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Abstract

In this paper, we address the problem of segmenting data
defined on a manifold into a set of regions with uniform
properties. In particular, we propose a numerical method
when the manifold is represented by a triangular mesh.
Based on recent image segmentation models, our method
minimizes a convex energy and then enjoys significant fa-
vorable properties: it is robust to initialization and avoid
the problem of the existence of local minima present in
many variational models. The contributions of this paper
are threefold: firstly we adapt the convex image labeling
model to manifolds; in particular the total variation formu-
lation. Secondly we show how to implement the proposed
method on triangular meshes, and finally we show how to
use and combine the method in other computer vision prob-
lems, such as 3D reconstruction. We demonstrate the effi-
ciency of our method by testing it on various data.

1. Introduction
Image segmentation aims to partition a given image into

several meaningful regions based on certain attributes such
as intensity, texture, color, etc. This problem is one of the
most challenging and important problems in computer vi-
sion. We address the problem of segmenting data defined
on manifolds (typically a 2-surface in R3) into multiple re-
gions of piecewise constant attributes. The ability to solve
such a problem offers significant new possibilities in a num-
ber of applications. For example, in 3D reconstruction (see
Jin et al. [18]), a segmentation into piecewise constant data
of the reconstructed surface allows to naturally introduce
constraints on the material of the scene.

1.1. Global Multi-Region Segmentation

Many approaches have been proposed to solve image
segmentation problems. In particular, via gradient descents,
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Figure 1: Example of segmentation on a manifold. (a) The Input
textured surface. (b) The triangular representation of the surface
with the retrieved contour (in red). (c) Surface colored with the
mean values of the segmented regions (and surface shading).

variational methods for image segmentation have had a
great success, such as snakes [20], geodesic active contours
[8], geodesic active region [29] and the Chan-Vese models
[10]. Yet, the main drawback of those methods is the exis-
tence of local minima due to the non-convexity of the en-
ergy functionals. Minimizing those functionals by gradient
descent methods makes the initialization critical.

To obtain global minima, some previous image segmen-
tation works have used different optimization techniques:
For example the graph-cuts in a fully discrete setting, see
[6, 21, 22] and the references therein. Nevertheless, while
binary segmentation methods based on graph-cuts assure to
get a global minima, multi-region segmentation algorithms
are based on sequences of graph-cuts which cannot guaran-
tee a global optimization.

Recently, some authors have tried to handle the problem
in another direction. Instead of working on the optimization
techniques in order to compute the minima of non-convex
problems, they have reformulated the energy in order to get
a fully convex problem [2, 7, 9, 11, 24, 31, 35]. These seg-
mentation techniques are based on TV-regularizers and aim
at finding characteristic functions that minimize the objec-
tive functions. Obtaining global minima becomes easy and
can be done by simply performing a gradient descent. Also
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the initialization problem vanishes: the algorithm can start
from any initialization and obtains the same result. The
multi-region segmentation models proposed by [9, 24, 35]
are rather similar, the work of Pock et al. [31] (inspired
form Ishikawa’s [17]) differs from the fact that it deals with
ordered labels and uses a regularization term which favors
transitions between nearby labels. This makes sense in their
stereo application where the ordering is due to depth, but it
is not the case when we deal with independent labels. Here,
we adopt the model of [9, 24, 35] which is more appropri-
ate to the applications we have in mind (the fact that real-life
scenes are made by a finite number of independent materi-
als, in 3D reconstruction problems) and we adapt this image
labeling model to manifolds.

1.2. Data Segmentation on Manifolds

Manifolds such as surfaces are common in computer
graphics as well as computer vision. Although data segmen-
tation on surfaces has been recently used on implicit rep-
resentations (see for example [18, 23]), explicit representa-
tions such as triangular meshes are natural and intuitive rep-
resentations. Mesh representations have been widely used
in 3D reconstruction, see for example [1, 12, 33], and re-
cently in [1, 32, 36], which takes advantage of various re-
cent evolution methods. These allow us to naturally deal
with topological changes (necessary property e.g. in 3D
shape estimation problems formulated within a variational
framework). In a number of applications, particularly in
graphics, this is the only representation one has at ones dis-
posal. In this paper, after adapting the image segmentation
model to manifolds, we show how to implement the pro-
posed method on triangular meshes.

