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Abstract

In this paper, we propose a novel representation of prior
knowledge for image segmentation, using diffusion wavelets
that can reflect arbitrary continuous interdependencies in
shape data. The application of diffusion wavelets has, so
far, largely been confined to signal processing. In our ap-
proach, and in contrast to state-of-the-art methods, we op-
timize the coefficients, the number and the position of land-
marks, and the object topology - the domain on which the
wavelets are defined - during the model learning phase, in
a coarse-to-fine manner. The resulting paradigm supports
hierarchies both in the model and the search space, can en-
code complex geometric and photometric dependencies of
the structure of interest, and can deal with arbitrary topolo-
gies. We report results on two challenging medical data
sets, that illustrate the impact of the soft parameterization
and the potential of the diffusion operator.

1. Introduction
Segmentation is a fundamental problem in computer vi-

sion and medical imaging. It consists of automatically par-

titioning data into a number of disjoint regions according

to their appearance properties. State of the art methods in-

volve model-free and model-based ones. Model-free meth-

ods make no assumption on the geometric properties of the

region of interest. Model-based methods introduce certain

assumptions on the space of allowable solutions - priors.

Approaches relying on a prior are useful in the context

of medical image analysis where variations of anatomical

structures are constrained by the anatomy, while at the same

time pose and view-point variation can be dealt with.

∗This work was supported by Association Française contre les My-

opathies (AFM: http://www.afm-france.org) under the DTI-

MUSCLE project.

Modeling shape variation is a well studied problem, with

two critical components, the choice of shape representation

and the construction of the prior manifold. Point distribu-

tion or landmark-based models [8], implicit representations

[22], and spherical wavelet representations [21] are exam-

ples of such shape and surface representations.

Given the shape representation, the prior manifold can

either be a subspace or a probability density function. In

the first case, the space of solutions is often represented us-

ing a linear combination of a set of basis functions modeling

the variations of the training examples. Linear sub-spaces,

determined either through Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), or Non Nega-

tive Matrix Factorization (NNMF), are methods being used

to determine these subspaces. Toward dealing with high

amounts of training data, numerous provisions were con-

sidered such as Kernel-PCA prior [9]. In the second case,

non parametric densities [25] as well as manifold learning

and embedding [3] were considered.

Once the manifold has been determined, one can either

utilize knowledge-based methods where the solution should

live on the manifold, like active shape and appearance mod-

els [8, 7]. The main strength of these methods is robust-

ness, while their main limitation is that they can only ac-

count for variations being observed in the training set. Al-

ternatively one can use more flexible methods combining

prior with data terms aiming to maximize the support from

the image, while minimizing the distance from the learned

manifold like for example Mumford-Shah functional shape

priors [9]. These methods can deal reasonably well with

variations not being observed in the training set, if image

support is adequate, but first require a significant number of

training samples toward learning the density. They are also

quite sensitive to the initial conditions and are computation-

ally expensive.
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Ideally one would like to optimize both the shape repre-

sentation and the compactness of the manifold. In this pa-

per we propose a novel hierarchical surface representation

that can encode shape variation of structures with arbitrary

topology, in a compact statistical manifold. The shape rep-

resentation is based on a finite set of landmarks that exhibit

significant differentiation to the background on different ex-

amples of the anatomical structure. In contrast to conven-

tional shape modeling approaches that rely on a pre-defined

topology, and parameterize the surface of an object with

regard to a manifold like a sphere, the proposed method

learns the appropriate topology from the training data, and

uses a corresponding shape representation based on diffu-

sion wavelets to model its variation. The approach encodes

hierarchies, and can deal with complex and soft connectiv-

ity properties of objects by encoding their interdependen-

cies with a diffusion kernel [5] that defines the domain of

the wavelets.

The topology, determining the wavelet domain, is

learned from the training data instead of using a priori

choices and the shape variation is represented by means of

the corresponding diffusion wavelets [6]. To build a model,

statistical learning of the variation of the wavelet coeffi-

cients at different levels of the hierarchy is performed. Due

to the power of the basis function representation, dimen-

sionality reduction techniques using the orthomax criterion

[15] lead to a very compact representation of the manifold.

