Bilinear Active Appearance Models

Jose Gonzalez-Morai{ Fernando De la Torrel Rajesh Murthii Nicolas Guil{ Emilio L. Zapataf
T, Department of Computer Architecture, University of Malaga, Malaga, Spain 29071.

jgmora@ac.uma.es nicolac.uma.es

ezapata@ac.uma.es

I, Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

ftorre@cs.cmu.edu

Abstract

Appearance Models have been applied to model the
space of human faces over the last two decades. In par-
ticular, Active Appearance Models (AAMs) have been suc-
cessfully used for face tracking, synthesis and recognition,
and they are one of the state-of-the-art approaches due to
its efficiency and representational power. Although widely
employed, AAMs suffer from a few drawbacks, such as the
inability to isolate pose, identity and expression changes.
This paper proposes Bilinear Active Appearance Models
(BAAMs), an extension of AAMs, that effectively decouple
changes due to pose and expression/identity. We derive a
gradient-descent algorithm to efficiently fit BAAMs to new
images. Experimental results show how BAAMs improve
generalization and convergence with respect to the linear
model. In addition, we illustrate decoupling benefits of
BAAMs in face recognition across pose. We show how the
pose normalization provided by BAAMs increase the recog-
nition performance of commercial systems.

1. Introduction

Model-based methods revolutionized the computer vi-
sion field in the late 80’s. They introduced a way to
model an object’s appearance/shape or image properties
from training data, preventing difficulties that can arise in
the computational or mathematical definition of the object.
Since the early work of Sirovich and Kirby [34] parame-
terizing the human face using Principal Component Analy-
sis (PCA) and the successful eigenfaces of Turk and Pent-
land [38], much computer vision research has used eigen-
whatever or Component Analysis (CA) techniques to con-
struct linear models of shape, apperarance or optical flow
[5, 10, 13, 28, 29]. The modeling power of subspace meth-
ods is specially useful when modeling visual data, because
with the increase in features (pixels) there is a need for di-
mensionality reduction that preserves relevant attributes for
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Figure 1. Synthetic images generated by BAAMs showing its fac-
torization properties. Once the model is learned, it can be used for
effective tracking and pose normalization in face recognition.

the tasks involved (e.g. tracking, classification, synthesis).

In particular, Active Appearance Models (AAMs) [10,
27, 4, 11, 16] have proven to be a good statistical tool to
build a model of shape and appearance variation of human
faces (also other objects). AAMs have been extensively
applied to detection, tracking and synthesis of faces over
the last decade. One of the problems of standard AAMs is
its inability to decouple factors such as pose, illumination
and expression, since PCA is used to jointly model all these
sources of variability. Recent work in Multi-linear models
(e.g. [35, 39, 40]) provide the basis to incorporate multi-
factorial models that can decouple the image changes due
to expression, identity or pose. In particular, pose changes
are usually hard to represent with 2D linear models be-
cause of the resulting non-linear point transformations (e.g.
points disappear with occlusion). This paper describes Bi-
linear Active Appearance Models (BAAMs), an extension
of AAMs that effectively decouples pose changes from ex-
pression/identity variation in both shape and appearance.
We propose to use bilinear models [35] to factorize pose



from expression/identitiy changes within the AAMs frame-
work. Given a new image, an efficient gradient descent al-
gorithm is developed to search for the optimal bilinear pa-
rameters. We also show how BAAMs can be used as a pose
normalization step for face recognition algorithms, and we
compare their performance with commercial systems, re-
porting conclusive results. Fig. 1 shows the main idea of
the paper.

The rest of the paper is organized as follows. Section
2 reviews previous work on AAMs. Section 3 proposes
BAMMs and derives the gradient-descent fitting algorithm.
Section 4 summarizes the experiments for face tracking and
face recognition across pose changes.

