this deformation model will no longer be able to
generate non-diffeomorphisms. In the present example
using the Cootes kernel, τ = 1/π.

For notational simplicity the displacement in the ith
direction will represented by

ui(x, ti) = a(x)�gτ (ti), (10)

and the warp function is written in the form

ϕ(x, t) = x + u(x, t). (11)
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3.1. Image registration

To drive the registration between a reference image
R and a target image I we apply the sum-of-squared-
differences (SSD) as our similarity measure and the
regularization term is given by D(φ) = d(e, φ) = ‖t‖2,
where e is the identity map corresponding to t = 0.
The SSD comparison leads us to calculate the refer-
ence image as the arithmetic mean of the warped tar-
get images, as this is the optimum SSD solution to (1)
[5].

F (t) =
1
2

∑
x

(R(x)− I(ϕ(x, t))2 + α‖t‖22 (12)

=
1
2

∑
x

E2(x, t) + α‖t‖22. (13)

To achieve a fast optimization we apply the inverse
compositional optimization approach by Baker et al.
[1] to the cost function. Thus, we obtain a minimum
by iteratively minimizing

Fic(t) =
1
2

∑
x

(R(ϕ(x, ∆t)) − I(ϕ(x, t))2

+α‖t− ∂t′

∂∆t
∆t‖2 (14)

with respect to ∆t and updating t according to

ϕ(x, t′)← ϕ(x, t) ◦ϕ−1(x, ∆t). (15)

In Appendix B it is shown how t′ is derived from (15).
By performing a first-order Taylor-expansion on

R(ϕ(x, ∆t) around x in (14), taking the derivatives
wrt. ∆t and setting them equal to zero we get

∆t = H−1

[∑
x

SD(x)�E(x, t) + α
∂t′

∂∆t

�
t

]
(16)

where

SD(x) = ∇R(x)
∂ϕ(x,0)

∂t
(17)

and

H =
∑

x

SD(x)�SD(x) + α

[
∂t′

∂∆t

]� [
∂t′

∂∆t

]
. (18)

The advantages with this inverse compositional ap-
proach is that SD(x) can be pre-computed as it is not
dependent on t.

4. Validation: corpus callosum model

To demonstrate our approach we have created a
deformation model of the Corpus Callosum from 62
two dimensional MR images of the mid-sagittal cross-
section of the corpus callosum brain structure. This
data set is part of the LADIS (Leukoaraiosis and DIS-
ability) study [8], a pan-European study involving 12
hospitals and more than 700 patients. Furthermore,
each corpus callosum have manually been annotated
with 72 landmarks by a clinician, which we will later
use for validation.

Prior to the non-rigid registration a rigid registra-
tion was performed to filter out non-anatomical varia-
tion. This was achieved by performing Procrustes anal-
ysis on the sets of annotation. After the rigid registra-
tion an initial reference was created by computing the
mean image of the rigid registered images. All cor-
pus callosum images were then non-rigidly registered
to the reference, and a new reference was computed by
averaging. This was done multiple times until the ref-
erence stabilized. For the non-rigid registration the co-
sine kernel k(r) = 0.5(1+cos(πr)) was applied [2]. The
non-rigid warps were modelled by composing three grid
based diffeomorphisms in a fine-to-coarse manner. The
dimensions of the applied grids were 5× 4, 10× 8 and
20 × 16. The non-rigid registrations were carried out
in coarse to fine order. After each level ϕi of the warp
was estimated the target image was updated by warp-
ing the target image back into the reference coordinate
frame by Tn+1(x) = Tn(ϕ(x)). This was done to ensure
that different parameters from different warps could be
compared [2]. ai of the g mapping was set proportional
to the inverse of the squared grid node distance because
the grid was 2 dimensional. The image registration was
validated using the Dice measure, which is twice the in-
tersecting area between the ground truth shape outline
of the warped image and the outline of the reference
shape divided by the total area inside the two outlines.
The ground truth was obtained from the expert anno-
tations. The Dice measure was 0.884 ± 0.048. In Fig.
2 we show an example of a typical registration of an
image. In Fig. 3 the cumulative overlap of the aligned
corpus callosum shapes before and after a rigid regis-
tration is illustrated, showing a clear improvement in
correspondences between the shapes.