During model search these constraints are used to infer

landmark positions from volume data guided by a data term,

and the diffusion wavelet shape constraint. The optimal so-

lution given the constraint is determined by a simple projec-

tion to the linear manifold. Promising results both in terms

of reconstruction error and segmentation demonstrate the

extreme potentials of our method using the challenging case

of T1 calf images.

There are several works related to this approach. In [10]

the idea to build a hierarchical active shape models of 2-

D anatomical objects using 1-D wavelets, which are then

used for shape based image segmentation was explored. An

exciting extension was proposed in [21], where spherical

wavelets characterize shape variation in a local fashion in

both space and frequency on a spherical domain. More re-

cently in [26] the idea of using diffusion wavelets as a shape

descriptor for the matching of 3D shapes was considered.

The work proposed in this paper differs both in terms of

method and scope: in contrary to [26], we are building a

generative model of shape variation, which adapts to the

topology of a set training examples, and use it for the seg-

mentation and reconstruction in new volume data. An im-

portant advantage of the proposed method is the use of or-

thomax to obtain a sparse representation of the shape vari-

ation in the coefficient space. Hierarchical shape models

based on diffusion wavelets that adapt to arbitrary topolo-

gies have not yet been published, and their use in computer

vision and medical image analysis has not been described.

With respect to segmentation, spherical wavelets are a sub-

case of diffusion wavelets confined to a spherical manifold.

With respect to registration approaches, the prime differ-

ence is that we are building a generative model of shape

variation, and use it for segmentation while at the same time

using the orthomax criterion to obtain an optimal subdivi-

sion of the shape parameterization.

The remainder of the paper is organized as follows: in

Section. 2, the shape representation using diffusion wavelets

is presented, and in Section. 3 we focus on the manifold

construction and the inference in new data. In Section. 4

we present the context of the work and report experimen-

tal results and a quantitative validation. Finally Section. 5

concludes with a discussion and future directions.

2. Shape Representation

We parameterize the shape variation observed in the

training data by means of diffusion wavelets. The topology
- the domain on which we define the wavelet representation

- of the structure that is modeled is defined by a diffusion
kernel. It can be viewed as a generalization of standard pa-

rameterizations, e.g.: the diffusion kernel for a triangulated

spherical surface would be the adjacency matrix weighted

by the mutual distances. Defining the topology by a diffu-

sion kernel instead of a fixed genus-0 manifold allows us to

incorporate, and even to learn, complex interaction patterns

observed in the training data, and use them to build an ef-

ficient shape variation prior. In the following we will first

outline the basics of diffusion wavelets [6], then explain the

associated shape variation representation, and finally detail

how the orthomax principle [15] can be used to separate co-

herent sub-regions of the shape.

2.1. Diffusion Wavelets

Wavelets are a robust mathematical tool for the hierar-

chical decomposition of functions. The theory is described

extensively in e.g. [19]. The decomposition allows for a

representation in terms of a coarse overall shape, that is en-

riched by details in a coarse to fine hierarchy. They provide

an elegant technique for representing detail levels regardless

of the interest function type (e.g. images, curves, surfaces).

Their major strengths are the compact support of basis func-

tions as well ad the inherently hierarchical representation.

The domain upon which the wavelet hierarchy is defined is

of prime importance for their representative power.

In this paper we will use wavelets to represent the varia-

tion of shapes. However, instead of relying on a pre-defined

manifold (e.g. a sphere) we will learn the topology of the

wavelet domain from the training data, and will encode it in

a diffusion kernel. The kernel allows us to learn and define
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arbitrary wavelet hierarchies, and thus to make optimal use

of the training data. The wavelet representation used in our

paper is based on diffusion wavelets proposed in [6].

2.2. A Diffusion Operator Reflecting The Topology

We represent the shapes by a finite set of landmarks. For

m landmark positions, Vi = 〈xi
1,x

i
2, . . .x

i
m, 〉, are known

in n training images I1, I2, . . . , IN . That is, our shape

knowledge comprises V = {V1,V2, . . . ,VN}, where

xi
j ∈ R

d, and we call Vi ∈ R
dm a shape.