2. Previous Work

Generative appearance models such as Active Appear-
ance Models (AAMs) [8, 4, 36, 6, 27, 14] have been ex-
tensively used in computer vision applications to model the
class-variability and motion of objects in images (e.g. hu-
man faces). AAMs build a shape/appearance model from a
labeled training set by means of Principal Component Anal-
ysis (PCA). Once the model is learned, AAMs use gradient-
descent approaches to fit the model to a new image. One
of the major limitations of AAMs is the fact that the PCA
model is unable to decouple variations due to pose, expres-
sion and identity. There are several drawbacks of using a
non-factorized model. Firstly, it is hard to interpret the pa-
rameters. Secondly, a non-decoupled PCA model of pose,
expression and identity can introduce non-valid spaces and
generate non-realistic shapes/appearance configurations.

One of the major and most complicated sources of face
variability in video sequences is pose change. Several at-
tempts have been done over the last decade to extend AAMs
to deal with pose change. Lanitis et al [1] illustrated how a
simple linear model is able to model changes in viewpoint
assuming that the landmarks remain visible. Cootes et al.
[9] extend AAMSs to track the face from profile to profile
by continuously switching several discrete view-dependent
models (linear basis). However, it remains unclear how to
impose consistency over the identity parameters in succes-
sive views; a possible solution is to find out the identity
subspace at each pose basis in order to extrapolate the pa-
rameters to the new basis [12]. Using non-linear techniques
such as Kernel PCA, Romdhani et al [33] show how to track
the head from profile to profile. However, finding the pre-
image is an iterative optimization problem prone to local
minima. Moreover, they do not model the dependencies be-
tween appearance and shape, since the KPCA is just applied
to the shape. On the other hand, there have been several so-
lutions to deal with pose change that contemplate the use
of 3D models. Blanz and Vetter [7] built a 3D Morphable
model of face shape and texture. Using a general optimiza-
tion scheme this technique performs good results in a broad

range of poses, and yields better reconstructions. However,
the method usually requires 7 points to manually initialize,
it needs depth information that is hard to acquire, and the
fitting process is also slower.

On the other hand, bilinear models have shown good re-
sults in many factorized problems in vision, such as mod-
eling illumination/identity or pose/identity for recognition
or synthesis tasks. In their seminal work, [23] use bilin-
ear models for classification across pose, considering the
pose factor a discrete value and making use of separable
mixture models in the low dimensional space. Several au-
thors have applied this model to face, human motion and
speech. Abboud and Davoine [2, 3] use an asymmetric bi-
linear model to separate identity/expression parameters us-
ing AAMs [10] for face recognition and synthesis. How-
ever, in this approach one of the factors is considered to be
known in advance, using the same algorithm than [23] for
model fitting when no previous information is given. The
same authors [2] successfully applied bilinear problems in
the context of face recognition, improving LDA results. In
the area of human motion, [22] make use of bilinear models
to transform an input motion into a new style while preserv-
ing its original content. Other extensions of bilinear models
explore the probabilistic formulation; Grimes et al. [17] are
able to model non-gaussian distributions over the parame-
ter space using particle filters. Also, several extensions of
multilinear models have been applied for face synthesis and
recognition [39, 40].

To model more than two factors, Vasilescu and Ter-
zopoulos [39, 40] have applied tensor factorization (e.g.
[37]) methods to recognize and synthesize human motion.
Similar in spirit, [21] propose a more efficient higher-order
singular value decomposition algorithm to learn a factor-
ized model of expression and use it for recognizing seven
of the universal facial expressions. Lee and Elgammal [25]
extended this model by adding a non-linear factor to take
into account view-point changes. In [24], the same authors
propose a gait recognition algorithm based on bilinear de-
composition of gait data into time-invariant gait-style and
time-dependent gait-content factors. Multilinear face mod-
els have also been successfully applied by Vlasic et. all [41]
to face analysis. However, they use 3D scanned face data
and pose variations are not explictly modeled. Another dif-
ference is that their fitting process is based on optical flow,
contrary to AAM approaches that make use of full appear-
ance/shape observations.

Unlike previous work, we integrate the bilinear model in
the core of the AAMs and develop a gradient descent al-
gorithm for efficient fitting. We compare and characterize
their performance in terms of convergence w.r.t linear mod-
els. We also show how it can be used as a normalization
step for face recognition; experimental results are provided
comparing the achieved recognition rate with a commercial



system.

