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Abstract

We present a novel action recognition method which is
based on combining the effective description properties of
Local Binary Patterns with the appearance invariance and
adaptability of patch matching based methods. The result-
ing method is extremely efficient, and thus is suitable for
real-time uses of simultaneous recovery of human action of
several lengths and starting points. Tested on all publicity
available datasets in the literature known to us, our system
repeatedly achieves state of the art performance. Lastly,
we present a new benchmark that focuses on uncut motion
recognition in broadcast sports video.

1. Introduction
Human action recognition from video is an area of im-

mense importance to visual surveillance, video indexing,
and several other computer-vision domains. Despite of ex-
tensive research, fueled by the ongoing advancements in
object recognition, the gap between the current capabilities
and the applications’ needs remains large.

Indeed, action recognition is challenging due to substan-
tial variations in the video data that are caused by varying
factors which include viewpoint and scale, clothing and the
subject’s appearance, personal style and action length, self-
occlusion, multiple video objects, and background clutter.

Beyond recognition accuracy, there are other constraints
on the design of action recognition methods. Ideally for sev-
eral applications, such methods would work efficiently in an
online manner, and require simultaneous detection of action
at several possible time scales (different action lengths) and
for every possible starting point.

The proposed method has a simple flow: every pixel at
every frame is encoded as a short string of ternary digits
(trits) by a process which compares this frame to the previ-
ous and to the next frame. The frame is then divided into
(m×n) regions and the histograms of the trinary strings are
computed for each of the mn region. These histograms are
accumulated every few frames and the vector which con-
tains all concatenated histograms serves as a video descrip-

tor for a section of the video. Multiple such vectors are
concatenated to represent longer videos.

The encoding process itself is based on comparing
nearby patches, in a manner inspired by the self-similarity
approach [17]. For every pixel of every frame, a small patch
centered at this pixel is compared to shifted patches in the
previous and in the next frame. In a manner pertaining to the
Local Binary Pattern approach [13], one trit of information
is used to describe the relative similarity of the two patches
to the patch in the central frame: the shifted patch in the pre-
vious frame is more similar to the central one, the patch in
the next frame shifted by the same amount is more similar,
or both are approximately comparable in their similarity.

Due to its design, our method has the following char-
acteristics: it is extremely efficient, it can be computed in
an online manner, it requires no additional blocks such as
optical-flow computation, and it exclusively encodes mo-
tion while disregarding all appearance information.

2. Related work
Two popular trends can be identified in the action recog-

nition literature, obtaining top-level performance on ex-
isting benchmarks. First, there are contributions which
compute representations for nearby frames (either motion-
centric or to the entire frame) [5, 8, 15, 6, 21]. Such ap-
proaches usually rely on optical-flow, on appearance, or on
a combination of the two. Second, there are contributions
which focus on identifying space-time interest points and
on representing those local entities [4, 16, 11, 10].

The local self-similarity method [17], represents space-
time interest points as vectors based on the spatial histogram
of similarities between a central cuboid (space-time patch)
and nearby cuboids. Excellent results are shown for the
space-time template matching problem. However, it is not
obvious that such an approach can excel as is on existing ac-
tion recognition benchmarks, which focus on the supervised
learning scenario with multiple training examples.

In this work we propose to employ the self-similarity
idea within an efficient representation, which is inspired
by Local Binary Patterns (LBP) [13]. Our approach has
links to a variant of LBP called Center-Symmetric LBP



(CS-LBP) [7], and uses a similar structure to encode mo-
tion information based on the self-similarity idea. A pre-
vious approach which combines self-similarities and CS-
LBP has been recently proposed to encode face data in
static images [22], showing promising results when com-
bined with other descriptor. Trits are also not new to the
LBP world: [18] suggests the use of trits based on pixel val-
ues for overcoming difficult illumination conditions.

Given the effectiveness of LBP, it is not surprising that it
has been proposed for action recognition in the past. A re-
cent application [9] is based on slicing the space-time vol-
ume along the three axis (x, y, t), and constructing LBP
histograms of the xt plane and yt plane. Another applica-
tion [23] is based on computing a variant of LBP to capture
local characteristics of optical flow, and then representing
actions as strings of local atoms.

