
Non-Negative Matrix Factorization of Partial Track Data for Motion

Segmentation

Anil M. Cheriyadat1,2 and Richard J. Radke2

1Computational Sciences and Engineering Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831
2Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

This paper addresses the problem of segmenting low-

level partial feature point tracks belonging to multiple mo-

tions. We show that the local velocity vectors at each instant

of the trajectory are an effective basis for motion segmen-

tation. We decompose the velocity profiles of point tracks

into different motion components and corresponding non-

negative weights using non-negative matrix factorization

(NNMF). We then segment the different motions using spec-

tral clustering on the derived weights. We test our algo-

rithm on the Hopkins 155 benchmarking database and sev-

eral new sequences, demonstrating that the proposed algo-

rithm can accurately segment multiple motions at a speed

of a few seconds per frame. We show that our algorithm is

particularly successful on low-level tracks from real-world

video that are fragmented, noisy and inaccurate.

1. Introduction

The automated analysis of dynamic scenes from video

data requires efficient segmentation of multiple object mo-

tions. Such motions can be generated by independent ob-

jects, articulated parts of the same object, or the camera it-

self. Fast, accurate solutions are required for large volumes

of data, e.g., from surveillance applications. The main con-

tribution of this paper is a fast algorithm for motion seg-

mentation that is highly robust to the noisy, missing, or

partial data typical of real-world tracking algorithms. The

proposed algorithm is computationally efficient (seconds or

less per frame), and its speed and performance is indepen-

dent of the number of underlying motions. Figure 1 illus-

trates results from our algorithm on several example video

frames.

As discussed below, many previous motion segmentation

methods are based on applying geometrical constraints to

motion subspaces. Instead, our approach explores a differ-

A B

C

Figure 1. Frames from three of the many different sequences used

to test our algorithm. Motion segmentation results are overlaid on

the frames. The figures in this paper are best viewed in color.

ent aspect of the point track data: the local velocity informa-

tion associated with the point tracks. Our approach begins

by computing a velocity profile for each point track, consist-

ing of the local velocity magnitude and direction computed

at each temporal instant. Our expectation is that all the point

tracks associated with a single motion should have a simi-

lar velocity profile structure. We decompose each structure

into a different non-negative combination of the same non-

negative motion subcomponents. Our analysis illustrates

that point tracks belonging to the same object motion tend to

have high coherence in the non-negative weight space, and

we exploit this coherence for motion segmentation using the

N-cut graph cut framework proposed by Shi and Malik [15].

Our algorithm offers a consistent framework to handle both

complete and incomplete motion data, where in the latter

case discrimination between motion groups is automatically

learned from partial motion data. As a result our algorithm

is able to segment incomplete point track data without the

need for point track reconstruction steps (e.g., as required

in [13]).

We tested our algorithm on the Hopkins 155 bench-

mark dataset [17], which contains examples of indepen-

dent, articulated, rigid, and degenerate motions, as well

as on the dataset proposed by Sugaya and Kanatani [16].

We also tested our algorithm on several new and challeng-

ing video sequences containing occlusions, multiple ob-

ject motions, and camera motion. We found that our al-

gorithm performs particularly well on natural videos with

1

three or more motions, and those with a substantial amount

of missing data. For videos of all the results, which more

clearly illustrate the quality of the segmentations, please

view the supplementary videos at http://www.ecse.

rpi.edu/˜rjradke/nnmf/.

2. Related Work

We assume we are given a set of P feature points tracked

through F frames, where the location of the pth point in

the f th frame is given by (xp
f , y

p
f). To allow for missing

data, we also define an indicator variable I
p
f that equals 1 if

feature p was tracked in frame f , and 0 otherwise.

We can collect all the track information into a 2F × P

motion matrix M where the pth column is given by

[xp
1, . . . , x

p
F , y

p
1 , . . . , y

p
F]T . (1)

Entries corresponding to missing data (I
p
f = 0) are as-

signed zeros in M and unused by our algorithm. The goal

of motion segmentation is to determine a permutation of the

columns of M to form [M1|M2| . . . |MN], where the sub-

matrix M i is composed of point tracks associated with the

ith object motion. Previous solutions to this problem were

based on methods including factorization [4, 7, 8], general-

ized PCA [18], statistical learning [16, 20], and minimum

description length [13].

