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Abstract circumstances, has some undesirable properties namgely: (i
slow and poor convergence, (ii) the need to select a step-
In this paper we pursue the task of aligning an ensem- Size/learning-rate, and (iii) sensitivity to how the wag i
ble of images in an unsupervised manner. This task hasparametrized (see [3] for further details).
been commonly referred to as “congealing” in literature. To remedy this problem, Coat al. proposed replacing
A form of congealing, using a least-squares criteria, has the entropy measure withlaast-squaresneasure. Least-
been recently demonstrated to have desirable propertiessquares congealing has a number of inherent benefits over
over conventional congealing. Least-squares congealingconventional congealing, namely: (i) the method exhibits
can be viewed as an extension of the Lucas & Kanade (LK)fast convergence and requires no heuristic selection of a
image alignment algorithm. It is well understood that the step-size or learning-rate, (ii) performance is invariemt
alignment performance for the LK algorithm, when aligning how one linearly parametrizes the warp, (iii) the entire al-
asingle image with another, is theoretically and empirigal  gorithm can be interpreted as an extended form of the well
equivalent for additive and compositional warps. Inthis pa understood and studied Lucas & Kanade (LK) image align-
per we: (i) demonstrate that this equivalence doneshold ment algorithm, and (iv) being based on the LK algorithm
for the extended case of congealing, (ii) characterize the the method is able to perform well with a small number of
inherent drawbacks associated with least-squares congeal images. These attractive characteristics stem from the em-
ing when dealing with large numbers of images, and (iii) ployment of the least-squares cost function which permits
propose a novel method for circumventing these limitations the use of a Gauss-Newton optimization strategy for remov-
through the application of an inverse-compositional strat ing the misalignment. Utilizing the canonical entropy lihse
egy that maintains the attractive properties of the oridina cost function [5] does not lend itself to such a strategy and
method while being able to handle very large numbers of thus requires an inefficient optimization procedure prane t
images. local minima. In its original formulation, the performance
of least-squares congealing was shown to outperform en-
tropy congealing on modestly sized image sets (0).

1. Introduction There are two major formulations of image alignment
within the LK algorithm. The first estimates an additive
The key assumption made in “congealing” is that the increment of the warp parameters (theéditive approach),
parametric form of the misalignment is knoarpriori (e.g. the second a composed increment of the warp parameters
translation, similarity, affine, etc.) and that images ia th (the compositionalapproach). In seminal work by Baker
ensemble have similar appearance when aligned. The finahnd Matthews [1] it has been shown that these two for-
task in congealing is to automatically align these misa@n mulations are theoretically and empirically equivalent fo
images in an unsupervised manner. Having the capabil-the case of image-to-image matching. In this paper we
ity to align an ensemble of misaligned images stemming will demonstrate that this case doest hold for the least-
from the same object class has numerous applications insquares congealing algorithm. This result in itself is sig-
object recognition, detection and tracking. Canonicdly[  nificant as least-squares congealing can be viewed as an
congealing was performed through the minimization of an extended form of the LK algorithm (see [3] for more de-
entropy-based cost function with respect to the parametrictails) where a “stack” of images is iteratively aligned, us-
warp. Recently Coet al. [3] demonstrated that this original ing a gradient-descent strategy, to a single image. Of more
approach to congealing, although performing well in some practical importance, however, is the realization that i



equivalence leads to an inherent benefit in the applicationto the warped image vector 8f intensity pixels from each
of a compositional approach to congealing when dealingimage’;(x).
with large image sets. This result is contrary to the conven-  Irrespective of the choice @f(), minimizing Equation 1
tional wisdom in congealing literature, which has always is a highly non-linear and computationally costly openatio
employed an additive approach, irrespective of whether aThe work of Learned-Miller simplified Equation 1 into an
entropy or least-squares cost function is being employed. iterative procedure where in each iteration only a single pa
In this paper we make the following specific contribu- rameter vectory; from ® is improved. The work of Cox
tions: [3] utilises a similar idea, but has a different procedune fo
) ) updating the parameter vectags in ®. In Figure 1 we
e We show that least-squares congealing which uses aryriher generalise the simplification introduced by Learne
additive parameter update results in severe distortionsyijier to account for the work of Cox and to support the

for an ensemble with large initial misalignment. This noye| work introduced in this paper. Equation 3 in Figure 1
is corrected by employing a compositional formulation

which we show theoretically and empirically to be su- ~ repeat

perior to the additive formulation. for i = 1to N do
. . - . = in& (Y, P, 3
e Argue that the object of interest within each image has P argmgn ( p) ®)
a significantly higher risk of becoming irrecoverably & — f(®,p) (4)
lost when applying a single warp to a stack of images end for

rather than the held outimage. We show that this situa-  until £() has converged
tion is not that severe for small numbers of images, but
results in repeated catastrophic failure of the method
when congealing larger image sets.

