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Abstract 

 

A general framework simultaneously addressing pose 

estimation, 2D segmentation, object recognition, and 3D 

reconstruction from a single image is introduced in this 

paper. The proposed approach partitions 3D space into 

voxels and estimates the voxel states that maximize a like-

lihood integrating two components: the object fidelity, that 

is, the probability that an object occupies the given voxels, 

here encoded as a 3D shape prior learned from 3D samples 

of objects in a class; and the image fidelity, meaning the 

probability that the given voxels would produce the input 

image when properly projected to the image plane. We 

derive a loop-less graphical model for this likelihood and 

propose a computationally efficient optimization algorithm 

that is guaranteed to produce the global likelihood maxi-

mum. Furthermore, we derive a multi-resolution imple-

mentation of this algorithm that permits to trade recon-

struction and estimation accuracy for computation. The 

presentation of the proposed framework is complemented 

with experiments on real data demonstrating the accuracy 

of the proposed approach. 

1. Introduction 

A unified framework to address the problems of pose 

estimation, 2D segmentation, object recognition, and 3D 

reconstruction from a single image is introduced in this 

paper. At the core of the framework lies a probabilistic 

graphical model that integrates the information in the input 

image, with prior 3D knowledge about the class of the 

object (e.g., “mugs,” or “cups”), and with its pose (i.e., the 

transformation that maps the object to its current pose). The 

prior 3D knowledge about the object‟s class is encoded in 

the form of a 3D shape prior, e.g., [1], a simple probabilis-

tic representation of the distribution of mass of a class of 

objects in 3D space. 

Given a class of objects and a pose (what we call a hy-

pothesis about the state of the world), we derive an ex-

tremely efficient algorithm to maximize the log-likelihood 

of this graphical model, and prove that this algorithm re-

turns the globally optimal solution. The maximum 

log-likelihood provides an estimate of the suitability of the 

hypothesis as an explanation for the input image. In addi-

tion to the maximum log-likelihood, the proposed optimi-

zation algorithm yields a 3D reconstruction of the object in 

the scene, and a 2D segmentation of its silhouette in the 

image plane. The 3D reconstruction is represented by the 

states (Empty or Full) of the voxels into which the 3D space 

is partitioned, while the 2D segmentation is represented by 

the states (Background or Foreground) of the pixels in the 

image plane. 

In general the true hypothesis (i.e., the class and pose of 

the object) is not known, and must be estimated as part of 

the framework. Towards this end we show that using a 

slightly modified version of the basic algorithm, bounds for 

a hypothesis‟ log-likelihood can be obtained at lower res-

olutions with significantly less computations. Exploiting 

these bounds, we propose a branch and bound strategy to 

efficiently sift through the hypotheses, selecting the guar-

anteed optimal.  

The remainder of this paper is organized as follows. 

Section 2 places the current work in the context of prior 

relevant work. Section 3 introduces the proposed graphical 

model and the efficient inference algorithms. Section 4 

presents experimental results obtained with the proposed 

framework, and Section 5 concludes with a discussion of 

the key contributions and directions for future research. 

Additional details, including the computer code and data 

used, videos, and proofs of the stated theoretical results, are 

included as supplemental material. 

2. Prior work 

Three-dimensional reconstruction from a single image is 

an ill posed problem. Therefore, all approaches to solve this 

problem must rely on some form of prior knowledge about 

the scene or object to be reconstructed. These approaches 

differ mainly on the representation that is selected for the 

reconstruction, and the encoding scheme used for the prior 

knowledge. Three main representations for the reconstruc-

tion have been proposed: model-based, surface-based, and 

volumetric representations. 

Model-based representations, in general, consist of a 

parametric model of the class of objects to be represented. 

Reconstructions are obtained by finding the parameters of 

the model that produce the best fit between the projection of 

the model, and the input image. When it relies on mod-

el-based representations, the 3D reconstruction problem is 

also referred to as model-based tracking (e.g., [2-4]), or 

pose estimation (e.g., [5]). For the class of “walking 

people,” undoubtedly the most widely studied class, many 

models have been proposed (see [6] for a survey), such as 

articulated bodies [2, 5, 7-8], generalized cylinders [4], 

silhouettes [3], and models capable of producing (at a 

higher computational cost) visually appealing reconstruc-

tions [9-10]. Model-based representations have also been 

proposed to reconstruct objects from other classes, such as 

polyhedra [11], and trees/grasses [11]. 

Model-based representations are best suited to represent 

objects for the particular class they were designed for, and 
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are difficult to extend to other classes. Prior knowledge in 

this case is encoded in the design of the model (e.g., which 

parts an articulated model has, and how they are con-

nected). This is the main source of difficulty preventing the 

extension of these models to other classes beyond the one 

they were designed for. In contrast, more general repre-

sentations (volumetric or surface-based) that can learn 

about a class of objects from exemplars (as our approach 

does), can be trained on new classes without having to 

“redesign” the representation anew each time. 