Since we are only interested in the non-rigid deforma-

tion, all anatomical shapes are aligned by Procrustes anal-

ysis [18], which produces the series of examples V p
i , from

which we compute the mean shape V̄ p . After the regis-

tration, we can represent the shapes by their deviation Si

from the mean shape, V̄ p = 1
N

∑N
i=1 V p

i , where Si =
V p

i − V̄ p.

Now we define a topology on the set of landmarks. The

representation is based on a framework for multi-scale ge-

ometric graph analysis proposed in [5]. It applies the con-

cept of diffusion to capture mutual relations between nodes

in a Markov chain, and derive the global structure of the

shape. Indeed diffusion maps provide a canonical represen-

tation of high-dimensional data. They allow us to encode

spatial relations, or the behavior [17] of the shape training

population. The structure is encoded in a diffusion operator

T ∈ R
m×m. The association with diffusion wavelets en-

ables us to directly use both the global and local properties

of the data encoded in T .

Within our approach, we build the diffusion operator T

on the set of points embedded in a metric space in two dif-

ferent manners, either using: [(a)] Their mutual distance in

the mean shape, or [(b)] their joint modeling behavior. In

the first case, and in order to build a matrix of graph weights

for the points, we construct a local Gaussian kernel function

centered at each point and then normalize the weight matrix

through the symmetric Laplace-Beltrami to form the diffu-

sion operator T. In the second case, when seeking model-

ing their joint behavior, we derive the diffusion operator by

probing the behavior of small subsets of the landmark set,

according to the method described in [17]. The resulting

operator T reflects all pairwise relations or neighborhoods
between individual points in the shape set.

2.3. Shape Variation Modeling with Diffusion
Wavelets

Given this diffusion operator T defining the manifold,

we use the corresponding hierarchical diffusion wavelets,

to represent the shape variation. First we build a hierar-

chical wavelet structure, the diffusion wavelet tree: We call

upon a general multi resolution construction for efficiently

computing, representing and compressing T 2j , for j > 0.

The latter are dyadic powers of T , and we use them as di-

lation operators to move from one level to the next. We

can expect it to be easier to compress high orders of the

diffusion operator as they are supposed to be low ranked.

During the down-sampling process, and throughout a recur-

sive sparse QR decomposition we obtain the orthonormal

bases of scaling functions, Φ = {φj}, the wavelets Wj ,

and compressed representation of T 2j on φj , for j in the re-

quested range. Giving K as maximum number of levels to

compute, we obtain a representation of T 2j onto a basis φj ,

with 1 ≤ j ≤ K after K steps. For a detailed description of

this construction we refer the reader to [6].

After building the diffusion wavelet tree Φ, we use it to

represent the individual training shapes. We calculate the

diffusion wavelet coefficient Γ on the deviation Si from the

mean of the aligned shapes, and obtain the following diffu-

sion wavelet coefficients for an example Si, ΓSi
= Φ−1Si.

Thus, the shape can be reconstructed by:

V p
i = V̄ p +ΦΓSi (1)

Once we have generated the diffusion wavelet coeffi-

cients for all training examples, we build a model of the

variation by means of the orthomax criterion - which will

be described in the upcoming section - at each level. In

the lowest level the coefficients provide information for a

coarse approximation, whereas localized variations are cap-

tured by the higher-level coefficients in the hierarchy. For

each level j, with (1 ≤ j ≤ K), we consider Γlevelj

(Eq. (2)) and perform principle component analysis to re-

duce the dimension of the coefficient representation for all

coefficients scales.

Γlevelj =
{
ΓSi/level=j

}
i=1...N

, (2)

This results in the eigenvectors Σ = {σj}j=1...K , the cor-

responding eigenvalues Λ = {λj}j=1...K of the covariance

matrix of the diffusion wavelets coefficients at each level

j, and the according coefficients Γlevel
∗
j that represent each

training shape in this coordinate system.