Figure 1. The iterative congealing algorithm.

presents the simplification of obtaining a single parameter
« To alleviate this second problem, we introduce an in- vector of identical Iength tq given the ensemble of images
verse composed formulation of least-squares congeal-Y and th.e current estimation of paramgtét§ )
ing which is not susceptible to losing the object of Equation 4 updates the current estimatibrusing the
interest. It achieves this while maintaining the im- UPdate functiory() and the parameter vectpr
ortant property of estimating the update from the
Eighly teFZ(tuFr)ed )étack rather tr?an the Fk)1eld out image. 3 Entropy Congealing

The dramatic increase in alignment performance ofthe  The measure of misalignment used in the congealing al-

inverse-composed formulation over the composed for- 4orithm by Learned-Miller is a function based on entropy.

mulation reinforces our theoretical claim that these two The rationale for such a cost function is that entropy is able

formulations are not equivalent. to capture the true pixel distribution present in the endemb

of images to be congealed. When the ensemble of images

2. Congealing is aligned, and if they roughly stem from the same object
appearance class, then the entropy of the pixel distribstio
should be minimized. Employing entropy for congealing,
however, is problematic due to its poor characteristich wit
respect to optimization. This has resulted in a suboptimal
argmin £(Y(®)) ) optimi_za_tion strategy being adopted which requires: (i) se

2 guential improvement of parameters, (ii) redundant parame
ters which account for the common modes of variation, and
(iii) a step size specification for each parameter [5, 3].

For entropy congealing, the simplified congealing Equa-

tion 3 is as follows

Congealing can be defined as the minimization of a mis-
alignment functior€ () which is calculated over a set of
warped image¥ ().

where® = {qi, qs, ...,qn } is the set ofN warp parame-
ter vectors for the warping function/(x; q) and the vec-
tor x is a single pixel coordinate. It is the warping function
W(x; q) which models the parametric form of the misalign-
ment to be removed. For images)(x; q) controls the im- p = argmin &e(I;(q; + p), Yi(P)) (5)
age region used by congealing to determine if the images P
are misaligned or not. The warped image ensemble is de-wheref is the measure of misalignment using entrdpis
fined as a held out image selected from the image enseri¥hland
Y(®)={Ii(a1),....,I(an)} 2) Y; is thestackwhich consists of the ensemb¥ without

. the held out image.
where the vector function

L@ = [LWka;q)), - LW(xm;aq)) refers Yi(®) = {I;(qy); Vi # i} (6)



Since it is the held out image that is sequentially im- destroys all the fine detail and texture information coreein

proved, the update functiof() is simply in each individual image, resulting in a single blurred imag
which is a poor candidate as a target alignment [3].
qi — qi + P (7 The central focus of this paper are the problems which
arise from applying a single warp to multiple images and to
4. L east-Squares Congealing provide solutions to these problems that preserve this im-

Least-squares congealing (LSC) is an extension of theportant fine detail and texture information.

Lucas & Kanade (LK) image-to-image alignment algo- ..
rithm [7]. In fact, if(jus{ two ?mages arge givegn as inputgto 5. Compositional Updates
LSC, the algorithm is the LK image alignment algorithm, It has been demonstrated, in the seminal work of Baker
) and Matthews [1], that the LK algorithm has equiva-
e ([]1(W(X; a1 +p)) — L(W(x;q2))] ) (8)  lent alignment performance theoretically and empiricedly
x theadditiveapproach in Equation 8 if we minimize,
where the objective is to minimizp within the sum of )
squared differences cost function that measures the mis- ([11 W(x;q1 o p)) — L(W(x;q2))] ) (12)

alignment between imade () andIz(). The robust error x
functiony is included to make the measure of misalignment \yith respect top which is often referred to as tr@mpo-
less sensitive to outliers. sitional approach. Equation 13 presents the application of