The basic approach behind several early methods ex-

ploited the observation that the trajectories associated with

each motion lie in a subspace of dimension four or less

[1, 4]. Factorization approaches [4, 7, 8] provided an ele-

gant framework to partition the matrix M directly into max-

imally rank deficient submatrices M i. However, these ap-

proaches were shown to degrade when the motions were

not independent, or the input point tracks were noisy or in-

complete. Zelnik-Manor and Irani [21] applied factoriza-

tion on the matrix MT with a different objective of cluster-

ing frames containing consistent shapes. They showed that

their approach resulted in temporal segmentation of video

frames (clustering rows of M).

The multi-stage learning method proposed by Sugaya

and Kanatani [16], hereafter termed as MSL, combined sub-

space factorization with statistical learning. The algorithm

starts with the subspace factorization approach proposed by

Costeira and Kanade [4], and uses the EM algorithm to re-

fine the motion segmentation results. While this method

produced very good segmentations, it is generally impracti-

cal since it takes hours to converge.

The algebraic method proposed by Vidal and Hartley

[18], hereafter termed as GPCA, fits a set of polynomials to

the point tracks after their projection onto a 5-dimensional

subspace. A basis for each motion subspace is obtained

from derivatives of these polynomials, and different mo-

tions are segmented using spectral clustering on subspace

angles. The method is computationally efficient. However,

one of the drawbacks is that the proposed method does not

scale well with number of motions. As noted by the original

authors [18], the number of coefficients that need to be es-

timated grows exponentially with the number of subspaces

and dimension of the subspace. Hence the amount of tra-

jectory data that might be available in a real-time practical

situation will limit GPCA’s ability to segment a large num-

ber of motions.

The method proposed by Yan and Pollefeys [20], here-

after termed as LSA, also begins with projecting the point

track data onto a lower dimensional linear normalized sub-

space. In contrast to the global fit subspace criterion pur-

sued by [18], the LSA method seeks to fit a local subspace

around each point. The motion similarity between a pair of

point tracks is computed from the principal angles between

the local subspaces occupied by these tracks. Segmentation

is achieved through spectral clustering. Since the method

relies on local subspace estimation, for motions with sig-

nificant spatial overlap, this method will yield suboptimal

performance.

Recently Rao et al. [13] proposed an algorithm, hereafter

termed as ALC, to cluster the point tracks based on the prin-

ciples of lossy minimum description length. They argue

that subspace separation based on matrix rank minimiza-

tion is challenging, and that similar segmentation of point

tracks can be achieved by finding the set of point tracks that

minimize the coding length required to describe the data up

to a distortion parameter. The method uses an agglomera-

tive scheme to find the minimum coding length. This in-

volves running several iterations of the algorithm with dif-

ferent distortion settings to estimate the parameter yielding

the minimum coding length; hence it is a computationally

expensive procedure.

In real-world automatic tracking, scene dynamics, oc-

clusions and tracker limitations can often result in tracks

being highly fragmented, noisy and inaccurate. Many of

the above algorithms have proposed different ways of han-

dling these data irregularities. In the case of GPCA [18],

power factorization is used to project missing data onto a

5-dimensional space. In the case of ALC [13], the algo-

rithm utilizes the subspace constraints to reconstruct the

fragmented and noisy data before the motion segmentation

process. There is a clear need to develop a fast motion seg-

mentation algorithm that can scale well with the number of

motions and can handle partial or missing data efficiently.

As illustrated in next sections our proposed algorithm is

able to achieve these objectives in a consistent manner.

3. Proposed Algorithm

Broadly, our algorithm proceeds as summarized in Al-

gorithm 1. We now discuss each step of our algorithm in

detail.

Algorithm 1 Motion Segmentation

1. Compute velocity profile matrix V from track data

2. Apply non-negative matrix factorization to V to obtain

subcomponent motions S and weights W

3. Compute affinity matrix A from W

4. Apply spectral clustering to A to generate N clusters

We now discuss each step of our algorithm in detail.