Our system provides no direct appearance information
in the absence of motion. This characteristic is shared with
optical-flow based systems (e.g., [6, 5]) or tracking based
systems (e.g., [1]), and is in contrast with space-time gra-
dient methods (e.g., [10, 4, 16]), previous LBP based ac-
tion recognition systems [23, 9] and exemplar based meth-
ods (e.g., [21]). A recent trend is to combine both ap-
pearance information with optical flow-based information,
which leads to improved results [11, 8, 15]. This can be
done in our approach as well, and is left for future work.

3. Encoding action in the frame
The various flavors of Local Binary Patterns use short bi-

nary strings to encode simple properties of the local micro-
texture around each pixel. CS-LBP [7], for example, en-
codes at each pixel location the sign of the gradient in four
different angles.

Here we propose an LBP like descriptor which cap-
tures the effect of motion on the local structure of self-
similarities. Consider a small image patch moving from left
to right. During its motion it will pass through a certain im-
age location (x − ∆x, y) at time t − ∆t, and continue to
location (x, y) to the right at time t. This motion is prob-
ably going to induce image similarity between a patch of
appropriate dimensions centered at location (x−∆x, y) at
time t − ∆t and the patch with the image center (x, y) at
time t.

By itself, the increase of image similarity caused by the
motion depends on the intensities of the moving patch and
the appearance of the rest of the image. It may be diffi-
cult to distinguish between similarity caused by motion and
similarity caused by similar static textures, without incor-
porating further statistics. Here we suggest to examine the
similarity between a patch centered at (x, y) at time t and
the patch around (x − ∆x, y) at time t + ∆t as the back-
ground statistic. One trit is used to encode whether one of
the two similarities is significantly higher than the other or

Figure 2. An illustration of the encoding process. For each of 8
different locations at time t − ∆t and the same locations at time
t + ∆t SSD distances of 3 × 3 patches to a central patch at time
t are computed. SSD1 and SSD2 are computed patch distances
at one of the eight locations. One trinary bit is used to encode if
SSD1 < SSD2− TH (value of −1), |SSD1− SSD2| < TH
(value of 0), or SSD2 < SSD1 − TH (a value of +1). In our
system gray values are between 0 and 255, and TH is set to 1, 000.
Also in our system, ∆t is set to 3 frames, and the patches are
spread around as close as possible using integer values to distance
of 4 pixels from the center of the central patch.

whether the two similarities are approximately the same. If
the previous frame patch is more similar to the central patch
- a value of −1 is assigned, if the patch in the next frame is
more similar - a value of +1 is assigned. If both similarities
are within a predefined threshold from each other, a value
of 0 is assigned.

Note that in the absence of significant image motion the
similarities of the patch at center location (x, y) at time t to
the patches at location (x−∆x) at times t−∆t and t + ∆t
are about equal, and the value of the encoding trit is zero.
This implies that no appearance information is encoded in
the absence of motion.

It is worth noting that both the existence of a motion,
as well as its magnitude are of importance. Consider, for
example, the boxing motion in Figure. 1(a), which is taken
from the KTH dataset [16]. While performing this motion
the hand moves forward and the shoulders move back. This
is depicted in Figure 1(b), where the direction of the mo-
tion is encoded in color. This is with contrast to the pulling
motion of the boxing action, in which the opposite pattern
emerges (Figure 1(c,d)).

The full 8 trit encoding is described in Figure 2. Patches
at eight shifted locations at times t−∆t and t+∆t are com-
pared to a central patch at time t to produce 16 similarities.
In our system we use, due to its computational simplicity
the SSD (sum of square differences) score as the basic dis-
tance between the patches. The lower the SSD score, the
larger the similarity.

One trit is assigned for each of eight comparisons that
are made between pairs of similarities that share the same
spatial shifts. Thus 8 trits are used to represent each pixel
in the video. Experiments done with 16 trits per pixel show
marginal effect on the overall accuracy.



(a) (b)

(c) (d)
Figure 1. Two groups of nearby frames from one boxing sequence of the KTH dataset [16]. (a) Three frames from the beginning of the
boxing motion. (b) One trinary digit encoding of the sequence in (a). Blue pixels indicate patches which are significantly more similar to
the patch on the left in the next frame than to the patch on the left in the previous frame. Red indicates patches that are more similar to the
patch of the previous frame. (c) Three frames from the end of the boxing motion, in which the hand returns. (d) The analog trit encoding
of (c).

