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Abstract

In this paper we pursue the task of aligning an ensem-
ble of images in an unsupervised manner. This task has
been commonly referred to as “congealing” in literature.
A form of congealing, using a least-squares criteria, has
been recently demonstrated to have desirable properties
over conventional congealing. Least-squares congealing
can be viewed as an extension of the Lucas & Kanade (LK)
image alignment algorithm. It is well understood that the
alignment performance for the LK algorithm, when aligning
a single image with another, is theoretically and empirically
equivalent for additive and compositional warps. In this pa-
per we: (i) demonstrate that this equivalence doesnot hold
for the extended case of congealing, (ii) characterize the
inherent drawbacks associated with least-squares congeal-
ing when dealing with large numbers of images, and (iii)
propose a novel method for circumventing these limitations
through the application of an inverse-compositional strat-
egy that maintains the attractive properties of the original
method while being able to handle very large numbers of
images.

1. Introduction

The key assumption made in “congealing” is that the
parametric form of the misalignment is knowna priori (e.g.
translation, similarity, affine, etc.) and that images in the
ensemble have similar appearance when aligned. The final
task in congealing is to automatically align these misaligned
images in an unsupervised manner. Having the capabil-
ity to align an ensemble of misaligned images stemming
from the same object class has numerous applications in
object recognition, detection and tracking. Canonically [5],
congealing was performed through the minimization of an
entropy-based cost function with respect to the parametric
warp. Recently Coxet al. [3] demonstrated that this original
approach to congealing, although performing well in some

circumstances, has some undesirable properties namely: (i)
slow and poor convergence, (ii) the need to select a step-
size/learning-rate, and (iii) sensitivity to how the warp is
parametrized (see [3] for further details).

To remedy this problem, Coxet al. proposed replacing
the entropy measure with aleast-squaresmeasure. Least-
squares congealing has a number of inherent benefits over
conventional congealing, namely: (i) the method exhibits
fast convergence and requires no heuristic selection of a
step-size or learning-rate, (ii) performance is invariantto
how one linearly parametrizes the warp, (iii) the entire al-
gorithm can be interpreted as an extended form of the well
understood and studied Lucas & Kanade (LK) image align-
ment algorithm, and (iv) being based on the LK algorithm
the method is able to perform well with a small number of
images. These attractive characteristics stem from the em-
ployment of the least-squares cost function which permits
the use of a Gauss-Newton optimization strategy for remov-
ing the misalignment. Utilizing the canonical entropy based
cost function [5] does not lend itself to such a strategy and
thus requires an inefficient optimization procedure prone to
local minima. In its original formulation, the performance
of least-squares congealing was shown to outperform en-
tropy congealing on modestly sized image sets (< 100).

There are two major formulations of image alignment
within the LK algorithm. The first estimates an additive
increment of the warp parameters (theadditiveapproach),
the second a composed increment of the warp parameters
(the compositionalapproach). In seminal work by Baker
and Matthews [1] it has been shown that these two for-
mulations are theoretically and empirically equivalent for
the case of image-to-image matching. In this paper we
will demonstrate that this case doesnot hold for the least-
squares congealing algorithm. This result in itself is sig-
nificant as least-squares congealing can be viewed as an
extended form of the LK algorithm (see [3] for more de-
tails) where a “stack” of images is iteratively aligned, us-
ing a gradient-descent strategy, to a single image. Of more
practical importance, however, is the realization that this in-



equivalence leads to an inherent benefit in the application
of a compositional approach to congealing when dealing
with large image sets. This result is contrary to the conven-
tional wisdom in congealing literature, which has always
employed an additive approach, irrespective of whether a
entropy or least-squares cost function is being employed.

In this paper we make the following specific contribu-
tions:

• We show that least-squares congealing which uses an
additive parameter update results in severe distortions
for an ensemble with large initial misalignment. This
is corrected by employing a compositional formulation
which we show theoretically and empirically to be su-
perior to the additive formulation.