Consequently in each level the coefficients would be ex-

pressed such as:

Γlevelj = Γ̄levelj + σj

(
σ′j .Γlevel

∗
j

)
(3)

Based on the model parameters {Λ,Σ} we can reconstruct

a shape by first obtaining the diffusion wavelet coefficients

ΓSiRec in each level, and then reconstructing the shape

based on the diffusion wavelet tree:

V p
i = V̄ p +ΦΓSiRec (4)

This shape representation can now be considered for

manifold learning. The idea will be to determine a mani-

fold on the diffusion wavelet space using the distribution of

coefficients of the training data.
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(a) (b)

Figure 1. Data reconstruction through (a) global PCA and (b) lo-

calized orthomax rotated modes of the DW coefficients models.

The surfaces representing the ±3sqrt(λi) are respectively colored

in cyan, red and blue. Note the local deformation captured by the

orthomax mode.

3. Prior Manifold Construction & Image-
based Inference

Conventional dimensionality reduction techniques like

PCA, LDA, NNMF, statistical approximation methods like

mixture models, EM, or recent spectral kernel methods like

Locally Linear Embedding [23] or Laplacian Eigenmaps [1]

can be considered. Given the ability of the diffusion model

to capture relevant non-linear variations, we chose a simple

dimensionality reduction technique, and a linear sub-space

representation for our experiments. For further condensing

the model while preserving its ability to capture the varia-

tions, we adopt the orthomax criterion [15].

3.1. Modeling Using the Orthomax Criterion

The orthomax criterion [24] allows to obtain a simple

and compact hierarchical representation through a rotation

of the model parameter system. We explore the varimax

version [15] for optimizing sparsity corresponding to new

variables being associated to localized variation modes. Or-

thomax rotations reflect a re-parameterization of the PCA

space resulting in a simple basis.

Let R be an orthonormal rotation matrix in R
k where Ri,j

represents R elements, and where k implies the number of

eigenvectors with the largest eigenvalues λi. Besides Σ de-

notes as previously in the paper the p×N eigenvectors ma-

trix. The orthogonal orthomax rotation matrix R is calcu-

lated as follow:

R = argmax
R

⎛
⎝ k∑

j=1

p∑
i=1

(ΣR)4ij −
1
p

k∑
j=1

(
p∑

i=1

(ΣR)2ij

)2
⎞
⎠ ,

(5)

One can easily notice in Fig.(1) that while the PCA

modes demonstrate several spatially distributed effects

within each mode, the varimax modes in the other hand

show nicely isolated effects. Moreover in Fig.( 2), we

show the ’flattening’ of the eigenvalue spectrum carried out

by the varimax rotation where the respective modes as well

as variances are plotted. This simple, yet powerful modi-

fication of PCA enables us to optimize sparsity leading to

localized modes of variation, which is more suitable for ap-

plications with sparse parameterizations like the often local

pathological variations we are focusing on.

Once we succeeded to separate the data variation through

the wavelet level space, we can then get the shape prior by

projecting back the selected orthomax eigenvectors of the

diffusion coefficients level into the right dimensions. Let

γj denote the orthomax eigenvectors such as γj = R−1σj .

Then Eq. (3) can be expressed with the orthomax compo-

nents.

Ψi∗
level =

[
Ψlevel

i∗
1 Ψlevel

i∗
2 . . .Ψlevel

i∗
K

]
(6)

V p
i = V̄ p +Φ.

(
Ψ̄levelj + γj

(
γ′j .Ψ

i∗
level

))
, (7)

An overview of the model building process (including

the representation component) is given in (Alg.1). The re-

sulting model holds information about the diffusion wavelet

tree, the orthomax components, and coefficient variation

constraints 〈Φ,R, γ〉.

Algorithm 1 Multi-Scale Representation: Off line Training

Input:
T : Diffusion Operator,

(Si)i∈Training Shapes: Training landmark deviation from the

mean shape

1. Construct the wavelet diffusion tree Φ [6].

2. Calculate Diffusion Wavelet Coefficient for the

training shapes Si.

3. For each level.

(a) Compute covariance matrix of every diffusion

wavelet coefficient level.

(b) Calculate a model parameterization (basis, co-

efficients) based on the orthomax criterion.

Output: Eigenspace (modes, eigenvalues) and coefficients

of the training examples.

The outcome of this process is an efficient shape repre-

sentation as well as a compact manifold construction with

respect to the allowable variations of the this representation.