The entire frame is divided into a grid of m× n equally
sized cells, and the histograms of the 8-digit trinary strings
are measured in each, as described next. The string of all ze-
ros indicate that there is no motion and is disregarded (not
counted in any bin). The rest of the strings are mapped to
bins in an unconventional manner, which reduces the num-
ber of possible bins from 38 − 1 = 6560 to 2(28) = 512,
where each string is counted twice. First the positive part
of the string is extracted. In this part every −1 digit is con-
verted to the 0 digit. The positive part is then distributed
between all possible binary bins. The same process repeats
with the negative part which is accumulated in a separate
set of 256 bins.

4. Recognizing actions
If the boundaries of the video are given, we divide the

video to k equal time slices, and compute the accumulated
histograms for each region among the frames of each time-
slice. In practice we find it accurate enough to skip frames,
and compute the histograms of no more than 10 frames per
time slice. All mn region histograms for the k time slices
are accumulated to one vector of length 512mnk which is
used to represent the entire video. In order to recognize an
action, we apply a classifier to those vectors. Specifically
we use linear SVM, on the square-root values of the vec-
tors. The square root operation to the values of histogram
is meant to approximate the Bhattacharyya coefficients be-
tween probability distributions. This is a common practice
in object recognition, e.g., [3].

A crucial question in motion recognition is the detection
of the starting point and length of motion in video. In most

existing benchmarks, the part of the video where the mo-
tion to be recognized reside is given. This is unrealistic for
most applications, and results in an optimistic performance
expectations.

We suggest to tackle the two additional unknowns (time
shift and scale) by running several detectors in parallel, each
observing different starting points and different scales of ac-
tion length. This system can be built efficiently by reusing
previous computations as depicted in Figure. 3. Since our
encoding is very efficient, and since we employ straight-
forward linear classification, multiple detections can be
achieved at better than real-time rates, our system applied
to the recognition of 4 actions at 3 time scales runs at 25
frames-per-second on a modest Pentium 1.86 GH, 1 GB
RAM laptop, without using the GPU or other special pur-
pose hardware.

5. Experiments

We ran our system on all existing benchmarks we could
find. We achieved state of the art performance or close to
it on all datasets. In addition, we collected a new dataset
for the purpose of testing performance of action recognition
systems on live video where motion edges are not marked.

5.1. Parameters

There are few parameters for our system. Some, as the
number and position of the patches are fixed throughout the
experiments. All patches are 3 × 3, and are spread around
the central patch at the integer approximations of a circle
of radius 4. Also fixed are the value of ∆t which is 3, and



Figure 3. The structure of the online system. The next frame is encoded into histograms and is fed into the system. One accumulated
histogram (containing mn sub-histograms) is kept for each time slice (three in this case). The time-slice histogram is updated upon the
arrival of a new frame by adding one new frame and subtracting the frame that leaves the time-slice. The three accumulated histograms
are concatenated to one representative vector, which is then (not shown) normalized so that the three parts each sum to 1, goes throw and
element-wise square-root operator, and fed into the classifier. The figure depicts one detector. For multiple time scales, multiple such
detectors run concurrently

the threshold on the difference between the two SSD scores,
which is set to 1, 000.

The adaptations which we carry out for each dataset con-
sist of finding the optimal grid size where (m, n) are taken
to be one of (3, 3),(4, 3), or (4, 4), the number of time slices
2 ≤ k ≤ 4. The best representation out of the 9 options is
selected by performing a cross validation to the examples of
the first split of every experiment.

5.2. The Hollywood Human Actions Dataset

The HOHA dataset was recently collected [11] by au-
tomatically parsing movies’ scripts files and automatically
recognizing 8 actions. Although the labels have been manu-
ally erased, this is a challenging benchmark due to the large
variability of videos labeled in the same class, and some re-
maining ambiguity in the true labels. The results are shown
in Table 1 We compare our method (Local Trinary Patterns,
LTP) with the original paper [11], which has results both for
a single descriptor and for multiple descriptors combined,
as well with a later on contribution [10]. Our algorithm
shows preferable performance on four out of the eight cate-
gories.