• Argue that the object of interest within each image has
a significantly higher risk of becoming irrecoverably
lost when applying a single warp to a stack of images
rather than the held out image. We show that this situa-
tion is not that severe for small numbers of images, but
results in repeated catastrophic failure of the method
when congealing larger image sets.

• To alleviate this second problem, we introduce an in-
verse composed formulation of least-squares congeal-
ing which is not susceptible to losing the object of
interest. It achieves this while maintaining the im-
portant property of estimating the update from the
highly textured stack rather than the held out image.
The dramatic increase in alignment performance of the
inverse-composed formulation over the composed for-
mulation reinforces our theoretical claim that these two
formulations are not equivalent.

2. Congealing

Congealing can be defined as the minimization of a mis-
alignment functionE() which is calculated over a set ofN

warped imagesY().

argmin
Φ
E(Y(Φ)) (1)

whereΦ = {q1,q2, ...,qN} is the set ofN warp parame-
ter vectors for the warping functionW(x;q) and the vec-
tor x is a single pixel coordinate. It is the warping function
W(x;q) which models the parametric form of the misalign-
ment to be removed. For images,W(x;q) controls the im-
age region used by congealing to determine if the images
are misaligned or not. The warped image ensemble is de-
fined as

Y(Φ) = {I1(q1), ..., I(qN )} (2)

where the vector function
Ii(q) = [Ii(W(x1;q)), ..., Ii(W(xM ;q))] refers

to the warped image vector ofM intensity pixels from each
imageIi(x).

Irrespective of the choice ofE(), minimizing Equation 1
is a highly non-linear and computationally costly operation.
The work of Learned-Miller simplified Equation 1 into an
iterative procedure where in each iteration only a single pa-
rameter vectorqi from Φ is improved. The work of Cox
[3] utilises a similar idea, but has a different procedure for
updating the parameter vectorsqi in Φ. In Figure 1 we
further generalise the simplification introduced by Learned-
Miller to account for the work of Cox and to support the
novel work introduced in this paper. Equation 3 in Figure 1

repeat
for i = 1 to N do

p = argmin
p
Ei(Y,Φ,p) (3)

Φ← f(Φ,p) (4)
end for

until E() has converged

Figure 1. The iterative congealing algorithm.

presents the simplification of obtaining a single parameter
vector of identical length toq given the ensemble of images
Y and the current estimation of parametersΦ.

Equation 4 updates the current estimationΦ using the
update functionf() and the parameter vectorp.

3. Entropy Congealing

The measure of misalignment used in the congealing al-
gorithm by Learned-Miller is a function based on entropy.
The rationale for such a cost function is that entropy is able
to capture the true pixel distribution present in the ensemble
of images to be congealed. When the ensemble of images
is aligned, and if they roughly stem from the same object
appearance class, then the entropy of the pixel distributions
should be minimized. Employing entropy for congealing,
however, is problematic due to its poor characteristics with
respect to optimization. This has resulted in a suboptimal
optimization strategy being adopted which requires: (i) se-
quential improvement of parameters, (ii) redundant parame-
ters which account for the common modes of variation, and
(iii) a step size specification for each parameter [5, 3].

For entropy congealing, the simplified congealing Equa-
tion 3 is as follows

p = argmin
p
EE(Ii(qi + p),Yi(Φ)) (5)

whereEE is the measure of misalignment using entropy,Ii is
a held out image selected from the image ensembleY, and
Yi is thestackwhich consists of the ensembleY without
the held out image.

Yi(Φ) = {Ij(qj); ∀j 6= i} (6)



Since it is the held out image that is sequentially im-
proved, the update functionf() is simply

qi ← qi + p (7)

4. Least-Squares Congealing

Least-squares congealing (LSC) is an extension of the
Lucas & Kanade (LK) image-to-image alignment algo-
rithm [7]. In fact, if just two images are given as input to
LSC, the algorithm is the LK image alignment algorithm,

∑

x

ϕ
(

[I1(W(x;q1 + p))− I2(W(x;q2))]
2

)

(8)

where the objective is to minimizep within the sum of
squared differences cost function that measures the mis-
alignment between imageI1() and I2(). The robust error
functionϕ is included to make the measure of misalignment
less sensitive to outliers.