Mesh segmentation has been used in computer graph-
ics to decompose meshes into significant parts, but previous
work mainly focus on the geometric aspects, the choice and
the representations of features to use (like the curvature).
We refer to [3] for a recent survey of those techniques, as in
this work we focus in segmenting data on the mesh.

However, the problem of segmenting data like texture on
manifolds has not received much attention until now, and
is quite different from the geometric decomposition of a
mesh. In [30], authors take into account both texture infor-
mation and curvature, but their approach is based on a fast
marching algorithm, which needs to be initialized using ini-
tial points. Moreover as their segmentation method is not
convex, different regions sharing the same properties may
result in different labels. The same problem also occurs in
[28], where watershed filtering was used. Contrary to those
methods, the approach we propose is global and robust to
initialization.

Finally, let us note that the segmentation model we con-
sider is based on a total variation regularization. Although
this regularization has been previously used on implicit sur-

faces (see [4] with applications to texture synthesis), it has
not received much attention in Lagrangian methods. In the
finite elements literature, one can find some papers dealing
with the Laplace-Beltrami operator ∇S · ∇Su which cor-
responds to the gradient of the squared regularization term∫
S |∇Su|

2dσ (see for example [13, 15]). To our knowledge
there does not exist work dealing with the gradient of the
total variation in this framework. Let us note here that the
Laplace-Beltrami operator is linear while the term associ-
ated with the gradient of the total variation ∇S · ∇Su|∇Su| is
nonlinear. Moreover, the theoretical analysis and the nu-
merical algorithms of [13, 15] are completely based on this
linearity property.

1.3. Contributions

First, we adapt the image convex model of [7, 9, 11, 24,
35] to manifolds. Then we show how to implement the
method when the manifold is represented by a triangular
mesh. Finally, we explain how our multi-region segmenta-
tion method could be incorporated into potential computer
vision applications such as 3D reconstruction.

2. Multi-Region Segmentation Model

In this section, we describe the convex image segmen-
tation model we propose. To make this model comprehen-
sible and intuitive, let us first remind of the region-based
active contour model of Chan and Vese [10]. Here we show
that the energy functional of Chan and Vese, which is the
piecewise constant case of the Mumford-Shah model ([27]),
can be recast as a convex functional in order to find the
global minimizer of the original energy functional.

2.1. Convex Two-Phases Model

The Chan-Vese model [10], which is formulated in the
level set framework, partition a given image into two sub-
regions. For a given image I , the idea is to find a subset
Σ of a bounded domain Ω ⊂ RN , whose boundary ∂Σ is
represented by the zero level set of function φ : Ω → RN .
This is done by minimizing the energy functional

min
φ,c1,c2

∫
Ω

{
Hε(φ)(I(w)− c1)2

+ (1−Hε(φ))(I(w)− c2)2 + λ |∇Hε(φ)|
}
dω , (1)

where λ ∈ R, c1, c2 ∈ R and Hε is a regularized Heaviside
function, which models a characteristic function (see [10]).

Since the energy functional (1) is not convex, minimiz-
ing it by gradient descent methods can get stuck in local
minima. By relaxing the characteristic function Hε(φ) by
an arbitrary function u bounded between 0 and 1, Chan et



al. [11] showed that minimizing (1) can be rewritten as the
following convex minimization problem:

min
0≤u≤1

{∫
Ω

{
u(w)(I(w)− c1)2

+ (1− u(w))(I(w)− c2)2
}
dω + λ

∫
Ω

|∇u| dω
}
, (2)

c1 and c2 being fixed, in R. As proved in [7, 11], if
u(x) is a minimizer of (2), then for a.e. µ ∈ [0, 1], the
set Σ(µ) = {x ∈ Ω, u(x) > µ} is a minimizer of the
Mumford-Shah functional [27], implying that the solution
to (1) can be obtained by thresholding u at any arbitrary
threshold between 0 and 1.

2.2. Extension to Multi-Region Segmentation

Recently, several authors [9, 24, 35] have extended the
convex formulation (2) to multi-region segmentation:

min
u∈K

{∫
Ω

< u(w), s(w) > +λ |∇u(w)| dω
}
, (3)

whereK is the set of function u : Ω→ Rm such that for all
w ∈ Ω and p ∈ [1..m], up(w) ≥ 0 and

∑m
p=1 up(w) = 1.

|∇u(w)| corresponds to
√∑

p |∇up(w)|2, where |.| de-

notes the L2 norm. m denotes the number of labels and
s(w) is anm-dimensional vector; sp(w) indicates the affin-
ity of the data at point w with class p. The convex domain
naturally allow direct competition between the labeling.