5.3. The Kissing Slapping dataset

The Kissing and Slapping dataset was collected from
feature films by the authors of [14]. There are over 90 sam-
ples of the Kissing class and over 110 samples of Hitting
or Slapping class. There is a large variability in the movie

Class LTP Laptev Laptev Klasser

(single) (combined) (single) (single)

[11] [11] [10]
Answer phone 35.1% 32.1% 26.7% 18.6%
Get out car 32.0% 41.5% 22.5% 22.6%
Hand shake 33.8% 32.3% 23.7% 11.8%
Hug person 28.3% 40.6% 34.9% 19.8%
Kiss 57.6% 53.3% 52.0% 47.0%
Sit down 36.2% 38.6% 37.8% 32.5%
Sit up 13.1% 18.2% 15.2% 7.0%
Stand up 58.3% 50.5% 45.4% 38.0%

Table 1. Average precision table for the HOHA (Hollywood hu-
man actions) dataset.

genres, viewpoints and type of action. Instances of action
classes were annotated manually by selecting the frames
corresponding to the start and end of each action, along with
the spatial region of the action instance. Testing for this
dataset proceeded in a leave-one-out fashion. In Table 2 we
report the results obtained by our method (LTP) compared
to the original results of [14]. In both categories, our system
shows a higher performance than previously reported.

5.4. The UCF sports dataset

The authors of [14] have collected a large set of action
clips from various broadcast sport videos. The actions in
this dataset include diving, golf swinging, kicking, lifting,



Class LTP Rodriguez [14]

Kisses 77.3% 66.4%
Slaps 84.2% 67.2%

Table 2. Results on the Feature Films dataset (kisses and slaps)

Figure 4. Examples of the sequences collected to replace the orig-
inal pole vault video clips.

horseback riding, running, skating, swinging a baseball bat,
and pole vaulting. The pole vaulting sequences were re-
moved from the original database due to copyright con-
cerns. We therefore replaced the missing sequences with
sequences we collected ourselves. Figure 4 contains exam-
ple images from the new sequences.

The full dataset contains over 200 video sequences. The
actions are featured in a wide range of scenes and view
points. Testing for this dataset is performed using the leave-
one-out framework. The confusion matrix we obtain for this
set of experiments is depicted in Table 3. The overall mean
accuracy we obtain for this dataset is 79.2%, compared to
69.2% reported in [14].

5.5. Older datasets

The KTH and the Weizmann datasets are well-
established datasets, on which many results have been re-
ported. Both datasets depict a relatively small person act-
ing in front of a static background, and the datasets be-
come somewhat easier if attention is directed to the moving
parts of the scene. This is automatically given in interest-
point based systems. Other systems, in order to compete on
these datasets have used a filtered version of it, where the
moving person is automatically extracted in a preprocess-
ing stage [6, 8].

Here, we add an automatic attention mechanism to our
method, which causes it to act in a figure-centric manner
when analyzing these two datasets. The attention mecha-
nism works by finding the image region of predefined di-

Name Percentile Ref
LTP 90.1%
LBPabs 83.8 5.5.1
LBPdir 79.6 5.5.1
Schindler 92.7% [15]
Laptev 91.8 [11]
Jhuang 91.7% [8]
Niebles 81.5% [12]
Dollár 81.2% [4]
Schüldt 71.7% [16]

Table 4. Comparison to previous results on the KTH database

mensions that has the smaller number of pixels that are
encoded as all zero strings. This detection is carried out
efficiently by a simple application of the integral-image
idea [19]. After the detection stage, the system continues
in the usual manner, applied only to the detected region-of-
interest.

5.5.1 KTH

The KTH dataset contains sequences from six classes:
walking, jogging, running, boxing and hand-waving. We
adhere to the protocol of [16], where sequence from 8 peo-
ple are used for training, those from another 8 for validation
(we use those to tune the parameters), and the actions of 9
people are used for testing. The experiment is repeated 10
times. Table 4 reports the performance in comparison to the
result reported on the leading alternative systems.

We also report results on two variants of our approach in
which the self-similarities are encoded using binary digits
and not trinary digits. In one system LBPabs, each of the
8 bits encodes whether the difference between the two SSD
similarities of a pair of patches is larger than 1, 000. In the
second system LBPdir, each bit encodes whether the patch
at frame t − ∆t is similar to the central patch at time t, or
whether it is the patch of the same shift at frame t + ∆t
which is more similar to the one at time t.

Our results are slightly lower than the best available re-
sults on this dataset. However, it is significantly higher
than both variants of encoding self-similarities using Binary
strings. Table 5 shows the confusion matrix for the three lo-
cal pattern systems LTP, LBPabs and LBPdir. As expected,
the systems encounter the biggest difficulties in separating
jogging from running.