For the rest of this paper we will use the vector notation
for compactness via the‖ · ‖ϕ operator giving,

argmin
p
‖I1(q1 + p)− I2(q2)‖ϕ (9)

as an equivalent definition of Equation 8. We now present
the measure of misalignment function for LSC in Equation
10,

ELS(Ii(qi),Yi(Φ + p)) =

N
∑

j 6=i

‖Ij(qj + p)− Ii(qi)‖ϕ

(10)
which for N = 2 results in exactly the same measure of
misalignment as originally defined in the LK algorithm by
Equation 8. The parameter update functionf() for least-
squares congealing applies the parametersp to each image
in the stackYi and is therefore,

qj ← qj + p; ∀j 6= i (11)

Minimizing Equation 10 with respect to the warp param-
etersp has been presented in depth in other work. We point
the reader to [3, 1, 2] for a thorough presentation on min-
imizing Equation 10 using the Gauss-Newton optimization
strategy that is used in this paper.

Of interest in Equation 10 is that the parametersp are
applied to the stack instead of the held out image. This is
contrary to entropy congealing. Formulating the equation
this way is crucial as it preserves important texture and gra-
dient information from each image in the stack. The alterna-
tive version which has the parametersp applied to the held
out imageIi() results in the minimization of the measure
of misalignment collapsing to the alignment of the held out
image with theaverageimage of the stack. This situation is
suboptimal, as the averaging process on misaligned images

destroys all the fine detail and texture information contained
in each individual image, resulting in a single blurred image
which is a poor candidate as a target alignment [3].

The central focus of this paper are the problems which
arise from applying a single warp to multiple images and to
provide solutions to these problems that preserve this im-
portant fine detail and texture information.

5. Compositional Updates

It has been demonstrated, in the seminal work of Baker
and Matthews [1], that the LK algorithm has equiva-
lent alignment performance theoretically and empiricallyto
theadditiveapproach in Equation 8 if we minimize,

∑

x

ϕ
(

[I1(W(x;q1 ◦ p))− I2(W(x;q2))]
2

)

(12)

with respect top which is often referred to as thecompo-
sitional approach. Equation 13 presents the application of
parametersp to q using composition [8].

q ◦ p =W(W(x;p);q) (13)

Obviously for the case of LSC when the stack size isN = 2
this equivalence still holds. However, in this section we in-
vestigate the interesting case for whenN > 2. Specifi-
cally, we shall demonstrate in this section that the additive
approach for LSC whenN > 2, unlike the compositional
approach, is extremely sensitive to the initial warps of im-
ages in the stack. Figure 2 provides an illustration of this
problem. Here, two images (shown in (a)) consisting of tri-
angles are given as input to the congealing process. For
argument’s sake, a solution which perfectly aligns each tri-
angle has been provided with the parametersq1 andq2. The
resulting aligned images are shown in (b). To illustrate the
inconsistency of additive warps, we calculate the additive
warp which rescales imageI2(q2). The resulting triangle
with the additive warp applied is shown in the bottom trian-
gle of part (c). If we apply this same additive warp toI1(q1)
the inconsistent behaviour is observed. As shown in the top
triangle of (c), the triangle has been distorted to the point
that it is no longer a triangle.

To rectify this situation so that the applied warp will op-
erate consistently for all images in the stack regardless of
initial scale, a compositional approach to image warps is
required. Using the same strategy as the additive update
in item (c) of Figure 2 we calculate a single warpp which
when composed withI2(q2) results in the bottom image
shown in item (d). When applying the same warp toI1(q1)
using composition we see that it too has been rescaled to
exactly the same location. From this simple thought exper-
iment we have demonstrated that the additive and compo-
sitional approaches to LSC are not equivalent for the case
of N > 2.