We first obtain a topology from the training data and en-

code it in a diffusion kernel, that defines a diffusion process

[4] across the set of landmarks. It can either be based on

their distance, or on their mutual dependencies observed in

the training data. Given this kernel, we build a hierarchical

wavelet representation of the shape variation. Finally we

build a sparse model of the individual levels of this repre-

sentation with help of the orthomax criterion. Keep in mind
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Figure 2. Comparaison between PCA and Orthomax DW eigen-

values

that the main goal is to capture meaningful structures based

on their behavior in the potentially very small training data

set. This representation, along with the manifold can now

be used for image based inference in a new example.

3.2. Image-based Inference

The search with the diffusion model representation, and

appearance patch models (Pi)i=1,...,N for each landmark is

performed in an iterative manner, starting from a coarse ini-

tialization obtained by atlas registration. The appearance

model is based on a local texture patch model at the land-

mark positions. The model is built analogously to [12].

Similar to a standard shape model inference scheme, the

landmarks positions in new data are estimated by an en-

ergy minimization involving both shape prior and appear-

ance costs:

1. The landmark positions are updated according to a lo-

cal appearance model. For each landmark the position with

highest probability of the corresponding local texture patch

being consistent with regard to the learnt texture model Pi

is chosen within a neighborhood to of the current position

estimate. We consider P (xj
i ) as the learned texture patch

for the correct landmark position xi in the initial training

volume. As for landmark positions in a local neighborhood

N , we have Cj
i (x) as the correlation between the patch

p(x) and P (xj
i ) normalized within the neighborhood, i.e.∫

x∈N Cj
i (x) = 1, then the image support is

ξi = meanj=1,...,n

⎛
⎝ Cj

i (x)∫
x∈N\xj

i
Cj

i (x)

⎞
⎠ . (8)

The image support is thus computed for every landmark in

V from the local appearance behavior at the corresponding

positions in the training shape.

2. After fitting the shape to the image data, its variation is

constrained by the diffusion wavelet shape variation model.

The landmarks are projected into the orthomax coefficient

space as described in Sec 3.1. The constraints learned dur-

ing training are applied, and based on the resulting parame-

ter values the shape is reconstructed.

This procedure is iterated while during each iteration, the

corresponding V′ is reconstructed to re-estimate the shape.

After convergence the final reconstruction V′ is an esti-

mate of the true shape inferred from the data, and the prior

model.

4. Experimental Results
We evaluate the algorithm on two challenging medi-

cal imaging applications to assess the performance of the

method in terms of representation, manifold construction

and knowledge-based segmentation. The first example is

the segmentation of the left ventricle (LV) of the heart using

computed tomography images, and the second the segmen-

tation of calf muscles from T1 Magnetic Resonance Images.

While in the first case, the performance of the extraction of

image support is acceptable, things become far more com-

plicated when considering the muscle images. This is due

to the fact that for the left ventricle the separation of tissue

and lumen is possible while the calf images do not exhibit

clear separation between different muscles, and local defor-

mations are far more pronounced in this structure.

4.1. Segmentation of the Left Ventricle

The automatic delineation of the LV is a critical com-

ponent of computer-assisted cardiac diagnosis. Informa-

tion with respect to the ejection fraction, the wall motion,

and the valve behavior can be very useful toward predicting

and avoiding myocardial infarction. The use of the shortest

path algorithm along with shape matching was considered

in [14], while active shape and appearance models were

used for spatio-temporal heart segmentation in [20].

To evaluate the performance of the our representation,

manifold construction and constrained search we consider

25 CT heart volumes, with an approximate voxel spacing

of 1.5mm, for which 90 anatomical standard of reference

landmarks, and a set of 1451 control points for the LV were

available, besides the ground truth segmentation Fig.(4.a)

from experts concerning the diastole as well as the systole.