3. Bilinear Active Appearance Models

The main aim of BAMMs is to provide a simple and ef-
fective 2D tracking algorithm able to decouple pose from
identity/expression changes. In this section, we illustrate
the training and fitting process for this factorized model.

3.1. Learning the bilinear model

The standard bilinear models can be formulated as:

J L
y0 =30 wge by (M

j=11=1
y,(cp )@ s the ktp, component (e.g pixel) of the observed vec-
tor for the pose p and the individual i. wyj; is the (k, j,1)

component of the mixing matrix, that models the coupling

between pose and identity/expression. a( and b( ) are the
pose and instance parameters respectlvely In many appli-
cations, one of the combined factors b is considered to rep-
resent an intrinsic property of the signal and it is called con-
tent, while the other, a, modulates in some way the actual
representation of the signal, and it is named style. In our
case, the content factor determines the considered person’s
appearance/shape characteristics (including identity and ex-
pression), while the style factor represents the pose from
which the face image was captured. In the rest of the pa-
per, we will use a vectorial notation ! that will simplify the
problem formulation.

Texture and shape observations are expected to be highly
correlated across pose. We make use of this bilinear formu-
lation to model both shape s and texture t vector instances
in a coupled manner using the same parameters, a and b, to
synthesize both of them (see figure 2).

{90 — iy 4 a® Wbt (2a)
W@ _ [ sar | _ -
i { Syk } (2b)
B a® R, Y, Rob®
=H| | S |+ | a® RyY, Rob®
1 0

subject to rank(R1) = c and rank(Rs) = ¢

W and Y are the mixing matrices for appearance and
shape respectively. Training shape and appearances are pre-
viously normalized, subtracting the mean shape § and the

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. d; represents the j column of the matrix D. v names
the £ component of the vector v. All non-bold letters will represent vari-
ables of scalar nature. ||A||r = tr(ATA) = tr(AAT) designates the
Frobenious norm of a matrix.

mean appearance t. For the shape samples a rigid pose
transformation H is also included:

1+h1 —hy h3
H-= h2 1+ hl h4
0 0 1

Similarly to AAM approaches, training shapes are
aligned in an initial step using Procustes analysis, removing
relative displacements, scales and in-plane rotations. When
synthesizing a face instance, it is important to notice that
parameter a is responsible to model those shape/appearance
pose variations corresponding to non-rigid 2D transforma-
tions due to out-of-plane rotations, still present in train-
ing shapes after Procustes alignment. After that, pose ma-
trix H rigidly displaces the face onto the desired posi-
tion/scale/rotation in the image plane (similarity transform).

Mixing matrices and coefficients are learned in a su-
pervised manner using a criss-cross regression algorithm
[18][15]. As the number of required parameters to rep-
resent shape and appearance within a given accuracy can
greatly differ, two reduced-rank matrices R; and R are
also learned during the model construction process, cou-
pling the two spaces.
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Figure 2. Synthesizing faces using BAAMs. Marked rows and
columns correspond to the labeled training data. The remaining
faces are synthesized by linearly interpolating the pose (a) and
instance parameters (b).

3.2. Fitting the model to a new image

Fitting a known model to a new image can be formulated
as the following optimization problem:

f(A,a,b) = min ||i(w(x,\,a,b)) —

x,a,b
min t( IIE



, where:
e i(x) is the input image.

e t(x,a,b) is the reference texture model that models the
appearance of the tracked face, depending on the bilin-
ear model parameters a and b.

e s = w(x, A, a,b) represents a warping function con-
verting the pixel coordinates from the reference frame
into the input image. It is defined as a piecewise lin-
ear function that depends on the current position of the
tracked face in the input image, defined by the pose
parameters ), and model parameters a and b.

T .

o)\ = ( hi has hy hg ) is the pose parameter
vector (more compact notation for rigid transformation
matrix H).