For the rest of this paper we will use the vector notation parameterp to q using composition [8].
for compactness via the- ||, operator giving,

qop=WW(x;p);q) (13)

Obviously for the case of LSC when the stack siz&is- 2

as an equiva|er|t definition of Equation 8. We now present this equivalence still holds. However, in this section we in
the measure of misalignment function for LSC in Equation Vestigate the interesting case for whah > 2. Specifi-
10, cally, we shall demonstrate in this section that the adelitiv
approach for LSC wheV > 2, unlike the compositional

argmpin T (a1 +p) — 12(‘12)H¢ (©)

N approach, is extremely sensitive to the initial warps of im-
&s(li(a), Yi(® +p)) = Z IL(aj +p) = Li(ai)ll, ages in the stack. Figure 2 provides an illustration of this
i#i problem. Here, two images (shown in (a)) consisting of tri-

(10)
which for N = 2 results in exactly the same measure of
misalignment as originally defined in the LK algorithm by
Equation 8. The parameter update functjt for least-
squares congealing applies the paramgbeis each image
in the stackY; and is therefore,

angles are given as input to the congealing process. For
argument’s sake, a solution which perfectly aligns eaeh tri
angle has been provided with the parametgrandq.. The
resulting aligned images are shown in (b). To illustrate the
inconsistency of additive warps, we calculate the additive
warp which rescales imade(q2). The resulting triangle
q —q;+p;VjAi (11) with the additive warp appligd is shown |n the bottom trian-
gle of part (c). If we apply this same additive ward{6q; )
Minimizing Equation 10 with respect to the warp param- the inconsistent behaviour is observed. As shown in the top
etersp has been presented in depth in other work. We point triangle of (c), the triangle has been distorted to the point
the reader to [3, 1, 2] for a thorough presentation on min- that it is no longer a triangle.
imizing Equation 10 using the Gauss-Newton optimization  To rectify this situation so that the applied warp will op-
strategy that is used in this paper. erate consistently for all images in the stack regardless of
Of interest in Equation 10 is that the parametprare initial scale, a compositional approach to image warps is
applied to the stack instead of the held out image. This isrequired. Using the same strategy as the additive update
contrary to entropy congealing. Formulating the equation in item (c) of Figure 2 we calculate a single waspvhich
this way is crucial as it preserves important texture and gra when composed witli;(q2) results in the bottom image
dientinformation from each image in the stack. The alterna- shown in item (d). When applying the same warft@y; )
tive version which has the parameterapplied to the held  using composition we see that it too has been rescaled to
out imagel;() results in the minimization of the measure exactly the same location. From this simple thought exper-
of misalignment collapsing to the alignment of the held out iment we have demonstrated that the additive and compo-
image with theaveragemage of the stack. This situation is sitional approaches to LSC are not equivalent for the case
suboptimal, as the averaging process on misaligned imagesf N > 2.
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Figure 2. This figure illustrates the inconsistency of apmthe
same warp additively to multiple images. The triangles jrép-
resent the original input images to the congealing algorjttb)
represents the same triangles warped such that they arediig
(c) shows the inconsistent behaviour of applying the sardéiael
warp to each triangle (d) instead of applying an additivepyar
composed warp is applied resulting in consistent behavidhis
behavior is contrary to Lucas & Kanade (LK) image-to-image
alignment where it has been shown that the additive and csatpo
formulation are equivalent theoretically and empirically least- @) (0) ©
squares congealing however, the formulations are onlyvetgsit Figure 3. A stack of images shown in (a) is to be aligned to the
when the number of images to be alignedvis= 2; which is when held out image (b) using least squares congealing. We assume
LSC is the LK alignment algorithm. that the robust error function identifies the top triangléahas an
outlier image and de-emphasises that image’s contributiadghe
calculation of the warp parametgpss With the outlier essentially
Having illustrated the inconsistent behaviours of apply- removed, the alignment can be thought of as calculating @ war
ing single warps additively to a stack of images, we modify which aligns the identical images with the held out imagethia
LSC to utilize composable warps. These modifications are case.p has been calculated perfectly and applied to each image
shown with the new measure of misalignment functios in the stack, including the outlier image. As is shown in (bg

; : ; two identical images have been aligned perfectly, but théeou
Eqﬁgggrt:olré 14 and the parameter update functighin image has been warped such that the triangle has been cetpplet

removed from view.