3.1. Point Track Velocity Profiles

The first step in our algorithm is to derive a velocity pro-

file for each point track. This is simply based on the instan-

taneous magnitude and angle of the track computed as:

m
p
f =

√

(xp
f+1 − x

p
f)2 + (yp

f+1 − y
p
f)2 (2)

c
p
f =

x
p
f+1 − x

p
f

√

(xp
f+1 − x

p
f)2 + (yp

f+1 − y
p
f)2

+ 1 (3)

s
p
f =

y
p
f+1 − y

p
f

√

(xp
f+1 − x

p
f)2 + (yp

f+1 − y
p
f)2

+ 1 (4)

Note that c
p
f and s

p
f (the cosine and sine of the angle

plus one respectively) are always in the range [0,2]. The

non-negative representation of the point track velocity pro-

files ensures that the matrix V can be factored into two

non-negative matrices. An indicator function Ĩ
p
f derived

from I
p
f denotes whether the velocity profile exists at each

point/instant, to account for missing data.

We collect all velocity information into a non-negative

3(F−1)×P velocity profile matrix V where the pth column

is given by

[mp
1, . . . ,m

p
F−1, c

p
1, . . . , c

p
F−1, s

p
1, . . . , s

p
F−1]

T . (5)

Unused zeros are entered into V in the case of missing

data.

3.2. Factorization of Velocity Profiles

We next factor V using non-negative matrix factoriza-

tion (NNMF), an elegant framework for describing the non-

negative measurements as a non-negative linear combina-

tion of a set of basis vectors which can be thought of as

“building parts” [10]. This parts-based representation of the

data is quite different from the holistic data representation

offered by factorization approaches like PCA and the SVD.

Unlike such approaches, where basis vectors can be added

or subtracted for reconstruction, NNMF only allows for ad-

dition. NNMF has found a wide range of applications in

various areas including face recognition [10], medical data

analysis [3], and microarray analysis [9]. Our intuition be-

hind using NNMF for motion segmentation is that the non-

negative weights used to combine different “parts” for each

track should provide a good measure of data similarity. In

the case of partial or missing data, the parts-based repre-

sentation provided by NNMF offers a way to measure the

similarity between partial data sets that cannot be compared

directly (e.g., due to zero temporal overlap). Although other

approaches such as PCA for missing data [6] exist for han-

dling these data irregularities, our experimental analyses

show that NNMF handles missing data gracefully without

extra steps.

Let us initially assume that V is fully populated, i.e.,

Ĩ
p
f = 1 for all f and p. Formally, our objective is to find

non-negative matrices S ∈ R
3(F−1)×r
+ and W ∈ R

r×P
+ ,

with r ≪ F, P , that minimize

‖V − SW‖2F (6)

Here, the matrix S contains the subcomponent “build-

ing parts” of the motions, and W contains the non-negative

weighting of the parts for each point track. For the min-

imization, we apply the common approach of seeking the

solution in an alternating least-squares manner [5]. That

is, we alternate between fixing S and solving for W , and

vice versa. While this procedure is not guaranteed to find a

global minimum, we found it to converge quickly in prac-

tice and to result in high-quality segmentations. We apply

the multiplicative update rules initially proposed by Lee and

Seung [10], as given in Algorithm 2.

Algorithm 2 NNMF with Multiplicative Updates

Initialize S ∈ R
3(F−1)×r and W ∈ R

r×P as random

positive matrices.

for n = 1 to T do

R = V ⊘ (SW)
S ← S ⊗ (RWT)
Normalize columns of S to have unit L1 norm

R = V ⊘ (SW)
W ←W ⊗ (ST R)

end for

Here, ⊘ and ⊗ represent matrix element-wise division

and multiplication respectively. Lee and Seung showed that

these rules result in a non-decreasing cost function. The

constraint that the column vectors of the subcomponent ma-

trix S should add to one makes sure that the “parts” de-

rived from factorization are “comparable”. In accordance

with typical practice, we set T to a large number (1000);

an alternative would be to terminate when the residuals stop

changing significantly. To get the best result, we start with

10 random initializations of (S, W), do 10 iterations of up-

dates for each, and proceed to convergence with the pair

having the minimum residual ‖V − SW‖2F . To avoid nu-

merical problems, exact zeros in V are replaced by machine

precision ε.