Surface-based representations for reconstruction typi-

cally model the object‟s surface as a polygonal mesh or 

triangulated surface. The recent works by Saxena et al. [12] 

and Hoiem et al. [13] are examples of the use of this re-

presentation on the related problem of scene reconstruction 

from a single image. In these works, a planar patch in the 

reconstructed surface is defined for each superpixel in the 

input image. The 3D orientation of these patches is inferred 

using a learned probabilistic graphical model that relates 

these orientations to features of the corresponding super-

pixels. Prior knowledge in this case is encoded in the 

learned relationship between superpixel features and patch 

3D orientations. While the particular representations cho-

sen by Saxena et al. and Hoiem et al. might be well suited to 

represent a scene, they are not well suited to represent ob-

jects, since only one side of the object can be represented 

with them. In contrast, our method is well suited to 

represent bounded objects (e.g., mugs, cars, etc.), but it is 

not well suited to represent entire elaborated scenes (in 

particular outdoor scenes, on which the methods mentioned 

above excel).  

The third kind of approach for reconstruction relies on 

volumetric representations. In these representations, 3D 

space (or a smaller volume containing the whole object) is 

partitioned into voxels, and the reconstruction is given by 

the set of Full voxels. This set is estimated as the set that 

best fits the input image according to some metric (see for 

example [14] for a review of methods that use multiple 

images). The work by Snow et al. [15] is perhaps the closest 

to ours among the volumetric approaches, since it defines a 

prior on possible reconstructions. However the prior used 

by Snow et al. simply rewards smoothness and has no fur-

ther information about the object class itself, as our ap-

proach does. An important additional difference is that 

Snow et al. use data from multiple views. 

The present work is also related to the work by Franco 

and Boyer [16], since both define a probabilistic graphical 

model that relates a volumetric representation to the ob-

served images. Our work improves upon that work on a 

number of critical aspects. Firstly, Franco and Boyer do not 

consider prior knowledge in the reconstruction (as we do), 

limiting their method to multi-view reconstructions. Se-

condly, we use a more accurate law to transform voxel 

states into pixel states, which explicitly models the inte-

raction between voxels in the same ray, and is invariant to 

the voxel grid resolution (Section 3.2). Lastly, we are able 

to efficiently compute the voxel states (the reconstruction) 

that jointly maximize the likelihood, while Franco and 

Boyer only compute the voxel states that independently 

maximize the marginals. 

To the best of our knowledge, ours is the only framework 

that uses a volumetric representation, augmented with 

class-specific prior knowledge, to efficiently solve the 

problems of pose estimation, 2D segmentation, object 

recognition, and 3D reconstruction from a single image, 

with a guarantee of convergence to the global optimum. 

3. Definitions, models, and algorithms 

This section presents the key components and variables 

of the proposed statistical graphical model, together with 

the inference algorithms developed to solve the problems 

outlined above. 

3.1. Definition of system variables 

The main goal of this work is to obtain a 3D reconstruc-

tion of an object from a single image of the object. This 3D 

reconstruction, the output of our system, is represented by 

the states 𝑉 =  𝑣𝑖 𝑖=1
𝑀  (𝑣𝑖 ∈  𝐸𝑚𝑝𝑡𝑦, 𝐹𝑢𝑙𝑙 ) corresponding 

to the regions of space called voxels. Along with the 3D 

reconstruction, the proposed system produces a segmenta-

tion (or labeling) of the input image into foreground and 

background. The segmentation is given by the states 

𝑄 =  𝑞𝑗  𝑗=1

𝑁
 (𝑞𝑗 ∈  𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 ) of the 

pixels in the image. The third kind of random variables in 

the system consists of the pixel values 𝐶 =  𝑐𝑗  𝑗 =1

𝑁
 on the 

input image. In this work these values are assumed to be in 

RGB color space, but many other pixelwise features could 

be used instead. 

The geometric relationship between pixels and voxels is 

determined by the camera matrix, the second input required 

by our system (Figure 1). We do not adopt the traditional 

definition of cubic voxels. Instead, voxels are defined to be 

the 3D space between concentric and equispaced spherical 

shells, that project to single pixels (see Figure 1). All the 

Figure 1:  Definitions of pixels, voxels, and rays, and geometric 
relationship among them in a plane normal (a) and parallel 
(b) to the camera plane. Voxels (in green) are aligned with the 
pixels so that their projections perfectly coincide, and they are 
delimited on the remaining two sides by concentric and equis-
paced spherical shells (centered at the camera center). A ray 
originates at the camera center and passes through a pixel and 
its corresponding voxels (ray centers are marked in red). 

b) 

a) 

𝑄1 

𝑄4 

Camera “plane” 

Camera center 
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voxels that project to a pixel j are referred to as pixel j‟s 

voxels, and are denoted by the set 𝑅 𝑗 . The ray of a pixel is 

the 3D space in the solid angle subtended by the pixel. A 

pixel and all its voxels are said to share a ray. Two impor-

tant properties follow from these definitions: firstly, all 

voxels are “seen” at a single pixel in the camera plane; and 

secondly, the length r of all the intersections between vox-

els and the rays‟ center lines, are equal. These properties 

will be used in the next section to simplify the inference. 