3. Multi-Region Segmentation on Manifolds
In this section we extend the multi-region convex model

(3) on a manifold, and we show how to optimize the asso-
ciated energy for a manifold represented by a mesh. To our
best knowledge, these convex formulations (2,3) have been
defined only on open subsets of RN which correspond to
image domains, as described in the previous section.

Let S be a Riemannian manifold. Typically, S could be a
smooth 2D surface of R3. Energy (3) is adapted as follows:

min
u∈K

{∫
S
< u(x), s(x) > +λ|∇Su(x)| dσ

}
, (4)

where now the functions u are defined on S instead of Ω,
|.| is the Riemannian norm, ∇S is the intrinsic gradient on
S and dσ is the manifold’s element measure (surface’s area
measure for 2D manifolds).

Now, let us consider a manifold represented by a mesh.
The following results apply to manifolds with any topology.
Let X be a (piecewise linear) polyhedron representation of
the surface S , defined by a set of vertices xk : X = {xk}
and let l be the cardinality of X (the number of vertices). As
in the finite elements literature, we define φk : S → R as

the piecewise affine, interpolating basis function such that
φk(xk) = 1 and φk(xi) = 0 if i 6= k. The vector valued
field U = {uk} is defined on all vertices x of the polyhe-
dron X. U can be naturally extended on S by a piecewise
affine vector valued field on S . We denote this extension
u(x) =

∑
k ukφk(x). To make the paper easier to read and

because of space limitations, we assume that the manifold
is a 2D surface of R3. However, the following method ap-
plies to any dimension. Let Sj be the jth triangle of the
mesh. The multi-region segmentation energy can then be
rewritten as

∑
j

∑
k

〈
uk,
∫
Sj

φk(x)s(x)dσ
〉

+ λ

∫
Sj

|∇Su(x)|dσ, (5)

where u is constrained to be in K. The first term of (5)
is explicitly written with respect to U. In order to make
the total variation term explicit with respect to U, we first
consider a local paramtrization (α, β) on the manifold. Fol-
lowing [14, 19], we rewrite the right term of Equation (5)
using fundamental forms:

∇Su =
[
∂x
∂α

∂x
∂β

] [
E F
F G

]−1 [uα
uβ

]
, and then

|∇Su| =

√[
uα uβ

] [E F
F G

]−1 [uα
uβ

]
,

where E =
∂x
∂α
· ∂x
∂α

, F =
∂x
∂α
· ∂x
∂β

and G =
∂x
∂β
· ∂x
∂β

are coefficients of the first fundamental form (see [14, 19]).
uα and uβ are partial derivatives of u with respects to
α and β respectively. Considering the mesh representa-
tion, we parametrize the triangle Sj by x(α, β) = xj,1 +
α −−−−−→xj,1xj,2 + β −−−−−→xj,1xj,3 where xj,1, xj,2 and xj,3 are the
three vertices associated with the triangle Sj and where
(α, β) ∈ T = {(α, β)|α ∈ [0, 1] and β ∈ [0, 1 − α]}. We
then have

∫
Sj
|∇Su(x)|dσ =

∫
T

√∑
p

up2
αG− 2upα · upβF + up2

βE dαdβ . (6)

upα and upβ are partial derivatives of up with respects to
α and β respectively. Here the reader will easily verify that
E, F, G, upα and upβ are constant functions on Sj and that
their respective values are equal to Ej = |xj,2 − xj,1|2,
Fj =< xj,2 − xj,1,xj,3 − xj,1 >, Gj = |xj,3 − xj,1|2,
upjα = uj,2p − uj,1p and up

j
β = uj,3p − uj,1p, where

uj,1, uj,2 and uj,3 are the values of u at vertices xj,1, xj,2
and xj,3 respectively. Now the term inside the integral of
(6) does not depend on α and β. The convex multi-region



segmentation energy on the meshed manifold becomes:

E(U) =
∑
j

∑
k

〈
uk,
∫
Sj

φk(x)s(x)dσ
〉

+
λ

2

∑
j

√∑
p

upjα
2
Gj − 2upjα · up

j
βFj + up

j
β

2
Ej . (7)

3.1. Optimization Method

When the (surface) manifold is represented by a mesh,
the convex multi-region segmentation model then leads to
optimizing the convex energy (7) with respect to U ∈
Rl×m, with the convex constraint U ∈ K; K being the set
{U s.t. ∀k,

∑
p ukp = 1 and ∀p, ukp ≥ 0}. This convex

constrained optimization problem on Rl×m can be solved
by the projected gradient method [5], which consists in gen-
erating the sequence U t via

Ut+1 = ProjK(Ut − τ∇E(Ut)) , (8)

for a fixed time step τ > 0, until |Ut−Ut−1|∞ ≤ δ, a small
constant. ProjK is the projection on the convex set K. In
other words, we iteratively process gradient descent steps
and projections of the uk on the set K. These projections
can be done via Michelot’s algorithm [26]. From energy (7)
we easily obtain

∂E

∂ukp

(U) =
X

j∈N (k)

"Z
Sj

φk(x)s(x)dσ

#
p

−λ

2
Q (ξ+ε)−

1
2 ,

(9)

whereQ = (uj,2p−ukp)(Gj−Fj)+(uj,3p−ukp)(Ej−Fj),
ξ is the term in the squared root of (7), and N (k) is the 1-
ring neighborhood of vertex k. As in [11], we regularize the
term ξ by incorporating a small value ε inside the squared
root to avoid instabilities when the gradient of u is 0.

Let us remind now that, as underlined by [16], the no-
tion of gradient depends on the underlying scalar product.
If we chose the pointwise scalar product < U,V >pw=∑
k < uk,vk >, then the components of ∇E(Ut) directly

coincide with ∂E
∂ukp

(U). Nevertheless the associate point-
wise metric is not efficient for minimizing energies of the
form

∫
S f(u(x)) dσ since the distance between two dis-

crete fields U and V does not take into account the area
of the triangle. On the other hand, the L2 scalar product
< U,V >L2=

∫
S < u(x),v(x) > dσ is much more rele-

vant. Also in this case the gradient becomes

∇E(U) = M−1 ∂E

∂U
(U) , (10)

where the matrix M is the mass matrix defined by Mij =
Idm

∫
S φi(x)φj(x) dσ. Moreover one classically approxi-

mates M by the diagonal mass lumping M̃ , where M̃ii is
the area of the Voronoi dual cell of xi times the identity
matrix Idm, see e.g. [16].

3.2. Applications

In the previous sections the data term of the segmentation
model s is assumed to be known (Equation 4). In the ap-
plications, this term also depends on some parameters that
have to be optimized. The convex problem can be solved
by alternating optimization of the parameters in a bi-convex
way. For fixed parameters of s we update u and vice-versa.
u is updated according to the method presented in section
3.1. In practice we update the parameters of s every r up-
date iterations of u (r is chosen arbitrary; we fix r = 10 in
our experiments).

Piecewise Constant Data Segmentation
Let us consider the case where the data we want to seg-

ment are assumed to be piecewise constant. Here a natural
expression for sp(x) is to use the squared error between
the scalar or vector-valued data C(x) at the point x and the
value µp associated with the label p (µp having the same
dimension as the data):

sp(x) = (C(x)− µp)T (C(x)− µp) .

The optimization of the energy (4) with respect to µp gives:

µp =

∫
S up(x) C(x)dσ∫
S up(x)dσ

,

which corresponds to the mean value of the data of the as-
sociated region. Note that the previous model can be easily
extended to any probablility density function Dp. For ex-
ample, Dp can be a multivariate gaussian density function
of mean µp and covariance Σp, and then we would have:

sp(x) = − ln(Dp(x, µp,Σp)) , with

Dp(x, µp,Σp) =
1

m
√

2π|Σ|
e−

1
2 (C(x)−µp)T Σ−1

p (C(x)−µp) .