The number of column vectors in S, denoted by r, cor-

responds to the number of “parts” that make up the velocity

profiles. One possibility for choosing r is to use a model

selection algorithm to determine the rank of the matrix V ,

as suggested by [19]. For our experiments on the Kanatani

and Hopkins 155 sequences, we simply set the value of r to

3 and for our longer new video sequences we set r to 4.

Figure 2 shows frames from one of the video sequences

used in our experiments. The feature points that are tracked

are overlaid on the frame. Point tracks correspond to three

different motion groups as indicated by the letters overlaid

on the figure. Motion groups A, B and C correspond to

track numbers 1-37, 38-111 and 112-548 respectively. The

associated affinity matrix, computed as described in [15],

from the non-negative weight vectors generated by our al-

gorithm is shown next to the frame. The affinity matrix

clearly indicates that the clusters in this case are tight and

well-separated, indicating promise for the motion segmen-

tation problem. The affinity matrix A is computed as:

A(i, j) = exp

(

−‖w(i)− w(j)‖2
σ

)

(7)

where σ is the scale and w(i) is the ith column vector of

W . We used σ in the range 0.01-0.03.

A

B
C

A B

C

A

B

C

A

B
C

A

A

B
C

C
C

C

A B

Figure 2. On the left a video frame from the Hopkins 155 [17]

database containing multiple motions is shown. On the right the

affinity matrix computed from W is shown. A brighter pixel

means more similarity. The block diagonals correspond to dif-

ferent motions. For this example, our algorithm yielded 0% mis-

classification.

3.2.1 Handling Incomplete Data

For incomplete data cases, the cost function (7) must be

modified to

F−1
∑

f=1

P
∑

p=1

Ĩ
p
f ‖v

p
f − SfW p‖2, (8)

where (vp
f = (mp

f , c
p
f , s

p
f)T and Sf and W p are the appro-

priate 3× r and r × 1 submatrices, respectively.

The multiplicative update rules used here provide a sim-

ple but effective framework for handling missing data val-

ues. The matrix R computed during Algorithm 2 deter-

mines the ratios by which elements in the matrices S and W

are tuned during each iteration. For the missing data cases,

the elements of R corresponding to Ĩ
p
f = 0 are simply set

to 1, meaning that they have no influence on the update.

To motivate the use of NNMF for partial data analysis

we first illustrate it on a simulated missing data example.

Consider the point tracks for the example sequence shown

in Figure 2. In order to simulate missing data, for half of

the tracks in each motion group we forced the tracks to

have a long band (60-70%) of missing data. The bands of

missing data were laid out in such a way that half of the

tracks in each motion group have zero overlap with half of

the tracks from other groups (Figure 3). Considering the

inter- and intra-object occlusions in the scene and tracker

limitations, it is not unusual for real-world point tracks to

exhibit such data irregularities. Because of these data irreg-

ularities, neither direct comparison of the original tracks nor

direct application of dimensionality techniques like PCA or

SVD is possible here. We use the NNMF framework as de-

scribed above to factorize these partial tracks. Through iter-

ative steps, NNMF constructs its “building parts” and non-

negative weights from the available partial data. The in-

herent similarity in the data is captured by the non-negative

weights that are used to combine the “parts”. The affin-

ity matrix computed from the non-negative weights for this

missing data case shows similar clustering behavior to the

one derived for the complete data case in Figure 2. The

results presented in Figure 3 clearly demonstrate the appli-

cability of NNMF for clustering partial point track data.

C

A B

A

B

C

Figure 3. The mask indicating missing data (black pixels) for the

example sequence is shown on the left. On the right the affinity

matrix computed from the non-negative weight matrix W for this

missing data case is shown, which is quite similar to the affinity

matrix from Figure 2.

3.3. Spectral Clustering

Generally, we can apply any clustering technique to the

column vectors of W to retrieve the N motion clusters.