The factor graph [17] in Figure 2 depicts the three kinds 

of random variables introduced above (shown as circles) 

and the independence assumptions among them. The color 

𝑐𝑗  on the j-th pixel (in level 6 in Figure 2) is assumed to 

depend only on the pixel state 𝑞𝑗  (in level 4), which in turn 

depends only on the states of its voxels (in level 2). 

The third and last inputs required by the system are the 

color models for the background and foreground, 

𝑝 𝑐𝑗  𝑞𝑗 = 𝐵  and 𝑝 𝑐𝑗  𝑞𝑗 = 𝐹 , respectively. These mod-

els are represented by the factor in level 5 of Figure 2. The 

background model for a pixel is the normal distribution 

with parameters estimated from a video of the background 

alone, while the foreground model for a pixel, since no 

information regarding the foreground is available, is as-

sumed to be the uniform distribution. While these simple 

color models proved to be effective, more sophisticated 

color models can be straightforwardly substituted and im-

provements are expected. 

Having defined the main variables in the system, in the 

next section we proceed to introduce the log-likelihood that 

will be optimized to compute the output (the state of all the 

voxels and pixels) from the input (the single image). 

3.2. The basic inference algorithm 

In this section we present the basic algorithm proposed to 

estimate the pixel and voxel states that jointly best explain 

the input image, while respecting the object‟s prior 3D 

knowledge. To this end, we first define the likelihood for a 

given hypothesis (i.e., for a given class and a given pose), 

and then present an efficient and exact algorithm to find its 

maximum. In sections 3.4 and 3.5 we will describe how to 

use this basic algorithm when the hypothesis is not known. 

The system‟s likelihood is derived using the indepen-

dence assumptions depicted in Figure 2: 

  

𝐿 𝑄, 𝑉 =   𝑝 𝑐𝑗  𝑄𝑗  . 𝑃 𝑄𝑗  𝑉𝑅 𝑗   

𝑁

𝑗=1

 . 𝑃 𝑉 𝐾 . (1) 

  
Three kinds of factors appear in this expression. The first 

kind of factors has the form 𝑝 𝑐𝑗  𝑄𝑗  , and as explained in 

the previous section, is given by the background and fore-

ground color models.  

The second kind of factors, 𝑃 𝑄𝑗  𝑉𝑅 𝑗   , are termed 

projection factors (in level 3 of Figure 2). Each factor is the 

probability of obtaining a particular pixel state (i.e., B or F) 

given the states of the pixel‟s voxels. Intuitively, the higher 

the number of Full voxels in a ray, the higher the probabil-

ity should be of the Foreground pixel state. To model this 

dependency, we adopt a law motivated by the 

Beer-Lambert law in optics [18], 

  

𝑃 𝑄𝑗 = 𝐵 𝑉𝑅 𝑗   =  Ε 𝑉𝑖 
𝑟

𝑖∈𝑅 𝑗  

, (2) 

  
where Ε 𝑉𝑖  is the probability that voxel 𝑉𝑖  does not oc-

clude the background. This probability does not depend on 

the particular voxel in the ray, and is of course greater when 

the voxel is Empty than when it is Full (we used in all ex-

periments E(E) = 0.995, and E(F) = 0.005). Note that since 

the length of intersection of voxels and rays r appears as an 

exponent in (2), this expression is invariant to the number n 

of voxels in a ray and their depth. Furthermore, since r is 

constant, (2) does not depend on which voxels are Full, just 

on how many. By defining 𝑛𝐹  to be the number of Full 

voxels in the ray, the logarithm of (2) can be written as, 

  
log 𝑃 𝐵 𝑛𝐹 = 𝑟. 𝑛𝐹 . log Ε 𝐹 

+ 𝑟.  𝑛 − 𝑛𝐹 . log Ε 𝐸 . 
(3) 

  
This expression, consequence of having defined the spher-

ical shells to be equispaced, will allow us to considerably 

simplify the optimization algorithm (at the end of this sec-

tion). 

The third factor, 𝑃 𝑉 𝐾 , is the 3D shape prior (in level 

1 of Figure 2). It is the probability that a given set of voxel 

states, V, is a valid reconstruction for an object of class K. 

This probability is based on previous 3D observations of 

objects of class K, and it is where the 3D knowledge of the 

object is encoded. Given the large number of variables in V 

(in the millions in the experiments presented in Section 4), 

it is intractable to learn a full joint probability 𝑃 𝑉 𝐾 . 