Segmentation in 3D Reconstruction Problems
Such segmentation framework can be incorporated in 3D

Reconstruction applications. In such applications, it can be
interesting to segment a particular region, or all parts of the
surface sharing the same reflectance properties. In 3D re-
construction, most of the variational methods yield to mini-
mizing an energy of the form

E(S) =
∑
i

∫
S
g(x)

xi · n
x3
i,z

νS(x) dσ , (11)

see for example [12, 18, 19]. Moreover, if we choose

g(x) =
m∑
p=1

up(x)(Ii(πi(x))− µp)T (Ii(πi(x))− µp) ,



where πi(x) is the projection of the surface point x into the
ith image and Ii : w 7→ Ii(w) is the function which asso-
ciates to each pixel w, its color on the ith image. We then
get an extension of the stereoscopic segmentation method
proposed by [34] to the case where the surface is composed
of more than two regions of piecewise constant radiance.
Also, contrary to our method, the segmentation approach
proposed in [34] is subject to local minima. Finally, the
optimization of the energy (4) with respect to µp gives:

µp =

R
S up(x)

P
i Ii(πi(x))

x · n
x3

z

νS,i(x)dσR
S up(x)

P
i

x · n
x3

z

νS,i(x)dσ
.

If we chose g(x) =
mX

p=1

up(x)(Ii(πi(x))− ρpN(x) ·L)T (Ii(πi(x))− ρpN(x) ·L),

where N(x) is the normal to the surface at the point x and
L is the vector corresponding to the light source illuminat-
ing the scene, then we get an extension of the (Lambertian)
multi-view shape from shading method proposed by [18]
for surfaces with piecewise constant albedo. In the same
way, contrary to our approach, the method proposed by [18]
is limited to two regions segmentation and is strongly sub-
ject to local minima. The optimization of energy (4) with
respect to the albedo gives:

ρp =

R
S up(x)

P
i Ii(πi(x))N(x) · Lx · n

x3
z

νS,i(x)dσR
S up(x)(N(x) · L)2

P
i

x · n
x3

z

νS,i(x)dσ
.

The theoretical and experimental study of these algorithms
will be the topic a forthcoming paper.

4. Experiments
In order to validate the proposed multi-region segmenta-

tion approach on meshes, we present different experiments
on synthetic as well as realistic data. In practice as ex-
plained in previous section, the segmentation is solved by
alternating between region parameters and the segmentation
variable U, with a known number of regions. The algorithm
complexity is linearly dependent on the number of facets
and the number of classes. Experiments have been runned
on a 2.66GHz linux machine and take about 200 seconds on
a mesh of 200,000 facets and for a 4 regions segmentation.
The values of λ have been manually chosen in each example
but a value of 0.01 gives reasonnable results in most cases.

4.1. The Two Region Case

Figures 2 and 3 show examples of our algorithm using
a synthetic image mapped onto a mesh for the Stanford
bunny model. Noise has been added to the image. Here,
we show that our algorithm performs well on the given ex-
ample and that the final solution is binary. Moreover it is

(a) (b) (c)

Figure 2: Segmentation result on the synthesized Stanford bunny
surface. (a) Input shaded object. (b) Input mesh with synthetic
texture mapping. (c) Input textured mesh (shaded visualization)
and final contour (in red).

Figure 3: The evolution on the synthesized bunny surface. Dif-
ferent initialization of U (first row); Intermediate values of U (sec-
ond row); The obtained solution U (third row); The obtained mean
values (fourth row) with shading.

robust to the initialization of the scalar function U. Note
that the retrieved solution that has been displayed is the
auxiliary value u, and not the segmented constant values
µ1 and µ2. Also because the energy functional is convex in
u only and the values µ1 and µ2 are optimized during the
evolution, they can be assigned to the region correspond-
ing to either u = (1, 0) or u = (0, 1), this explains why
the last initialization do not show the same values of u
but an inverted one. In practice, although the total func-
tional is not fully convex, we obtain the same results and
really similar µ1 and µ2 for each example. We respec-
tively obtain (µ1 = 140.778 , µ2 = 231.003), (µ1 =
140.746 , µ2 = 231.01), (µ1 = 140.75 , µ2 = 231.03 )
and (µ1 = 230.992 , µ2 = 140.765) for the four different
initializations. Note that in the last column, values of µ1



and µ2 are inverted and the solution u as well. In this ex-
ample, geodesic active contours or level sets methods would
tend to the closest local minima from the initialization as the
texture is not clearly binary. Nevertheless, as the method is
global here, segmenting a particular region should be done
using additional cues.