To avoid the K-means random initialization which is part

of spectral clustering [12], we use the iterative multi-stage

spectral clustering algorithm proposed by Shi and Malik

[15] to achieve stable segmentation results. From a graph

cut perspective, our clustering strategy can be viewed as

finding subgraphs representing different motions. Here, the

column vectors of W form nodes in the graph, and the sim-

ilarity A computed between column vectors of W form the

edge weights. Clustering is achieved through a normalized-

cut of this graph network into subgraphs representing dif-

ferent motions.

4. Experiments

In this section, we report experimental results on the test

sequences proposed by Sugaya and Kanatani [16], the Hop-

kins 155 benchmark dataset [17], and several new and chal-

lenging video sequences. In the case of the Kanatani and

Hopkins 155 sequences, the point tracks are given and were

manually cleaned and associated with underlying motions.

Thus, we can compute the classification error, given by the

ratio of number of misclassified point tracks to the total

number of point tracks. In our new videos, point tracks are

automatically generated without cleaning, outlier rejection,

or manual classification, and qualitative results are reported.

4.1. Kanatani Sequences

We first ran our algorithm on the sequences proposed by

Kanatani [8]. Like MSL, GPCA and ALC, our algorithm

achieves 0% misclassification. For comparison of these re-

sults with additional algorithms, see [16, 18]. Except for

GPCA, the computational requirements for the other algo-

rithms are much higher than ours. The average computation

time taken by our algorithm on these sequences is 2.5 secs.

4.2. Hopkins 155 Database

The Hopkins 155 database consists of 155 motion se-

quences representing various motion conditions including

independent, articulated, partially dependent, and degener-

ate motions. The database is subcategorized into different

types, and we compared our algorithm on the traffic and ar-

ticulated categories. The traffic set consists of 38 sequences

of outdoor traffic scenes taken by a moving handheld cam-

era. Most scenes contain degenerate motions, particularly

linear and planar motions. The articulated set consists of 13

sequences displaying motions constrained by joints, heads,

faces and other non-rigid motions. Refer to [17] for more

details on the Hopkins 155 database. We tested our algo-

rithm on this database and compared the performance with

the motion segmentation results reported in [16, 18]. To

obtain a fair comparison with previous work, we tested our

algorithm separately on sequences with two motions (Table

1) and three motions (Table 2). As with the comparison al-

gorithms, our algorithm is provided with the original point

track data and the known number of motions as input (used

in the spectral clustering phase).

We report the mean and median classification errors and

the average computation time (Table 3) for the three video

categories. We compare our algorithm with MSL, LSA,

GPCA, and ALC, algorithms which are considered as the

state-of-the-art and whose performance results are reported

in [16, 18, 13]. Our results were obtained on an Intel dual

core 2.4 GHz processor with 2 GB RAM.

Table 1. Misclassification percentages for sequences with two mo-

tions. The number of sequences for each category is given in

parentheses.

Traffic (31) MSL LSA GPCA ALC Ours

Mean 2.23% 5.43% 1.41% 1.59% 0.1%

Median 0.0% 1.48% 0% 1.17% 0%

Articulated (11) MSL LSA GPCA ALC Ours

Mean 7.23% 4.10% 2.88% 10.7% 10%

Median 0.0% 1.22% 0% 0.95% 2.6%

Table 2. Misclassification percentages for sequences with three

motions. The number of sequences for each category is given in

parentheses.

Traffic (7) MSL LSA GPCA ALC Ours

Mean 1.8% 25.07% 19.83% 7.75% 0.1%

Median 0% 23.79% 19.55% 0.49% 0%

Articulated (2) MSL LSA GPCA ALC Ours

Mean 2.71% 7.25% 16.85% 21.08% 15%

Median 2.71% 7.25% 16.85% 21.08% 15%

Table 3. Average computation times for various algorithms

Method MSL LSA GPCA ALC Ours

Time 19.6 hr 9.7 sec 0.72 sec 21 min 3 sec

As demonstrated by the results, our algorithm gives ex-

cellent results for the real-world traffic sequences, and com-

parable results with the other algorithms for the articulated

sequences. The computation time required by our algorithm

is on the order of seconds. Both LSA and GPCA have com-

putation time on the order of seconds whereas MSL and

ALC require higher computation time due to the iterative

nature of the algorithms. We note that our proposed algo-

rithm is based on a linear matrix factorization and hence

might yield suboptimal results for sequences with “strong”

camera rotations and background perspective effects. This

was validated through our experimental analysis on such

sequences fom Hopkins 155 checkerboard category which

contained non-linear effects.