Figure 2:  Factor graph for a ray, its corresponding pixel, and 
the voxels it intersects.  A factor graph, [17], has a variable 
node (circle) for each variable, and a factor node (square) for 
each factor in the system’s joint probability. Factor nodes are 
connected to the variable nodes of the variables in the factor. 
Observed variables are shaded. 
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Instead, we make the simplifying assumption of conditional 

independence (conditioned on the class) between voxels, 

  

𝑃 𝑉 𝐾 =  𝑃 𝑉𝑖 𝐾 

𝑀

𝑖=1

. (4) 

  
In the remaining of this section and the next, we assume that 

the values of the factors on the right hand side of (4) are 

given; in Section 3.4 we will show how to learn these fac-

tors from real 3D object data. 

This assumption of conditional independence, together 

with the fact that each voxel projects to a single pixel (recall 

Figure 1), yields a loop-less graph (Figure 2) that allows us 

to efficiently estimate the states of the voxels and pixels in 

each ray independently of the states in other rays. This leads 

to the following expression for the maximum log-likelihood 

in the j-th ray, 

  

𝐺𝑗  𝑄𝑗 , 𝑉𝑅 𝑗   = max
𝑞𝑗 ,𝑣1 ,…,𝑣𝑛

 log 𝑝 𝑐𝑗  𝑄𝑗  

+ log 𝑃 𝑄𝑗  𝑉𝑅 𝑗   +  log𝑃 𝑉𝑖 𝐾 

𝑖∈𝑅 𝑗  

 . 
(5) 

  
Consequently, the global maximum log-likelihood, 𝐺 , 

can be written as the sum, over all rays, of the maximum per 

ray log-likelihood: 

  

𝐺 = log 𝐿 𝑄, 𝑉 =  𝐺𝑗  𝑄𝑗 , 𝑉𝑅 𝑗   

𝑁

𝑗=1

. (6) 

  
In summary, then, we will proceed as follows to estimate 

a hypothesis‟ log-likelihood: first, we compute the ray 

log-likelihood (and the optimal pixel and voxel states) for 

each ray using (5); then, we add the contributions of all rays 

to obtain the global hypothesis‟ maximum log-likelihood. 

Before describing the proposed algorithm to solve (5), let us 

introduce the following definitions (using notation bor-

rowed from the belief propagation literature [17]): 

  

𝜇𝑄𝑗  𝑞𝑗  ≜ log  
𝑝 𝑐𝑗  𝑞𝑗  

𝑝 𝑐𝑗  𝐵 + 𝑝 𝑐𝑗  𝐹 
 , 

(7) 
𝜇𝑉𝑖 𝑣𝑖 ≜ log 𝑃 𝑣𝑖 𝐾 , 𝛿𝑉𝑖 ≜ 𝜇𝑉𝑖 𝐹 − 𝜇𝑉𝑖 𝐸 , 

𝑆 𝑛𝐹 ≜   𝑛𝐹  largest 𝛿𝑉𝑖 ’s 0 ≤ 𝑛𝐹 ≤ 𝑛 

  
With these definitions and using (3), (5) can be rewritten as 

  

𝐺𝑗 = max
𝑞𝑗 ,𝑣1 ,…,𝑣𝑛

  𝜇𝑉𝑖 𝐸 

𝑛

𝑖=1

+ 𝜇𝑄𝑗  𝑞𝑗   

+ log 𝑃 𝑞𝑗  𝑛𝐹 +  𝛿𝑉𝑖 . 𝑣𝑖

𝑛

𝑖=1

 . 

(8) 

  
Since the projection term only depends on the number 𝑛𝐹  

of Full voxels in the ray, this expression is efficiently op-

timized by the following algorithm (for clarity, the com-

putation of the corresponding voxel states is not shown): 

 𝑀𝑎𝑥𝐺 = −∞. 
for each 𝑛𝐹  in  0,… , 𝑛  and 𝑞𝑗  in  𝐵, 𝐹  do: 

𝑁𝑒𝑤𝐺 = 𝜇𝑄𝑗  𝑞𝑗  + log 𝑃 𝑞𝑗  𝑛𝐹 + 𝑆 𝑛𝐹 . 

If (NewG  >  MaxG) then MaxG = NewG. 
end. 
𝑀𝑎𝑥𝐺 = 𝑀𝑎𝑥𝐺 +  𝜇𝑉𝑖 𝐸 

𝑛
𝑖=1 . 

 The reader can verify that this algorithm computes the 

maximum ray log-likelihood in 𝑂 𝑛. log 𝑛  operations 

(recall that n is the number of voxels in the ray). If there are 

𝑛2 rays to be processed, then there are 𝑁 = 𝑛3 voxels, and 

the overall complexity of the algorithm to compute a hy-

pothesis‟ log-likelihood is 𝑂 𝑁. log𝑁 . This is the basic 

algorithm we propose to integrate prior 3D knowledge 

encoded in the 3D shape prior, with the current observa-

tions in the input image. In the next section we describe 

how to compute bounds for the log-likelihood even more 

efficiently, by performing it at multiple resolutions. 