To create a compact deformation model, PCA was
applied to the parameters after the groupwise registra-
tion of the images. 13 modes of variation could describe
95 % of the observed variation in the population as ob-
served in Figure 4, and the first three modes are illus-
trated in Fig. 5. The first mode of variation is seen to
be related to a vertical stretch and in particular to the
size of the septum pellucidum (the dark area between
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(a) Template image (b) Warped template (c) Reference image

Figure 2. Registration of an image to the reference.

(a) Before nonrigid registration (b) After nonrigid registration

Figure 3. Cumulative overlap of the aligned corpus callosum shapes before and after a rigid registration

the bright corpus callosum and the bright Fornix), the
second mode is related to the kink of the corpus cal-
losum and the thickness of the structure and the same
goes for the third mode but with a different bending
of the Fornix. Rueckert et al. have also analyzed the
corpus callosum and they found modes quite similar to
the ones found in the current study [9]. For comparison
we applied a regularized version of Cootes’ algorithm
to the same problem, and constructed a similar PCA
model of the variation. The variance of the modes is
nearly identical, as shown in Figure 4 and the obtained
Dice scores were also the same. The major difference
between the deformation modes are to be found where
the warp displacement parameters are close to the limit
1/π. The sites in the Cootes warp with highest curva-
ture are closer to singular than the same sites in the
warp based on our parameterization.

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Number of modes

D
es

cr
ib

ed
 v

ar
ia

nc
e

(a)

0 20 40 60 80
0.2

0.4

0.6

0.8

1

Number of modes

D
es

cr
ib

ed
 v

ar
ia

nc
e

(b)

Figure 4. Plot relating described variance with number of
modes included in the model. a: the presented method. b:
method introduced by Cootes et al. [2].

s

5. Discussion

We have shown how a parametric function can be de-
fined on the unbounded linear space R

M and still pro-
duce diffeomorphic warps. When this is accomplished
by first mapping R

M into an open bounded subset of
R

M , which inevitably leads to an asymptotic behavior
at the closure of the bounded set. In our implemented
example the parameters of the model by Cootes et al.
asymptotically approach 1

π where singularities in the
warp may occur. We believe that our distance mea-
sure is very reasonable when we are indeed approach-
ing a singularity, as a small change in the displacement
parameters of the warp will cause a huge impact on
curvature of the warp function. In Fig. 7, where -6
std. deviations of the first mode is shown. We see that
a singularity start to form in the contracting area but
this is highly unlikely as predicted by our model and
metric.

Figure 7. -6 Std. deviations of the first mode, normal view
and a zoomed view on the beginning singularity.

With the choice of tanh function, the asymptotic
behavior is assumed to be exponential, which may not
always be the case. There are obviously an infinite va-
riety of monotonic bounded functions, e.g. arcus tan-
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(a) 1st mode, −3 std. dev. (b) 2nd mode, −3 std. dev. (c) 3rd mode, −3 std. dev.

(d) Reference

(e) 1 st mode, +3 std. dev. (f) 2nd mode, +3 std. dev. (g) 3rd mode, +3 std. dev.

Figure 5. First three modes of the corpus callosum deformation model estimated with the current method, shown as the
reference warped ± 3 std. deviations.

gent, and we will be investigating the choice of function
in more detail.

A problem, we believe, that may occur with the pro-
posed method is that we cannot be sure that the thresh-
old does actually mark a singularity. A simple trans-
lation would for instance be asymptotic as well, which
is why initial rigid alignment is very important indeed.
Currently we investigate more involved parameter re-
strictions than the simple threshold to circumvent this
possible problem.