4.3. Missing Data Cases

We next tested and compared the performance of our al-

gorithm for missing data cases we introduced into the Hop-

kins 155 sequences. In real-world automatic tracking, fea-

ture points frequently get occluded or the quality of the fea-

ture correspondence degrades during the course of tracking,

forcing the tracker to abandon the point track. Hence, it

is quite important for segmentation algorithms to robustly

handle these data irregularities.

In order to test the ability of our algorithm to handle

missing data, we generated random binary masks as shown

in Figure 4. For each mask shown, black denotes missing

data and white otherwise, and the width and height of the

mask represents the number of point tracks and the num-

ber of total frames respectively. For each randomly selected

point track, we randomly fix the start and duration of a fea-

ture point’s successful tracking window. This mask gener-

ation process ensures a resulting point track set that con-

tains a mix of a few complete tracks and many incomplete

tracks with varying degrees of “incompleteness”. We found

this mask generation process to closely simulate automati-

cally generated tracks in real world scenes. In our experi-

ments, we generated masks that represent 25-35% missing

data values. We used the masks to force missing data in

both the traffic and articulated categories, and ran the pub-

licly available ALC algorithm [13] and our algorithm on

these sequences. For each motion data sequence from these

categories, we applied the same mask before running both

algorithms.

We were interested to compare the segmentation perfor-

mance of our algorithm with the ALC approach, because

the ALC algorithm uses an additional step to reconstruct

the data before applying the segmentation algorithm. In

contrast, our algorithm does not explicitly reconstruct the

data but handles missing data through NNMF factorization.

Our results (Table 4) illustrate that our segmentation algo-

rithm is fast and robust in the presence of incomplete data,

with only a slight loss in performance over the complete

data scenario. Handling partial motion data is important for

motion segmentation in real-time and real-world scenarios

as illustrated by our next set of experiments.

Figure 4. One of the binary masks used for an example sequence

is shown here. Here the rows and columns of the binary mask

represent frames F and points P respectively.

4.4. New Video Sequences

In order to test the robustness of our algorithm to

real-world, rather than provided/cleaned tracks, we gen-

1Complete data timings are reported from [13] and may not be compa-

rable with the missing data timings (run on our PC)

Table 4. Misclassification percentages for sequences with 20-30%

missing data vs. complete data. The results for ALC complete data

are reported in [13].

Missing Data Complete Data

Traffic ALC Ours ALC Ours

Mean 5.77% 2.2% 2.77% 1.1%

Median 2.39% 0.5% 1.10% 0%

Average Time 13.9 min 5 sec 17.19 min1 5 sec

Articulated ALC Ours ALC Ours

Mean 18% 13% 13.71% 11%

Median 17% 11% 3.46% 3%

Average Time 8 min 3.6 sec 10.43 min1 3.6 sec

erated several new video sequences that contain multi-

ple motions and are substantially longer than most of the

Kanatani/Hopkins sequences. The low-level features are

automatically tracked over time using a hierarchical imple-

mentation [2] of the Kanade-Lucas-Tomasi optical flow al-

gorithm [11]. No manual effort was made to correct or re-

move incorrect tracks, and point track generation is a con-

tinuous process. That is, at each frame new feature point

tracks are initiated in addition to the existing ones. In con-

trast, all of the Kanatani/Hopkins sequences only use track

points initiated in the first frame. The continuous approach

ensures a sizable set of “good” point tracks representing

different motions in the scene (e.g., producing more tracks

when the camera pans significantly). On the other hand, the

continuous point track generation process results in wide

variations in the temporal extents of the tracks. A robust

motion segmentation algorithm should produce good results

in the presence of such data.