4.2. Segmentation of Calf Muscle

The musculoskeletal modeling problem in medical

imaging is not widely investigated in the literature, indeed

few works have been dedicated to this issue [13, 2]. In

fact the segmentation of individual muscles within a muscle

compound depicted with MRI is an example that poses new

challenges to automatic segmentation systems (Fig.(3)). Al-

though dominated by the global anatomy, muscle deforma-

tion exhibits mostly locally consistent behavior, preclud-

ing the use of e.g., a global linear model. Muscle surfaces

are only partially visible, with no prominent difference of

tissue-properties between neighboring muscles. Border tis-

sues in between muscles are only visible on specific loca-
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(a) (b) (c)

Figure 3. Calf MRI data: (a) healthy (b) unhealthy case, (c) manual

expert annotation.

tions, distributed in a very sparse and heterogeneous man-

ner. State of the art medical segmentation methods mainly

rely on a clearly defined topology, and an object boundary

characterized by salient features (e.g, edges) [11]. Due to

the topology free and compact modelisation property of our

approach we can deal with the challenging calf muscles. In

fact the border tissues in between muscles are only visible

on specific locations, distributed in a very sparse and het-

erogeneous manner Fig.(3). Indeed muscle partially exhibit

structures that can change dramatically between patients,

or during the course of follow-up examinations. Neverthe-

less, and as highlighted by [2], musculoskeletal disabilities

in general and Myopathies -as far as our work is concerned-

could highly profit from this kind of studies and improve fu-

ture treatments. Up to now the diffusion wavelet techniques

has, so far, largely been confined to the signal processing

field, and was not yet exploited for the need of medical im-

age segmentation, to the best of our knowledge.

To assess our model, experiments were carried out over

25 MRI calf muscles divided into two groups: 20 healthy

control patients and 5 unhealthy cases. For each volume

there are 90 slices of 4mm thickness, and with voxel spac-

ing 0.7812x0.7812x4 mm acquired with a 1.5T Siemens

scanner. Standard of reference annotation by experts for the

Medial Gastrocnemius (MG) , was available (see Fig.(4.b)).

Correspondences for 895 landmarks on the surfaces were

obtained by an MDL based optimization [16].

(a) Ground truth segmenta-

tion of papillary muscles

(b) T-1 MRI slice supervised

segmentation of a human calf

Figure 4. Standard reference segmentation of respectively the left

ventricle and the calf muscle.

4.3. Results: Model Reconstruction

During the evaluation of our framework, we model the

shapes of the structures through diffusion wavelet repre-

sentation in a leave-one-out cross validation strategy. To

Heart Data Calf Data
Gaussian model 1.6154 2.1277

DW Model with
spatial kernel

0.0755 0.1485

DW Model with
Shape Map kernel

0.1100 0.1796

Table 1. Full Landmark Reconstruction Error (in voxel) with re-

gard to three different shape models for heart and calf data sets.

(a) (b) (c)

Figure 5. Reconstructed surfaces for Heart CT data using projected

wavelet coefficients on the set of principal components that repre-

sent 99% of the total variance at level 1. The axial view surfaces

represent the ±3sqrt(λi) from left to right.

assess the diffusion modeling approach, we compute two

measures: (i) reconstruction error, and (ii) search perfor-

mance. We compare the reconstruction error for gaussian

shape models, and the proposed diffusion wavelet model-

ing. We evaluate two different diffusion wavelet kernels: 1.

the spacial proximity of landmarks, and 2. a kernel based

on a shape map distance of the landmarks [17].

The main concern is to see how far our model is able to

detect the local shape variations based on different kernels.

To illustrate the orthomax representation, in the Fig.(5)

we show the heart reconstructed surfaces using projected

wavelet coefficients on the set of principal components at

the first level, where the surfaces represent the coefficient

values±3sqrt(λi) from left to right. Comparison of the re-

construction error between the diffusion wavelet model and

the reference model is calculated as an average surface er-

ror for all test shapes. In Tab.(1), we report errors for a

Gaussian reference model, and two diffusion wavelet mod-

els corresponding to different ways of deriving the diffusion

operator. An optimal choice of the operator is subject of

ongoing research. In Fig.(6) the reconstruction of the pro-

jected shape model (heart/muscle) is depicted, this recon-

struction starts from the projection of the diffusion wavelet

coefficients in respectively the first and the last level, and

then extracting a new subset of coefficients from the eigen-

vectors that constitutes 99% of the variation in the corre-

spondant level. To keep the variation in reasonable limits,

the shape parameters are also restricted to ±3√λi.
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(a) (b)

(c) (d)

Figure 6. Diffusion Wavelets Model Reconstruction. First row:

Heart results and second: Calf muscle. Data, green: standard of

reference segmentation, red: reconstruction result for a. fines scale

and b. coarsest wavelet scale.