Similar in spirit to previous work [8, 32], we linearize re-
sulting cost function and optimize it using a Gauss-Newton
method.

f(Aa,b) = |lilw(A+ X, a+ da, b+ db)) 3)
—t(x,a+ da, b+ 6b))||3
A first order approximation around current parameter es-

timation (\°,a® b°)T is done in order to get a linear solu-
tion, resulting in:
oA
F(Xa,b) = [e(A%,a% b°) +1(w(2?,a% b%)) | oa
ob
“)

da
et (5 )12

,where:
e(\?,2°% b%) =i()\%a% b°) — t(a®,b°)

The least squares optimization leads to the following op-
timal parameters updates:

oA
sa | =—JT3)"13Te
ob
, with J the Jacobian matrices obtained from the gradient

matrices of i and the derivatives of the bilinear model in
respect to pose and bilinear model parameters.

diw(x.Aa.b)))
O\
J— | awxaab))  atxab)

oa oa
diw(x,\,ab)))  atx.ab)
ob ob

See section Appendix for more details about the deriva-
tives computation.

4. Experimental results

In this section we show the benefits of modeling faces
with BAMMs in two applications: face tracking and face
recognition.

4.1. Tracking across pose with BAAMs

In the first experiment, we test the ability of BAAMs to
represent and track faces across pose changes and compare
them with standard AAMs [8]. All the models are trained
using the CMU Multi-PIE face database [19], where there
are changes in pose, illumination and expression. We se-
lect the subset of -45 to 45 angles to avoid severe occlusion
problems. In this section, 40 individuals are used, labelled
across 7 poses between -45 and 45 degrees. We divide them
into two groups: a training set of 30 individuals and a test-
ing set of 10 individuals.

The capability of BAAMs to decouple pose and iden-
tity parameters has several advantages. When using person-
independent models, reduced-rank representations are usu-
ally prefered in order to avoid overfitting problems in the
tracking process. Reducing the basis energy has the ma-
jor drawback of increasing the model reconstruction error.
Thus, a tradeoff between the number of model parameters
and the reconstruction error must be found.

Figure 3 shows the first three principal components
of pose coefficients after training a reduced-rank bilinear
model. As can be observed, the pose parameters distribu-
tion is non-linear, similar to the camera configuration. The
full-rank solution would give the same pose coeficient for
all the samples having the same pose. The reduced-rank
approach yields non-zero reconstruction error and spreads
the coeficients, but it can be seen how BAAMs still clus-
ter the coefficients keeping together the instances with the
same pose. This is a desirable property in order to reduce
overfitting while maintaining the decoupled structure of the
modeled space.
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Figure 3. Distribution of pose coeficients for 40 individuals
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Figure 4. Mean geometrical reconstruction error using different
numbers of parameters. Top: error for the reconstructed shapes at
different poses for the AAM models. Bottom: reconstruction error
for BAAM models

Figure 4 shows some reconstruction errors for reduced
rank models in different poses. Observe that, in general,
we can achieve lower reconstruction errors using BAAMs
with the same (or fewer) number of coefficients than AAMs.
As a result, BAAMs reduce the model basis dimensions to
avoid overfitting, introducing a smaller reconstruction error
than traditional linear approaches. This offers better gener-
alization properties for person-independent trackers.

In order to evaluate model fitting performance, we mea-
sure the final geometric error by running instances of the
person-independent AAM and BAAM trackers using dif-
ferent input images. In the figure 5 we compare the final
mean geometrical errors achieved at each pose using these
techniques, selecting the model with basis dimensions that
performs better in each case. All the tracking experiments
are initialized using the mean parameters obtained for the
training data set (zero vectors for the AAM models) and
an approximate pose aligning the model with the new input
face bounding box. We can see as BAAMs tracking pro-
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Figure 5. Final geometrical error comparison between linear and
bilinear models

vides lower mean geometrical error in the recovered land-
mark positions.

Separate spaces give us the oportunity to perform more
advanced optimization techniques than traditional linear
model fitting algorithms (i.e. using several starting pose val-
ues so the tracking instance with best convergence error can
be chosen). Finally, they give us the capability to extrap-
olate instances of known individuals using a novel pose.
As shown in the next subsection, it will be very useful to
perform face recognition using software designed to handle
frontal views.