3.3. Multiresolution computation 

In the previous section we presented a probabilistic 

formulation and an optimization algorithm to recover the 

3D structure of an object for a particular hypothesis (this 

was implicit in our assumption that the 3D shape prior 

𝑃 𝑉𝑖 𝐾  was given). However, in general the hypothesis 

(i.e., the class and pose of the object in the image) is not 

known, and it should be estimated as part of the optimiza-

tion. To estimate the hypothesis, in Section 3.5 we propose 

a method that computes the log-likelihood (as explained in 

the previous section) for a large number of hypotheses. For 

this reason, it is imperative to be able to discard unpro-

mising hypotheses with the least possible amount of com-

putation. In this section we show how to bound a hypothe-

sis‟ log-likelihood by computing it at lower resolutions, and 

hence, with less computation. In Section 3.5 we show how 

to exploit these bounds to efficiently select the best hypo-

thesis. 

We start by introducing additional notation and defini-

tions. Let the scale of a voxel or pixel be indicated by a 

superscript, as in 𝑉𝑖
𝑠 or 𝑄𝑗

𝑠 . A scale of s indicates that the 

voxel has been downsampled s times by two (see Figure 3). 

In other words, voxel 𝑉𝑖
𝑠 contains 8𝑠 of the original voxels 

(at scale 0). Let 𝑑𝑠 𝑖  be this set of voxels. Analogously, 

the pixel 𝑄𝑗
𝑠  contains 4𝑠 of the original pixels and 𝑑𝑠 𝑗  is 

this set of pixels. Superscripts „+‟ and „-‟, e.g., as in 𝜇+ or 

𝜇−, indicate that a quantity is an upper or lower bound, 

respectively, or that it is used to compute these bounds. 

Using this notation and definitions, we define new 

quantities related to those defined in (7), however at scale 𝑠: 

  

𝜇𝑄𝑗
𝑠

−  𝑞𝑗
𝑠 ≜  𝜇𝑄𝑘  𝑞𝑘 

𝑘∈𝑑𝑠 𝑗  

 𝑑𝑠 𝑗   , 

(9) 

𝜇𝑄𝑗
𝑠

+  𝑞𝑗
𝑠 ≜ max

𝑘∈𝑑𝑠 𝑗  
 𝜇𝑄𝑘  𝑞𝑘  , 
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𝜇𝑉𝑖
𝑠

−  𝐸 ≜ 2𝑠  𝜇𝑉𝑘  𝐸 

𝑘∈𝑑𝑠 𝑖 

 𝑑𝑠 𝑖   , 

𝜇𝑉𝑖
𝑠

+  𝐸 ≜ 2𝑠 max
𝑘∈𝑑𝑠 𝑖 

 𝜇𝑉𝑘 𝐸  , 

𝛿𝑉𝑖
𝑠

− ≜
2𝑠

 𝑑𝑠 𝑖  
 𝛿𝑉𝑘

𝑘∈𝑑𝑠 𝑖 

, 𝛿𝑉𝑖
𝑠

+ ≜ 2𝑠 max
𝑘∈𝑑𝑠 𝑖 

 𝛿𝑉𝑘  . 

  
As shown in the supplemental material, substituting the 

„-‟ quantities in (9) for the corresponding original quantities 

in (8), yields a lower bound 𝐺−𝑠  for the hypothesis‟ 

log-likelihood (after scaling by 4𝑠  to account for the re-

duced number of rays at this scale). Analogously, substi-

tuting the „+‟ quantities in (9) for the corresponding original 

quantities in (8), yields an upper bound 𝐺+𝑠 for the hypo-

thesis‟ log-likelihood (after scaling by 4𝑠). In summary, the 

hypothesis‟ log-likelihood at scale 0 (the original scale) is 

bounded by the hypothesis‟ log-likelihoods computed at 

higher scales (lower resolutions): 

  

 4𝑠 .  𝐺𝑗
−𝑠

𝑁/4𝑠

𝑗=1

≤ 𝐺𝑗

𝑁

𝑗=1

≤ 4𝑠 .  𝐺𝑗
+𝑠

𝑁/4𝑠

𝑗=1

 (10) 

  
Since at scale s the number of pixels and voxels along 

each dimension is reduced by 2𝑠 (compared to the original 

resolution), the overall complexity of the algorithm at this 

scale is reduced by (approximately) 8𝑠. However, implicit 

in this calculation is the assumption that the quantities in (9) 

can be computed from the original quantities in (7) in con-

stant time. We now show how to do this. 

Computing the „-‟ quantities in (9) involves adding a 

number of terms that increases exponentially with the scale. 

To compute this in constant time, we rely on integral im-

ages [19], an image representation precisely proposed to 

compute sums in rectangular domains (or analogous 3D 

regions) in constant time. To accomplish this, integral im-

ages store in each pixel (or voxel) the cumulative sum of the 

values in pixels (or voxels) with lower indices. 