Figure 4 present segmented surfaces from real-world tex-
tures that have been mapped onto a mesh, in the case of
the two-phases segmentation. We show different examples
from classical images used in segmentation. Note that the
segmentation is done on the mesh using the method de-
scribed in this paper and not on an image. The experiments
show three different non binary images and their segmen-
tation into two different regions. As expected the results
are binary even though the initial values of the segments
are random values. The mean values of each region is es-

Figure 4: Segmentation results on meshes in the two-region seg-
mentation on three different examples. From top to bottom: Input
textured mesh; Mesh shape where the segmentation is performed
and the initial random value of one component of U; Recovered
mean values of each region; Segmented object.

timated during the process as described before, and the pa-
rameters λ can be adjusted to add more smoothness to the
segmentation. As shown by experiments, even though the
initialization is random and the parameters of each region
are computed during the evolution, the algorithm still con-
verges to the desired solution as a binary solution.

4.2. Dealing with Multiple Regions

Here we show the efficiency of the proposed method
when dealing with multiple regions. Different examples are
shown, first with synthetic textures on which noise has been
added, and then on meshes textured by real-world images
like previous examples. Note that the number of regions is
initially given and is not automatically estimated.

Figure 5: Segmentation results on meshes in the multi-region
case on synthesized examples inspired from [24]. (a) Input tex-
tured mesh (same shape as previous Butterfly and Horses data).
(b) Clustering using K-Means algorithm. (c) Recovered mean val-
ues of each region obtained by our approach.

In Figure 5, the experiment shows noisy texture on
meshes, the segmentation result using K-Means, and the
result of our TV-based algorithm on meshes. Because the
K-Means algorithm does not take into account the spatial
coherence of points, the result is noisy. On the other hand,
the TV regularization allows coherence in the scene and the
segmentation is close to the expected solution. In addition
to be robust to initialization, our approach is robust to noise.

We then tested our multi-region segmentation approach
on various data from real-world images [25], see Figure 6.
Let us emphasize here that the initialization was random and
the number of regions was initially given.

As an example, we applied our approach to segment
mean curvature on a mesh using three different regions. Fig-
ure 7 shows that we are able to segment some concave and
convex parts of the mesh.

Finally, in Figure 8, we show the examples of a 3D mesh
obtained by 3D reconstruction algorithms, as the one in
[33, 36]. The last row shows the obtained color-based la-
beling (into three regions). Even though the texture is far
from being binary, the segmentation is the expected one.
For instance in the result, we nicely recover the skin, the
pant and the shirt. Here again, initialization was random.

For comparison of the convex image multi-region seg-
mentation model (3) with other methods, we refer to [24]
which shows quantitative and qualitative comparisons with
belief propagation, sequential belief propagation, graph cuts



Figure 8: Segmentation result on a colored mesh obtained by multiview stereo algorithm. Front view (top row) and back view (bottom
row). Original input colored mesh and the associated 3D shape (left). Result of the segmentation into three regions obtained by our
algorithm (middle). Recovered mean values displayed for each region (right).

Figure 6: Segmentation results on meshes in the multi-region
case. Top row: Horse data set and its segmentation for three re-
gions. Bottom row: Four regions labeling of the Butterfly data. (a)
Input textured mesh; (b) Recovered mean values of each region
obtained by our approach; (c) One of the segmented regions.

with alpha-expansion, graph cuts with alpha-beta swap and
sequential tree reweighted belief propagation methods. The
experiments show that the generated labeling is comparable
to state-of-the-art discrete optimization methods.

5. Conclusions

In this paper we propose a variational method for seg-
menting data on manifolds into regions of constant prop-
erties. The convex formulation makes the proposed model

(a) (b) (c) (d)

Figure 7: Segmentation results on mesh curvature in 3 regions.
(a) Input mesh. (b) Mean Curvature visualization. (c) Simple
thresholding of the mean curvature. (d) Segmentation result of
the mean curvature into three regions with our approach.

robust to initialization. Moreover, the total variation reg-
ularizer makes the method robust to noise. We show how
to implement the method, in particular how to compute the
gradient of the total variation term, when the surface has
a discrete representation as triangular meshes. We have
demonstrated the efficiency of our method by testing it on
various synthetic and realistic data from computer vision
applications.
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