Figure 2. This figure illustrates the inconsistency of applying the
same warp additively to multiple images. The triangles in (a) rep-
resent the original input images to the congealing algorithm; (b)
represents the same triangles warped such that they are aligned;
(c) shows the inconsistent behaviour of applying the same additive
warp to each triangle (d) instead of applying an additive warp, a
composed warp is applied resulting in consistent behaviour. This
behavior is contrary to Lucas & Kanade (LK) image-to-image
alignment where it has been shown that the additive and composed
formulation are equivalent theoretically and empirically. In least-
squares congealing however, the formulations are only equivalent
when the number of images to be aligned isN = 2; which is when
LSC is the LK alignment algorithm.

Having illustrated the inconsistent behaviours of apply-
ing single warps additively to a stack of images, we modify
LSC to utilize composable warps. These modifications are
shown with the new measure of misalignment functionELS

in Equation 14 and the parameter update functionf() in
Equation 15.

p = argmin
p

∑

j 6=i

‖Ij(qj ◦ p)− Ii(qi)‖ϕ (14)

qj ← qj ◦ p; ∀j 6= i (15)

Minimizing Equation 14 is achieved the same way as
the additive update equation with minor changes due to the
composed warp.

6. Object Loss of Outlier Images

The previous section outlined the first major issue with
LSC and showed that additive updates are not equivalent to
composed updates when applying the same warp to multiple
images. We now proceed to the second major issue which
again stems from the fact that a single warp is applied to
multiple images. Specifically, there is a risk that after ap-
plying a single warp to a collection of images, one or more
of the objects of interest will be partly removed from view.
In the extreme case, the object will be completely removed
from view.

To illustrate, we point the reader to Figure 3 where we
see this phenomenon occurring for the extreme case. Here,
a stack of input images (a) are to be aligned to the currently

Figure 3. A stack of images shown in (a) is to be aligned to the
held out image (b) using least squares congealing. We assume
that the robust error function identifies the top triangle in(a) as an
outlier image and de-emphasises that image’s contributionto the
calculation of the warp parametersp. With the outlier essentially
removed, the alignment can be thought of as calculating a warp
which aligns the identical images with the held out image. Inthis
case,p has been calculated perfectly and applied to each image
in the stack, including the outlier image. As is shown in (c),the
two identical images have been aligned perfectly, but the outlier
image has been warped such that the triangle has been completely
removed from view.

selected held out image (b) utilizing a compositional LSC
implementation. Within the stack of input images, two tri-
angles are identical both in appearance and geometric lo-
cation and the other triangle is substantially different both
in terms of location and in appearance. Due to the sub-
stantial difference, we assume that any robust error function
will significantly squash the outlier image’s contributionto
the alignment process. Thus obtaining the warp parameters
p which minimize the expression can be approximated as
finding the warp which aligns the two identical images with
the held out image. In Figure 3, thep in this case has been
calculated perfectly and applied to the two identical images
resulting in the bottom two triangles of (c). Since the outlier
image was part of the stack, it too was warped usingp and
resulted in the top image of (c). Notice how the triangle has
been completely removed from view. Once removed, the
object is irrecoverably lost as the congealing process can no
longer obtain any alignment information from the object.

One possible way of correcting this is to detect when
the field of view is no longer intersecting with the bound-
ing area of the original image and then reset the parameters
for the offending image back to its initial estimate. This



may work for the case when there is only a small number
of outliers with significant appearance and geometric varia-
tion. For instance, assume that the outlier image is selected
to be the held out image. The stack consisting of mostly
aligned images is then aligned with the outlier image. After
completion of this process, the outlier image is now aligned
with the stack, and is thus no longer an outlier image.