4.2. Face Recognition

Face recognition (see [42] for a review) is an important
feature for many applications. However, for face recogni-
tion systems to be applicable in real world videos, they have
to be robust to pose, illumination and expression changes of
the face. Large variations in pose, illumination or expres-
sion typically occur in unconstrained video where subjects
are non-cooperative. Usually they (1) tend not to look di-
rectly at the camera, leading to a non-frontal pose; (2) may
be talking, leading to a non-neutral expression; and (3) may
appear anywhere within a large area, resulting in low reso-
lution and uncontrolled illumination.

Unfortunately, these conditions have been identified con-
sistently in performance evaluations as a source of varia-
tions that cause poor recognition accuracies. In particular,
uncontrolled face-pose scenarios correspond to situations
that cause current commercial face recognition systems to
fail, as in the Facial Recognition Vendor Test 2002, for ex-
ample [31][20]. This specially is a major inconvience in
those applications using only frontal faces as gallery images
and probe images captured in any random pose (e.g. border
control, web page).

In this section, we show how a bilinear model can be
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Figure 6. Reconstruction of frontal view images from pose images
for a subject

used to synthesize frontal views (shape and appearance)
from an arbitrary pose [26, 30] to perform face recogni-
tion across pose, and some preliminary results, using the
CMU Multi-PIE database, are presented. Firstly, the cor-
responding instance parameters b for an input face image
are computed. Secondly, the frontal face is generated by
keeping the instance parameters and rendering the image
with the preset frontal parameter ay. See equation 2 for the
synthesis expressions. We are only interested in evaluat-
ing the BAAMSs capability to extrapolate a frontal view of a
new subject. Thus, in order to isolate the errors involved in
the tracking process, we perform a projection of the ground
truth data for the new individual on the BAAMs.

To gauge how well our proposed pose normalization
scheme improves facial recognition, we compared the
recognition performance of commercial system Facelt with
and without pose normalization. We chose to use the Facelt
system because it performed best in the Face Recognition
Vendor Test 2002 [31]. The Multi-PIE database has 337
subjects in 15 poses and 18 illuminations. Out of the avail-
able 337 subjects, 250 subjects were chosen. A bilinear
model for pose changes is trained for the 200 subjects in 7
poses as described in the previous sections. The remaining
50 subjects, with one image per subject in all the 7 poses,
constitute the test set. In figure 6 there are some examples
of a synthesized frontal view image from all seven poses.

The performance of Facelt is shown in table 1. Firstly
we perform face identification without pose normalization.
Then, we repeat the experiments having the same gallery
images and new probe images obtained by synthesizing
frontal view images from 15%, 30°, 459, -15°, -30° and -
459 pose images. The results show that pose normalization
improves face identification by over 80%.

5. Conclusions

In this paper, we have proposed BAAMs to effectively
track and decouple pose changes from identity/expression.
We have implemented an efficient gradient-descent algo-
rithm and empirically show better convergence and gener-
alization properties of BAAMs versus traditional AAMs. In

Pose | With pose normalization | W/o pose normalization
15° 86% 36%
30° 84% 28%
45° 80% 0%
-15° 86% 38%
-30° 80% 34%
-45° 75% 0%

Table 1. Recognition rates with and without pose normalization

addition, we have shown how BAAMs can be used as a pre-
processing step for pose normalization in face recognition
applications.

Although BAAMs have shown promising results both in
tracking and recognition, there are a number of issues that
need to be addressed. There is a need to take into account
more factors such as illumination or separate identity from
expression. This could be done in a straightforward manner
with multilinear models. For pose changes, it will be con-
venient to have larger pose variation range and incorporate
the other two rotational angles. This will require a more
extensive database.

6. APPENDIX

Derivatives in respect to model style parameters:

Z Wiy ®)

xab

B ) _
a;

(14 h1) ZzL=1 Yaitby — ha ZZL=1 yyilbl>
ha Zlel Yaitby + (1 + hy) Zlel Yyirbi

Derivatives in respect to model content parameters:

Z wjia, (7)

(V4iVyi) <
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di(w(x, A, a,b))
0b;
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(V.4iV,i) ((1 + ]il) Z}'jﬂ Yrjiaj — ha ZJ 1 yyﬂ%)
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Derivatives in respect to pose parameters:
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