Our validation on corpus callosum data showed that
we were able to learn the important modes of variation,
similar to previous obtained results, while the relatively
high Dice coefficient illustrated that our warp represen-
tation was able to capture the large variations in the
data set. We believe it is an advantage that all con-
figurations in our parameter space are valid diffeomor-
phism, such that all gradients and derivatives during
the optimization are well defined. Also we find it an
advantage for tracking etc. that the the deformation
as a function of the deformation model parameters is
smooth, when using the presented method.

6. Conclusions

This paper proposed a new warp representation
which allows statistical analysis on an unrestricted lin-
ear parameter space, where all derivatives are defined.
Furthermore, we have shown that L2-norm the param-
eter space introduces a reasonable metric in the ac-
tual space of modelled diffeomorphisms, and that our
results compare well to those obtained using Cootes’
deformation model.
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A. Warp inversion

Theorem A.1. Consider the function ϕ : R
N×R

M 
→
R

N of type ϕ(x, t) = x + u(x, t) and let ϕt(x) =
ϕ(x, t) be a C1-diffeomorphism. If u(x,0) = 0 and
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(a) 1st mode, −3 std. dev. (b) 2nd mode, −3 std. dev. (c) 3rd mode, −3 std. dev.

(d) Reference

(e) 1 st mode, +3 std. dev. (f) 2nd mode, +3 std. dev. (g) 3rd mode, +3 std. dev.

Figure 6. First three modes of the corpus callosum deformation model estimated with a constrained version of Cootes’
method, shown as the reference warped ± 3 std. deviations

u(x, t) = −u(x, t), ϕ(x,−t) converges with second-
order to ϕ−1(x, t).

Proof.

|ξi(ht)| = |ϕi(ϕ(x, ht),−ht)− xi|
= |xi + ui(x, ht)− ui(x + u(x, ht), ht)− xi|
< |ui(x, ht)− ui(x, ht) +

∂ui

∂x
(x, ht)u(x, ht)|

< |ht�
∂2ui

∂x∂ht
(x,0)

∂u

∂ht
(x,0)ht|

< |c| · |h2| (19)

B. Derivation of update function

In general, it is unlikely that ϕ(x, t) ◦ ϕ−1(x, ∆t)
can be parameterized with ϕ(x, t′), and thus it has to
be approximated.
In Appendix A, it was shown that ϕ(x,−t) is a first-
order approximation to ϕ−1(x, t) as the error con-
verges with second-order to zero. The composition
in Eq. 15 is approximated with the parameters t′

which minimizes the SSD between the true composi-

tional warp and the warp ϕ(x, t′)∑
x

∆ϕ(x)�∆ϕ(x) (20)

where

∆ϕ(x) = ϕ(ϕ(x, ∆t), t) −ϕ(x, t′)
= a(x)�(gτ (∆t) − gτ (t′))

+a(ϕ(x, ∆t))gτ (t). (21)

If

A =




a(x1)�
...

a(xn)�


 , and Aϕ =




a(ϕ(x1, ∆t)�
...

a(ϕ(xn, ∆t)�




the updated warp parameters t′ can be found by solv-
ing the system

0 = A(gτ (∆ti)− gτ (t′i)) + Aϕgτ (ti). (22)

The least square solution to the system is

t′i = g−1
τ

(
A†Aϕgτ (ti) + gτ (∆ti)

)
(23)

where A† =
[
A�A

]−1
A�.
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As Aϕ has to be evaluated on warped points it is
relatively computational expensive to evaluate. Thus,
we perform a first-order Taylor expansion on Aϕ and
arrive at

t′i = k−1
(
A†AJiAgτ (∆ti) + gτ (∆ti) + gτ (ti)

)
,
(24)

where

AJi = I + diag(
∂a(xj)

∂xi

�
gτ (ti))j=1...n (25)
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