5.5.2 Weizmann

The Weizmann action recognition dataset [2] consists of
nine subjects performing nine different actions: bending
down, jumping jack, jumping, jumping in place, galloping
sideways, running, walking, waving one hand, and waving
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Diving 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Golf Swing 0.00 0.61 0.06 0.00 0.00 0.00 0.00 0.00 0.33 0.00
Kick 0.05 0.00 0.65 0.00 0.00 0.00 0.00 0.10 0.20 0.00
Lift 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 0.33 0.00
Ride Horses 0.17 0.00 0.08 0.00 0.67 0.00 0.00 0.00 0.08 0.00
Run 0.00 0.00 0.00 0.00 0.00 0.69 0.15 0.08 0.08 0.00
SkateBoard 0.00 0.00 0.00 0.00 0.00 0.08 0.92 0.00 0.00 0.00
Swing 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.94 0.00 0.00
Walk 0.00 0.05 0.00 0.00 0.00 0.05 0.05 0.00 0.86 0.00
PoleVault 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.00 0.00 0.92

Table 3. Confusion matrix for the Broadcast Television Action Dataset (UCF sports)
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box 0.98 0.02 0.00 0.00 0.01 0.00
clap 0.03 0.95 0.01 0.01 0.00 0.00
wave 0.02 0.02 0.96 0.00 0.00 0.00
jog 0.00 0.00 0.00 0.76 0.17 0.07
run 0.00 0.00 0.00 0.13 0.86 0.01
walk 0.01 0.00 0.00 0.08 0.01 0.90
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box 0.89 0.08 0.03 0.00 0.00 0.00
clap 0.00 0.97 0.03 0.00 0.00 0.00
wave 0.00 0.06 0.94 0.00 0.00 0.00
jog 0.00 0.00 0.00 0.78 0.00 0.22
run 0.00 0.00 0.00 0.33 0.61 0.06
walk 0.00 0.00 0.00 0.17 0.00 0.83

(b)
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box 0.89 0.08 0.03 0.00 0.00 0.00
clap 0.03 0.94 0.03 0.00 0.00 0.00
wave 0.06 0.03 0.92 0.00 0.00 0.00
jog 0.00 0.00 0.00 0.67 0.08 0.25
run 0.00 0.00 0.00 0.42 0.50 0.08
walk 0.00 0.00 0.00 0.14 0.00 0.86

(c)
Table 5. Confusion matrices on the KTH dataset for: (a) the pro-
posed LTP algorithm, (b) the LBPabs algorithm in which each bit
encodes the existence of difference in similarity above a thresh-
old, and (c) the LBPdir algorithm in which each bit encodes the
direction of the larger similarity.

both hands. The evaluation is done in a leave-one-person-
out manner: 8 subjects are used for training, and the re-

Name Percentile Ref
LTP 100%
bag-of-snip-1 100% [15]
Blank 100% [2]
Jhuang 98.8% [8]
Wang 97.8% [20]
Ali 92.6% [1]
Dollár 86.7% [4]
Niebles 72.8% [12]

Table 6. Comparison to previous results on the Weizmann dataset

maining one for testing. The experiment is repeated for all
9 persons, and the results are averaged.

As Table 6 indicates, our method achieves maximal per-
formance on this dataset. We know of two other systems
with the same level of performance reported [15, 2].

5.6. the UFC database

Our system is designed to work in an online manner on
live video. This design requirement stems directly from
real-world applications such as surveillance video monitor-
ing, and human-machine interface. Given the amount of
video being accumulated at every moment, video indexing
systems also require efficient real-time or faster processing.

Some of the previous contributions, e.g., [17] have pre-
sented results on uncut video. However, existing quantita-
tive benchmarks are not suitable for testing online systems,
since they focus on pre-cut video clips. We therefore con-
struct a new benchmark based on UFC videos. UFC is a
fighting sport, in which fights occur standing up (similar to
kick-boxing), in the clinch (the fighters hold each other), or
on the ground (similar to wrestling). It is therefore versatile
compared to other sports and contains a myriad of different
actions. In addition, some of these actions are of relevance



for surveillance applications, such as one person hitting an-
other.