In the event that there is no dominant group of aligned
images in order to bring outliers into the dominant group,
outliers will unfortunately remain outliers. Resetting the
parameters in this case is treating a symptom of LSC, not
its underlying cause. The cause in this case is, again, cal-
culating a single warp that is applied to multiple images of
differing geometric variations. If we look to the Learned-
Miller’s entropy congealing algorithm[5], we see that this
problem does not exist as the held out image is aligned with
the stack. As stated previously, this formulation of the prob-
lem is sub-optimal for a least-squares cost function as the
process collapses to aligning the held out image with the
average image of the stack.

In the next section we exploit the geometric symmetry
that exists with compositional warps to make LSC behave as
if the held out image is aligned to the stack, but without the
draw backs of aligning the held out image with the average
image.

7. Inverse-Composed LSC

In Section 5 we saw the move from additive warps
to compositional warps. The move to a compositional
warp has an interesting history in computer vision. The
work of Baker and Matthews [1] exploited the composi-
tional warp with great gains in computational efficiency
with their inverse-composition approach to image-to-image
alignment. However, for least-squares congealing, the com-
putational gains are of lesser importance compared to the
exploitation of the geometric symmetry the method ex-
ploits. LSC uses this symmetry in order to address the ob-
ject loss problem described in the previous section.

The symmetry which inverse-composition takes advan-
tage of stems from the assumption that two images of simi-
lar objects are related geometrically. A compositional warp
which aligns one image with another can be inversely ap-
plied to the other image in order to achieve an equivalent
result in alignment. i.e. in either case, the resulting objects
are aligned, however their final alignment may have differ-
ing geometric appearance depending on which image was
fixed as a template.

In this paper we use a compact notation to refer to the
inverse composed application of warp parameters. This no-
tation is as follows

q ◦ p−1 =W(W−1(x;p);q) (16)

Figure 4. The illustration of the geometric symmetry that exists
with composable warps. Here two images of trianglesI1 andI2
are related by a composable warpW(x;p) which when applied to
I1 results in an image likeI2. Conversely, when the warpW(x;p)
is inversely applied toI2 this results in an image likeI1.

Figure 4 diagrammatically shows this symmetry of com-
posable warps. Here two images of trianglesI1(q1) and
I2(q2) are related by a composable warpW(x;p) which
when applied toI1 results in an image likeI2. Conversely,
when the warpW(x;p) is inversely applied toI2 this re-
sults in an image likeI1.

How this applies to LSC should now be obvious. If we
replace imageI1 with a stackY, the same geometric rela-
tionship between the stack and the held out image exists.
Thus, we can calculatep using exactly the same method
as before, but instead of updating the parametersqj of the
stack byp, we apply the inverse to the held out image. This
procedure is shown in Figure 5 and mathematically in Equa-
tions 17 and 18.

p = argmin
p

∑

j 6=i

‖Ij(qj ◦ p)− Ii(qi)‖ϕ (17)

qi ← qi ◦ p
−1 (18)

One drawback of this formulation is that during the
calculation of the warp parametersp, object loss may
still occur. Fortunately, this can be remedied by mov-
ing the inversion inside the Gauss-Newton strategy which
calculatesp. This procedure is a direct extension of the
inverse-composition method of image-to-image alignment
proposed in [1].

The Gauss-Newton strategy for minimizingp is an iter-
ative procedure in which the initial estimate ofp is incre-
mentally improved by∆p in each iteration.

argmin
∆p

∑

j 6=i

‖Ij(qj ◦ p ◦ 0 + ∆p)− Ii(qi)‖ϕ (19)

p← p ◦∆p (20)

As can be seen in Equation 19, the calculation of∆p is al-
ways from the stack to the held out image. Ensuring that the



Figure 5. This figure demonstrates the inner workings of the in-
verse composed formulation of least squares congealing. A warp
is calculated which minimizes the measure of misalignment be-
tween the stack of images (a) and the held out image (b). A for-
ward composed formulation would then have the warp applied to
the stack which could cause object loss in outlier images. The in-
verse composed formulation avoids this situation by inverting the
warp and having it applied to the held out image instead.