We tested our algorithm on four different video se-

quences we called drinkingcoffee, racquetsession, panning-

camera and rotatingcontainers. The drinkingcoffee se-

quence contains two different motions, one caused by the

person rotating in his chair and the other by the motion of

the coffee cup which involves both rotation and translation.

The racquetsession sequence contains two complex articu-

lated motions generated by the movement of the person and

of the racquet head. The panningcamera sequence contains

two motions, one generated by the person walking and the

other by the camera motion. In this sequence, as the camera

pans across the scene, feature points appear and disappear

at the edges of the frame. For these three sequences, as a

result of continuous feature point extraction and tracking,

the point tracks have wide variations in their temporal ex-

tent. The rotatingcontainers sequence contains four differ-

ent motions: two containers displaying different rotations

but the same (minimal) translational motion, a person lean-

ing forward displaying looming/translational motion, and

points in the background which are basically stationary. The

binary mask indicating missing data for the racquetsession

sequence is shown in Figure 5, illustrating the “incomplete-

ness” and variations in the degree of temporal overlap.

Figure 5. The binary mask obtained from the racquetsession se-

quence, indicating “incompleteness” and variations in track over-

lap. Some track pairs even have zero overlap. The top row corre-

sponds to the first frame.

The automatically extracted tracks from these sequences

and the true number of object motions were input to both

our algorithm and the ALC algorithm. Segmentation results

from our algorithm are overlaid on exemplar frames from

these sequences as shown in Figure 6. The results illustrate

that our algorithm is able to produce excellent segmenta-

tions on these challenging videos compared to the ALC al-

gorithm, which resulted in incorrect segmentations on all

sequences (Figure 6i-j) except drinkingcoffee. Table 5 gives

details on the videos and timings.

In order to highlight the coherence of point tracks be-

longing to the same motion, we show in Figure 7 the affin-

ity matrices computed from the non-negative weight vec-

tors (column vectors of W). We have conducted addi-

tional experiments on a variety of video sequences and

results are available at http://www.ecse.rpi.edu/

˜rjradke/nnmf/.

Table 5. Computation Time for Segmentation of New Videos
Sequence drinkingcoffee racquetsession camerapanning rotatingcontainer

Num of points 1682 407 52 135

Num of frames 49 98 56 290

ALC time 26 hr 20 min 9 min 2.3 min

Ours time 54 sec 36 sec 12 sec 27 sec

5. Conclusions and Future Work

We presented a new motion segmentation technique

based on non-negative factorization of velocity profiles to

achieve fast and robust motion segmentation from partial

low-level feature point tracks. As opposed to previous

motion segmentation algorithms that relied on geometrical

subspace constraints on the positional information of point

track data, the approach proposed in this paper uses the in-

stantaneous velocity information extracted from the point

tracks. The proposed approach is simple, fast, and can han-

dle noisy and incomplete data under various motion condi-

tions.

In future work, we plan to fuse the velocity-based motion

segmentation approach with low-level object segmentation

to distinguish multiple similarly moving objects. We also

plan to find better ways of initializing the NNMF, and in-

vestigate whether different constraints on S and W produce

better motion clusters. The NNMF technique could also be

extended based on the ideas of Kernel PCA [14] to handle

Figure 6. The segmentation results of our algorithm on new video

sequences are shown here. (a-c) drinkingcoffee, (b-d) racquetses-

sion, (e-g) panningcamera, (f-h) rotatingcontainers. Panels (i-j)

are segmentation results from the ALC algorithm for panningcam-

era and rotatingcontainers. Except for segmentation on drinking-

coffee, the ALC algorithm yielded poor results on the other se-

quences.

non-linear “parts”. Finally, we plan to improve our clus-

tering technique to automatically determine the number of

underlying motions.

6. Acknowledgements

Prepared by Oak Ridge National Laboratory2, P.O. Box

2008, Oak Ridge, Tennessee 37831-6285, managed by UT-

 (a) drinkingcoffee (b) racquetsession

 (c) panningcamera (d) rotatingcontainer

Figure 7. Affinity matrices computed from W for the new se-

quences. A brighter pixel means more similarity. The column

vectors of W are sorted based on the clustering obtained by our al-

gorithm. Block diagonals correspond to different object motions.