4.4. Results: Model Search

To assess the search behavior we compare our method

with a standard gaussian shape model search in an active

shape model search approach. We use an even sampling

of the object surface, and gradients in the volume as tex-

ture description, and a sparse shape model as proposed in

[12]. The latter uses a similar appearance model to the one

used in this paper, and allows for the assessment of the ef-

fect of replacing the multivariate Gaussian landmark model,

with the diffusion wavelet shape model. The error mea-

sure is the mean distance of the model landmarks between

standard of reference and segmentation result Fig.(7) . This

gives also an indication of the displacement along the sur-

face, which is relevant if the result is used for navigation.

Models are initialized with minimal overlap to the target

shape, and the accuracy of the final result was quantified

by the mean landmark error between ground truth anno-

tation and search result. For the quantitative comparison,

results in Fig.(7) clearly show how the diffusion wavelet

model outperforms the sparse model with standard parame-

terization for both anatomical data sets, with for example a

mean value of 10.97 voxels for DW model over 13.72 error

voxels for the sparse model in the calf data.

The diffusion wavelet model was able to recover the

shape with superior accuracy. In the muscle data the stan-

dard search approach failed due to the ambiguous texture

and local shape variability in large regions of the target

shape. In Fig.(8) examples for standard, sparse model,

and multi-scale diffusion wavelet based search are depicted.

Note that one of the important points that distinguishes our

(a) (b)

Figure 7. Boxplots of (a) Heart and (b) Calf Search Segmenta-

tion. Landmark Reconstruction Error (voxel) after finishing search

phase, with comparison between three different search models; (1)

our approach, (2) sparse model and (3) standard gaussian model.

methodology from robust ASMs, is that we learn the dis-

tribution of both image and shape information during the

training phase to optimally exploit the anatomical proper-

ties of the data. This is not the case with for robust ASMs

which for a given sampling consider a subset of the control

points according to the observed image during search. In

a typical segmentation scenario, our method runs approxi-

mately 56 seconds in average with non-optimized code im-

plemented in Matlab 7.5, on a 2GHz DELL Duo Computer

with 2Gb RAM.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Model search result for Heart muscle (upper row) and

Calf muscles (down row). Data in green: standard of reference

segmentation, in red: search results. For (a, d, g) standard gradient

search approach, while (b, e, h) represent sparse shape models and

finally (c, f, i) diffusion wavelet model.
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5. Discussion
We present a multi-scale shape prior based on a diffu-

sion wavelets shape representation and segmentation. Dif-

fusion wavelet shape priors are able to take advantage of the

subtle inter-dependencies in training data, by clustering co-

efficients based on correlation, and representing the topol-

ogy of the structure by a diffusion kernel, instead of a fixed

pre-defined manifold. We are using the orthomax criterion

which is suitable for building sparse representations - par-

ticularly relevant in the case of the regions and pathologies

studied in the paper - leading to localized modes of vari-

ation. The use of orthomax is motivated by obtaining an

optimal subdivision of the shape parameterization.

We have shown that in the context of anatomical struc-

tures, the diffusion wavelet transformation is able to accu-

rately and efficiently detect the locations and spatial scales

of shape variations. The validation on detecting patterns

on two complex medical data sets shows promising results

indicating the advantage of using a learned model parame-

terization. We did also compare different search strategies

on segmentation performance for both data sets.

Future work includes the integration of model learning

approaches to learn the locations in non-annotated data in a

weakly or unsupervised way. Furthermore a more in-depth

study of optimal ways of deriving the diffusion operator

during training will be explored. We would like to combine

our representation/manifold with soft priors that penalize

the distance from the manifold. Last the use of efficient

optimization techniques in conjunction with the mentioned

priors could lead to a flexible and powerful paradigm to rep-

resent and infer shapes of arbitrary topologies.
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