stack remains fixed is achieved by applying the incremental
update to the held out image parametersqi or

argmin
∆p

∑

j 6=i

‖Ij(qj ◦ 0 + ∆p)− Ii(qi ◦ p)‖
ϕ

(21)

p← p ◦∆p−1 (22)

We see in Equation 21 that the incremental update∆p is
minimized in a manner which still has the stack of images
aligned to the held out image, but instead of applying the
update to the stack of images, we use the geometric sym-
metry of composable warps to have its inverse applied to
the held out image.

With this formulation of least squares congealing the pa-
rameter update functionf() is then simply,

qi ← qi ◦ p (23)

We title this methodinverse-composed least-squares
congealing. For the remainder of this paper we distinguish
the four different formulations of least squares congealing
(LSC) as follows: (i) when using an additive update, we
refer to this as additive LSC, (ii) when using a composed
update applied to the stack of images, we refer to this as for-
ward composed LSC, (iii) when using a composed update
calculated on the stack of images which is then applied to
the held out image via inverse composition, we refer to this
as partial inverse-composed LSC and lastly (iv) is inverse-
composed LSC which refers to the inverse composed in-

cremental update∆p that is applied to the held out image
inside the Gauss-Newton optimization strategy.

8. Performance

In this section we present the alignment capability of
each of the LSC formulations. We show (i) that a signifi-
cant improvement in performance is obtained when moving
from additive warps to composed warps and (ii) moving to
an inverse-composed formulation has a dramatic effect on
congealing performance for large numbers of images.

In all experiments presented in this section, images and
ground truth labels of the eyes and nose were sourced from
the MultiPIE data set [4]. In all cases, the images used were
of front facing faces demonstrating no variations in expres-
sion and were taken under uniform lighting conditions.

To simulate initial misalignment we perturbed each of
the images by a random warp. The magnitude of this warp
corresponded to a displacement of the labelled landmarks
equal to a percentage of the distance between the left eye
and right eye. After applying the perturbation, we tracked
the labeled landmarks throughout the congealing process
until the process had converged or reached a maximum
number of iterations.

In order to remove any global changes in scale caused
by congealing, a transform which warped the average land-
mark position of the tracked labels to a landmark template
was applied to the tracked landmarks. Once normalized, the
distance between the normalized labels and the correspond-
ing landmark template was collated. With the distribution of
distances collected, it is now possible to determine the per-
centage of the tracked landmarks which are within a certain
distance to the template. Obviously, the higher the percent-
age of points below this threshold the better.

For the purpose of comparing performance for the var-
ious factors which have an effect on congealing, we fixed
a pixel distance threshold as the point to sample the above
cumulative distribution. We term this percentage as the per-
centage of points converged. Other parameters that were
fixed for all experiments were: the field of view which con-
gealing uses to measure misalignment had an area of 30x30
pixels (M = 900) and the parametric functionW(x;p)
which models the type of misalignment to be removed was
set to be an affine warp.

Additive versus Compositional Warps: The results pre-
sented in Figure 6 show the alignment performance as a
function of iteration when using a compositional warp over
an additive warp. The stationary nature of the curve for the
additive warp illustrates the inability of the additive formu-
lation to cause any improvement in alignment due to the
inconsistent changes in geometry that occur when applying
the same warp additively to multiple images. The composi-
tional approach however, does not suffer from this effect.



Figure 6. The difference in alignment capability between least-
squares congealing using an additive update versus a forward com-
posed update. Here we see that the additive approach performs
terribly due to the inconsistent behaviour exhibited when applying
a single warp additively to multiple images. This test was con-
ducted utilizing 20 images of faces with an initial random error of
magnitude equal to 40% of the distance between the left and right
eye.