The UFC videos contain variability in view-point and in
individual appearance, camera motion and shot cuts. Every
action can be performed in any number of ways, and the
frequency of the various actions differs considerably. In ad-
dition, in UFC videos, two fighters act at the same time, a
challenge which is seldom met in previous benchmarks.

Currently, our dataset contains over 20 minutes of broad-
cast video. For our tests, we mark two actions that occur
relatively infrequently. One is the throw/take-down action,
in which one person throws another to the ground. A per-
son can do so in any number of ways including throwing
another person over the hip, or by grabbing the other per-
son’s legs. The second action is knee kick from the clinch,
which is a much less versatile action. Those kicks are how-
ever harder to detect due to self-occlusion and the relatively
small amount of motion involved. Figure 5 shows examples
of the two actions.

Half of the video is used for training, and half of the
video, which displays other fighters, is used for testing. The
results are presented in Figure 6. As can be seen, for both
actions, achieving a recall value significantly higher than
30% results in a sharp increase in the false positive rate.
The dataset therefore poses a real challenge for our action
recognition system.

6. Conclusion
We present an effective real-time system for action

recognition. The system compares nearby patches and is
therefore resilient to variations in texture. Moreover, it is
silent in the absence of motion. Similarly to other systems,
we hypothesize that incorporating appearance information
would increase performance on certain benchmarks.

A new benchmark is presented for the detection of un-
cut action in long videos. We hope that the development
of such benchmarks will be matched by further increase in
performance on continuous video, and especially by the de-
velopment of suitable real-time systems.
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[7] M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of
interest regions with center-symmetric local binary patterns.
In Computer Vision, Graphics and Image Processing, 5th In-
dian Conference, pages 58–69, 2006. 2

[8] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically
inspired system for action recognition. In ICCV, pages 1–8,
2007. 1, 2, 5, 6

[9] V. Kellokumpu, G. Zhao, and M. Pietikainen. Human ac-
tivity recognition using a dynamic texture based method. In
BMVC, 2008. 2

[10] A. Klaeser, M. Marszalek, and C. Schmid. A spatio-temporal
descriptor based on 3d-gradients. In BMVC, 2008. 1, 2, 4

[11] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, 2008. 1, 2, 4, 5

[12] J. Niebles and F. Li. A hierarchical model of shape and ap-
pearance for human action classification. In CVPR, 2007. 5,
6

[13] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. PAMI, 24(7):971–987, 2002. 1

[14] M. Rodriguez, J. Ahmed, and M. Shah. Action mach a
spatio-temporal maximum average correlation height filter
for action recognition. In CVPR, 2008. 4, 5

[15] K. Schindler and L. van Gool. Action snippets: How many
frames does human action recognition require? Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8, June 2008. 1, 2, 5, 6

[16] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local svm approach. In ICPR, 2004. 1, 2, 3, 5

[17] E. Shechtman and M. Irani. Matching local self-similarities
across images and videos. In CVPR, June 2007. 1, 6

[18] X. Tan and B. Triggs. Enhanced local texture feature sets
for face recognition under difficult lighting conditions. In
International Workshop on Analysis and Modeling of Faces
and Gestures, 2007. 2

[19] P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision - to appear, 2002.
5

[20] L. Wang and D. Suter. Recognizing human activities from
silhouettes: Motion subspace and factorial discriminative
graphical model. In CVPR, 2007. 6



(a)

(b)

(c)

(d)
Figure 5. Example actions from the UFC database. (a),(b) Examples of the Throwing action. (c),(d) Examples for the action of Knee-kick
from the clinch.

(a) (b)
Figure 6. ROC curves for the UFC dataset. (a) for the Throw action. (b) for the Knee-kick action.

[21] D. Weinland and E. Boyer. Action recognition using
exemplar-based embedding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,

Anchorage, pages 1–7, 2008. 1, 2

[22] L. Wolf, T. Hassner, and Y. Taigman. Descriptor based meth-
ods in the wild. In Faces in Real-Life Images ECCV work-



shop, 2008. 2
[23] C. Yang, Y. Guo, H. S. Sawhney, and R. Kumar. Learn-

ing actions using robust string kernels. In A. M. Elgammal,
B. Rosenhahn, and R. Klette, editors, Workshop on Human
Motion, volume 4814 of Lecture Notes in Computer Science,
pages 313–327. Springer, 2007. 2