Similarly, computing the „+‟ quantities in (9) entails 

finding the maximum of a number of terms that increases 

exponentially with the scale. To compute this in constant 

time, we rely on a max-pyramid, a structure having layers 

with copies of the original (2D or 3D) image at different 

resolutions (Figure 4). The lowest layer (the base of the 

pyramid) contains a copy of the original image (the quan-

tities defined in (7)). Each pixel (or voxel) in the layers 

above, contains the maximum of the 4 corresponding pixels 

(or 8 corresponding voxels) in the layer below. Maxima are 

computed using the max pyramid in constant time, simply 

by looking up the value at the appropriate scale (layer) in 

the pyramid.  

To use both integral images and max-pyramids, it is ne-

cessary to precompute the auxiliary quantities needed by 

the look up algorithms. In both cases, this is done only once 

(not for every hypothesis) during an initial stage. 

3.4. 3D shape priors 

It was assumed in previous sections that the shape prior 
 𝑃 𝑉𝑖 𝐾   was given. In this section we describe how to 

learn this shape prior from data, for a particular hypothesis 

consisting of a class and an affine transformation or pose. 

Suppose that we have a sample of (3D) solids belonging 

to the class of objects K, and that all these solids are regis-

tered with respect to a common local coordinate system 

(LCS). Then, the (empirical) probability 𝑈𝐾 𝑥   that a 3D 

point 𝑥  in this LCS is inside an unknown solid of class K is 

well defined, and given by the number of solids in the 

sample that contain the point, divided by the total number of 

solids in the sample [1]. This is the shape prior of the class, 

for points in the LCS. Using this simple method, shape 

priors for the classes “mugs,” “cups,” “bottles,” and 

“plates” (containing 35, 15, 20, and 12 elements respec-

tively), were obtained. Videos of the shape priors obtained 

for each class are included as supplemental material. These 

priors, together with the 3D models of all the objects, can be 

obtained from the authors by request. 

To compute the shape prior 𝑃 𝑉𝑖 𝐾  from 𝑈𝐾 , let us first 

define 𝑋𝑖     to be the center of voxel 𝑉𝑖 , with respect to the 

world coordinate system (WCS), and let T be an affine 

transformation that maps points in the LCS into the WCS. 

This transformation was previously referred to as pose, and 

is one of the unknowns that our system must determine. 

Assuming that the voxel (at scale 0) is sufficiently small, 

the shape prior can be simply defined as, 

  

Figure 3: Same scene as in Figure 1, downsampled by 2 
(scale = 1). The number of pixels has been reduced by 41 and 
the number of voxels has been reduced by 81 (half of the 
voxels are not visible in each view). 

b) 

a) 

𝑄1
1 

𝑄2
1 

Camera “plane” 
Figure 4:  The max-pyramid, a structure to compute maxima 
efficiently. The value of the pixel marked at scale 2 (in violet) is 
the maximum of the four pixels marked at scale 1, which in 
turn were each computed as the maximum of the four pixels 
below it at scale 0 (the original scale).  

s = 0 s = 1 s = 2 
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𝑃 𝑉𝑖 𝐾 ≜ 𝑈𝐾 𝑇
−1𝑋𝑖       (11) 

  
For an arbitrary transformation 𝑇−1 that maps voxels in 

the WCS into the LCS, there is no guarantee that the faces 

of the transformed voxel will be parallel to the axes of the 

LCS (see Figure 5). Therefore, it is not possible to use the 

techniques described in Section 3.3 (integral images and 

max-pyramids) to compute the bounds in (9). Instead, we 

use the following procedure to estimate the upper bound of 

a quantity 𝜇 inside a voxel 𝑉𝑖  in the LCS: 

 First, we compute the limits of a box B that contains 𝑉𝑖  
and whose sides are parallel to the axis of the LCS 

(dotted box in Figure 5). 

 Then, we use the length of the longest side of B to se-

lect the layer 𝜆 to inspect in the max-pyramid, so that 

no more than a predefined number of voxels (we use 

50) has to be inspected. 

 Finally, we search the maximum value of 𝜇 in all the 

voxels at layer 𝜆 that intersect the box B. 

It can be shown that this procedure finds an upper bound 

for the maximum (but not necessarily the maximum) of 𝜇 

inside 𝑉𝑖 , in constant time. 

A similar procedure, but relaying on a min-pyramid in-

stead of a max-pyramid, is used to compute the lower 

bounds in (9). These bounds however, are not as close to 

those in (9) as the upper bounds are, since in this case the 

minimum is used instead of the average (as required in (9)). 

Note that these looser bounds only apply to the voxel 

quantities 𝜇
𝑉𝑖
𝑠

±
 and 𝛿

𝑉𝑖
𝑠

±
; the pixel quantities 𝜇

𝑄𝑗
𝑠

±
 can still be 

efficiently and tightly bound with the techniques described 

in the previous section. 

Thus far we have defined a formula and algorithm to 

compute the maximum log-likelihood of a single “expla-

nation of the state of the world,” or hypothesis, for the 

scene. In the next section we present an algorithm to effi-

ciently sift through a large set of different hypotheses. 