The clustering accuracy is confirmed through visual inspection of

video sequences.

Battelle, LLC for the U.S. Department of Energy under con-

tract no. DEAC05-00OR22725.

References

[1] T. E. Boult and L. G. Brown. Factorization-based segmen-

tation of motions. In Proceedings of the IEEE Workshop on

Motion Understanding, pages 179–186, 1991.

[2] G. Bradski. OpenCV: Examples of use and new applications

in stereo, recognition and tracking. In Proc. of International

Conference on Vision Interface, 2002.

[3] Z. Chen, A. Cichocki, and T. M. Rutkowski. Constrained

non-negative matrix factorization method for EEG analysis

in early detection of Alzheimer disease. In Proceedings of

the IEEE International Conference Acoustics, Speech and

Signal Processing, 2006.

[4] J. Costeira and T. Kanade. A multibody factorization method

for independently moving objects. International Journal of

Computer Vision, 29(3):159–179, 1998.

2This manuscript has been authored by employees of UT-Battelle, LLC,

under contract DE-AC05-00OR22725 with the U.S. Department of Energy.

Accordingly, the United States Government retains and the publisher, by

accepting the article for publication, acknowledges that the United States

Government retains a non-exclusive, paid-up, irrevocable, world-wide li-

cense to publish or reproduce the published form of this manuscript, or

allow others to do so, for United States Government purposes.

[5] K. R. Gabriel and S. Zamir. Lower rank approximation of

matrices by least squares with any choice of weights. Tech-

nometrics, 21:489–498, 1979.

[6] H.Shum, K. Ikeuchi, and R. Reddy. Principal component

analysis with missing data and its application to polyhedral

object modeling. Modelling from reality, pages 3–39, 2001.

[7] N. Ichimura. Motion segmentation based on factorization

method and discriminant criterion. IEEE International Con-

ference on Computer Vision, pages 600–605, 1999.

[8] K. Kanatani. Motion segmentation by subspace separation

and model selection. In IEEE International Conference on

Computer Vision, pages 586–591, 2001.

[9] H. Kim and H. Park. Sparse non-negative matrix factoriza-

tions via alternating non-negativity-constrained least squares

for microarray data analysis. Bioinformatics, 3(12):1495–

1502, 2007.

[10] D. Lee and H. Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401:788–791, 1999.

[11] B. D. Lucas and T. Kanade. An iterative image registration

technique with an application to stereo vision. In Proc. of

7th International Joint Conference on Artificial Intelligence,

pages 674–679, 1981.

[12] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: anal-

ysis and an algorithm. In In Advances in Neural Information

Processing Systems, 2002.

[13] S. R. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmenta-

tion via robust subspace separation in the presence of outly-

ing, incomplete, or corrupted trajectories. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2008.

[14] B. Scholkopf, A. Smola, and K. R. Muller. Nonlinear com-

ponent analysis as a kernel eigenvalue problem. Technical

Report No. 44, Max Planck Institute, 1996.

[15] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2(8):888–905, 2000.

[16] Y. Sugaya and K. Kanatani. Geometric structure of degener-

acy for multi-body motion segmentation. In Proceedings of

Workshop on Statistical Methods in Video Processing, 2004.

[17] R. Tron and R. Vidal. A benchmark for the comparison of

3-D motion segmentation algorithms. In IEEE Conference

on Computer Vision and Pattern Recognition, 2007.

[18] R. Vidal and R. Hartley. Motion segmentation with miss-

ing data by PowerFactorization and generalized PCA. In

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 310–316, 2004.

[19] R. Vidal, Y. Ma, and J. Piazzi. A new GPCA algorithm for

clustering subspaces by fitting, differentiating and dividing

polynomials. In IEEE Conference on Computer Vision and

Pattern Recognition, 2004.

[20] J. Yan and M. Pollefeys. A general framework for motion

segmentation: Independent, articulated, rigid, non-rigid, de-

generate and non-degenerate. In European Conference on

Computer Vision, pages 94–106, 2006.

[21] L. Zelnik-Manor and M. Irani. Temporal factorization Vs

Spatial factorization. In Proceedings of the European Con-

ference on Computer Vision, 2004.