The curves shown correspond to the best performing ro-
bust error configurations for both the additive and composed
least-squares congealing formulations. In this experiment,
20 images from MultiPIE were extracted and randomly mis-
aligned to 40% of the distance between the left and right
eye.

Object Loss and Inverse-Composed LSC: The next set of
results shown in Figure 7 illustrate the effect that object loss
has on alignment performance as a function of the numbers
of images to align. Here, a forward composed least-squares
congealing algorithm is compared against the partial and
fully inverse composed formulation. As can be seen from
the figure, a forward composed formulation is comparable
to an inverse composed formulation when congealing no
more then 30 images, but when aligning 40 or more images,
the difference in alignment performance becomes more sig-
nificant. Interestingly, retaining or resetting object loss ap-
pears to be the main factor to the degraded performance,
as the difference in performance between partial and fully
inverse-composed congealing is marginal. This is interest-
ing, as object loss can still occur during the partial formula-
tion as the parameter inversion occurs after the calculation
of the warp parameters.

The significant difference in performance between the
forward and inverse composed formulations indicate that
the two methods are not equivalent. This is contrary to Lu-
cas & Kanade (LK) image-to-image alignment where this is
the case. This statement is only true when a stack of images
is involved (N > 2). For the case when there are only two
images to align using LSC (N = 2), the equivalence be-
tween the forward and inverse composed formulation still
holds as LSC withN = 2 is the LK method.

Figure 7. We illustrate the alignment performance difference be-
tween forward composition and inverse composition for differing
numbers of images. The y-axis reflects the percentage of tracked
points within a threshold of the same image aligned using the
ground truth labels.

The experimental results presented in Figure 7 were con-
ducted on collections of images which were initially mis-
aligned to a distance of 50% of the distance between the left
and right eye. In all cases, a number of robust error config-
urations were trialed and the best performing configuration
was selected.

Sample output of applying inverse-composed congeal-
ing to a synthesized data set consisting of 500 misaligned
images can be found in Figure 8. The run time of this appli-
cation is approximately 16 hours on an Intel Xeon 2.66GHz
CPU. Our (single threaded) implementation is based on
the assumption that there exists a data set which can not
be loaded entirely in to memory. Considerably faster im-
plementations of inverse-composed congealing are possible
when not making this assumption.

In Figure 9 we apply congealing to the MNIST handwrit-
ten digit database [6] to illustrate its ability to scale to data
sets consisting of many thousands of images. We demon-
strate its performance by showing the average image of the
samples for each digit class before and after congealing.

9. Conclusion

In this paper we showed that the original formulation of
least-squares congealing utilizing an additive parameterup-
date to each image in the stack results in inconsistent ge-
ometric transformations of images. We also showed that
by using a compositional formulation, this inconsistent be-
havior is removed, resulting in a dramatic improvement in
alignment performance. This result confirms that the ad-
ditive and compositional formulation of least-squares con-
gealing are not equivalent when aligning more than two im-
ages, unlike the case for image-to-image matching using the
Lucas & Kanade algorithm.



Images before congealing

Images after congealing

Average

Image

Figure 8. A sample of the output of the inverse-composed least squares congealing algorithm presented in this paper on 500 images. The
initial misalignment for these images was set to a point displacement of 50% of the distance between the left and right eye. The average
images on the right are on all 500 images. In this case 35 iterations of congealing were performed. The field of view used wasfixed to
30x30 pixels. No coarse to fine strategy was used.

Average images prior to congealing

Average images after congealing

Figure 9. We apply congealing to approximately 6000 samplesof each handwritten digit in order to demonstrate least-squares congealing’s
ability to scale to many thousands of images. The samples were obtained from the MNIST [6] digit database.

We made an additional contribution in this paper by iden-
tifying that outlier images in the image stack are at risk of
having the object of interest being irrecoverably lost. To
alleviate this problem, we introduced an inverse composed
formulation of LSC which does not suffer from this prob-
lem. It achieves this whilst still maintaining the important
property of aligning the stack of images with the held out
image.
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