3.5. Selection of the best hypothesis 

The formulas and algorithms presented in previous sec-

tions provide the means to check the suitability of a single 

hypothesis, while permitting to choose the desired accuracy 

(and hence the amount of computation). In this section we 

describe an algorithm to simultaneously explore all the 

hypotheses, and select the optimal one. This algorithm can 

be viewed as a focus-of-attention mechanism [19], which 

refines log-likelihood bounds and discards hypotheses as 

soon as they are proved non-optimal. 

The first step of the procedure is to sample the space of 

possible hypotheses (given each by an affine transforma-

tions and a class), and bound the log-likelihood of each 

hypothesis at the highest scale (lowest resolution) using the 

algorithm described in previous sections. During the whole 

procedure, the value of the maximum lower bound among 

all hypotheses is tracked, and hypotheses are discarded as 

soon as its upper bound falls below this value (i.e., when a 

hypothesis is proven non-optimal). Hypotheses are refined 

(see below) in order of decreasing margin, defined as the 

hypothesis‟ current upper bound minus the current maxi-

mum lower bound. This procedure guarantees that compu-

tation, at any time, is only spent in plausible hypotheses. 

Recall that according to (6), a hypothesis‟ log-likelihood 

is computed as the sum of the log-likelihoods of its rays. To 

bound a hypothesis‟ log-likelihood, and to be able to pro-

gressively refine these bounds, a max-heap [20] containing 

the rays whose contribution was already added to the hy-

pothesis‟ log-likelihood is kept (one heap per hypothesis is 

kept). The key used to insert elements in this heap is the 

difference between the ray‟s upper and lower bounds (the 

margin), so that the ray with the greatest margin can be 

accessed efficiently. 

As mentioned above, hypotheses start with bounds 

computed at the lowest resolution (i.e., their heap initially 

contains a single ray intersecting a single voxel at the 

lowest resolution). Subsequently, when a bound refinement 

request is received, the following steps are performed: 

 The ray R with the greatest margin is removed from the 

heap. 

 R is subdivided into four subrays which cover ap-

proximately equal areas in the camera plane. 

 The bounds for each subray are computed. 

 The hypothesis‟ bounds are updated by subtracting 

from it R‟s bounds and adding the bounds of the sub-

rays. 

 The subrays are inserted into the heap. 

These steps guide the computation to be spent in the rays 

that might provide the greatest reduction in the hypothesis‟ 

margin, resulting in many rays that are not processed at the 

lowest scale, since a hypothesis is selected before they are 

needed. 

This concludes the presentation of the proposed frame-

work. In the next section we describe the experiments 

performed to validate and test the approach. 

4. Experimental results 

To validate the framework, we first tested the pose es-

timation error obtained when the prior of an object (i.e., the 

prior of the class consisting just of itself) was used to esti-

mate its own pose. Twenty images of cups and twenty im-

ages of mugs, from three different viewpoints (see exam-

ples on the left of Figure 7), were hand segmented and 

Figure 5: Computing bounds for a voxel (in violet) using min- 
(or max-) pyramids at two different scales. Voxels inspected at 
each scale (in blue) are those that intersect the bounding box 
(dotted). At the lowest scale (left) the bounds are tighter at the 
expense of more computation (more voxels have to be in-
spected).  
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analyzed with the proposed framework. Only images of 

mugs in which the orientation could be unambiguously 

estimated (i.e., the silhouette of the handle could be seen) 

were considered. Hypotheses were given by the Cartesian 

product {-5cm, -4cm, …, 5cm} × {-5cm, -4cm, …, 5cm} × 

{0º, 15º, …, 345º}. The result of this product is a 3D grid 

where each grid point represents a hypothesis. The first two 

coordinates of each grid point correspond to the position 

and the third corresponds to the orientation. The results of 

these experiments are summarized in Table 1. 

 Table 1 

 Mean Translation 

Error (cm) 

Mean Rotation 

Error (º) 

Cups 0.50 - 

Mugs 0.45 0 

   These errors are within the precision of the camera cali-

bration and the measurement of the ground truth pose pa-

rameters, proving the effectiveness of the framework to 

estimate the pose of known objects. 

As explained in Section 3.5, most computation is spent 

deciding between the best hypotheses, in other words, hy-

potheses that are furthest from the true hypothesis are dis-

carded first and with less computation. This assertion is 

quantified in Figure 6, which shows the computation time 

required to decide between two hypotheses. 

Next we proceeded to test the more challenging case in 

which the object in the scene is not known, just its class is. 

Twenty-four images of cups, mugs, bottles, and plates, 

from three different viewpoints (see examples on the left of 

Figure 7) were analyzed. In this case images of the back-

ground were used to automatically compute the foreground 

probability (𝜇𝑄𝑗  as defined in (7), and shown in the middle 

column of Figure 7). 

To measure the quality of the reconstructions, we define 

the reconstruction error of a reconstruction 𝑆 with respect 

to the ground truth reconstruction 𝑆𝐺𝑇  as 

  

𝐸𝑅 𝑆 ≜ 100.
 𝑆𝐺𝑇 − 𝑆 +  𝑆 − 𝑆𝐺𝑇 

2.  𝑆𝐺𝑇 
, (12) 

  
where  „−‟ is the usual set difference and „ ∙ ‟ is the volume 

measure. 

The objects in each class were clustered using k-means 

and the error defined in (12) (see details in the supplemental 

material). For each image analyzed, hypotheses were de-

fined using the priors constructed for each cluster, exclud-

ing the object in the image (i.e., an object was not used in 

the prior for its own reconstruction).  

The affine transformations allowed in this case com-

bined: 1) horizontal translations 𝑡  (in the X-Y axes); 2) ro-

tations of 𝜑 degrees around the vertical (Z) axis; 3) scaling 

of 𝑆𝑍  percent in the Z direction; and 4) scaling of 𝑆𝑋𝑌  per-

cent in the X and Y directions (the same constant is used in 

both directions). Recovering the pose in this case meant 

recovering all these parameters. Accordingly, the hypo-

theses in this case were given by the Cartesian product 

{-5cm, -4cm, …, 5cm} × {-5cm, -4cm, …, 5cm} × {0º, 15º, 

…, 345º} × {80%, 90%, …, 120%} × {80%, 90%, …, 

120%} (the coordinates of each grid point are, in order: 𝑡 , 
𝜑, 𝑆𝑍 ,  and 𝑆𝑋𝑌 ). 

Table 2 summarizes the results of these experiments. The 

columns in the table correspond, from left to right, to the 

mean reconstruction error (𝐸𝑅), and the mean error in the 

transformation parameters (𝐸𝑡 , 𝐸𝜑 , 𝐸𝑆𝑍 , 𝐸𝑆𝑋𝑌 ). Note that 

even in the case of unknown objects, the pose estimation 

errors are within the precision of the camera calibration and 

the measurement of the ground truth parameters. 

Snapshots of the reconstructions obtained are shown in 

the rightmost column of Figure 7, and videos of these re-

constructions are included as supplemental material. Note 

that very good reconstructions were obtained, even without 

explicitly modeling the obvious object symmetries. The 

segmentations corresponding to the experiments in Figure 7 

are also included as supplemental material. 

 Table 2 

 𝐸𝑅  

(%) 

𝐸𝑡  
(cm) 

𝐸𝜑  

(º) 

𝐸𝑆𝑍  

(%) 

𝐸𝑆𝑋𝑌  

(%) 

Cups 9.9 0.5 - 5.0 7.5 

Mugs 4.9 - 5.0 6.7 6.7 

Bottles 7.7 0.9 - 5.7 11 

Plates 14 1.1 - 16 4.3 

      The framework was also tested on a simple instance of 

the object recognition problem. Objects of the classes 

"mugs," "cups," "bottles," and "plates," were automatically 

classified into the class (one of these four) that produced the 

highest likelihood. On the 23 images tested, 100% correct 

recognition was obtained. Details of this test are included in 

the supplemental material. 

5. Conclusions and future work 

In this work we used a simple statistical representation 

encoding the 3D shape of a class of objects, and presented a 

very efficient framework that gives very good results on 

several important problems in computer vision, including 

pose estimation, 2D segmentation, object recognition, and 

3D reconstruction from a single image. Besides its gene-

rality, this framework has the following additional desirable 

properties: 1) it considers prior knowledge about the objects 

in the scene; 2) it is guaranteed to find the globally optimal 

solution; 3) it is very efficient and its computational com-

Figure 6: Computation time required to select the correct 
hypothesis between two hypotheses separated a given dis-
tance, in a direction approximately parallel (red) and ap-
proximately perpendicular (green) to the camera plane. See 
text for details. 
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plexity only depends on the question to be answered (e.g., 

on the similarity between the objects or poses to be dis-

criminated) and not on the arbitrary resolution of the input 

image; and 4) it encodes, in a principled way, the uncer-

tainty resulting from the finite resolution of the input image 

(via the log-likelihood bounds). 

While very accurate results were obtained for relatively 

simple object classes with these simple shape priors, more 

complex classes will require more complex priors. One 

possibility to construct these more complex priors, while 

retaining the optimality properties of the current represen-

tation, is to consider objects as the union of other objects 

(i.e. parts), which themselves can be represented as the 

union of other objects or using the shape priors introduced 

in this article. 

Additional modifications to this framework that are ex-

pected to produce significant speedups, include: 1) devel-

oping new techniques to compute tighter bounds for the 

likelihood (sections 3.3 and 3.4); 2) designing new algo-

rithms to allocate computation during the refinement of the 

hypotheses‟ bounds (Section 3.5); and 3) implementing the 

framework on a GPU, an architecture for which it is ideal. 
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Figure 7: Reconstructions obtained for objects of the classes 
“cups” and “mugs”. Left) Original images. Middle) Foreground 
probabilities. Right) Two views, different from the views on 
the left column, of the reconstructions obtained (artifact 
holes are a product of the conversion to the surface to display, 
not of the framework presented in this work). Videos of the 
reconstructions are included as supplemental material. 