AN

AN

Stack of images Held out image Warped stack

images

p = argmin) |Ti(q;0p)—La)ll, (14)
P selected held out image (b) utilizing a compositional LSC
q — qjop;Vj#i (15) implementation. Within the stack of input images, two tri-
angles are identical both in appearance and geometric lo-
Minimizing Equation 14 is achieved the same way as cation and the other triangle is substantially differerthbo
the additive update equation with minor changes due to thein terms of location and in appearance. Due to the sub-
composed warp. stantial difference, we assume that any robust error fancti
will significantly squash the outlier image’s contributitm
the alignment process. Thus obtaining the warp parameters
p which minimize the expression can be approximated as
The previous section outlined the first major issue with finding the warp which aligns the two identical images with
LSC and showed that additive updates are not equivalent tathe held out image. In Figure 3, thpein this case has been
composed updates when applying the same warp to multiplecalculated perfectly and applied to the two identical insge
images. We now proceed to the second major issue whichresulting in the bottom two triangles of (c). Since the aitli
again stems from the fact that a single warp is applied toimage was part of the stack, it too was warped ugirand
multiple images. Specifically, there is a risk that after ap- resulted in the top image of (c). Notice how the triangle has
plying a single warp to a collection of images, one or more been completely removed from view. Once removed, the
of the objects of interest will be partly removed from view. objectis irrecoverably lost as the congealing process ocan n
In the extreme case, the object will be completely removed longer obtain any alignment information from the object.
from view. One possible way of correcting this is to detect when
To illustrate, we point the reader to Figure 3 where we the field of view is no longer intersecting with the bound-
see this phenomenon occurring for the extreme case. Hereing area of the original image and then reset the parameters
a stack of inputimages (a) are to be aligned to the currentlyfor the offending image back to its initial estimate. This

6. Object Lossof Outlier Images



. Aligning | 1 with | 2
may work for the case when there is only a small number 'gning Image 1 with Image

of outliers with significant appearance and geometric varia Li(an) Li(qiop)

aligned images is then aligned with the outlier image. After
completion of this process, the outlier image is now aligned
with the stack, and is thus no longer an outlier image.

In the event that there is no dominant group of aligned A
images in order to bring outliers into the dominant group,
outliers will unfortunately remain outliers. Resettingeth T(qs o _1) Lo(qs)
parameters in this case is treating a symptom of LSC, not 2 @°Pp 2092
its underlying cause. The cause in this case is, again, cal- Aligning Image 2 with Image 1
culating a single warp that is applied to multiple images of Figure 4. The illustration of the geometric symmetry thaisex
differing geometric variations. If we look to the Learned- with composable warps. Here two images of triandleand I
Miller's entropy congealing algorithm[5], we see that this are related by a composable wani(x; p) which when applied to
problem does not exist as the held outimage is aligned with!1 results inanimage liké,. Conversely, when the waiy (x; p)
the stack. As stated previously, this formulation of thegpro IS inversely applied t6; this results in an image lika.
lem is sub-optimal for a least-squares cost function as the

process collapses to aligning the held out image with the  Figure 4 diagrammatically shows this symmetry of com-
average image of the stack. posable warps. Here two images of triangle&y; ) and

In the next section we exploit the geometric symmetry I>(qz) are related by a composable warng(x; p) which
that exists with compositional warps to make LSC behave aswhen applied td; results in an image liké,. Conversely,

if the held outimage is aligned to the stack, but without the when the warp/V(x; p) is inversely applied td, this re-
draw backs of aligning the held out image with the average sults in an image liké .

tion. For instance, assume that the outlier image is selecte
to be the held out image. The stack consisting of mostly ;:

image. How this applies to LSC should now be obvious. If we
replace imagé; with a stackY, the same geometric rela-
7. Inver se-Composed L SC tionship between the stack and the held out image exists.

Thus, we can calculatp using exactly the same method
In Section 5 we saw the move from additive warps as before, but instead of updating the paramejgrsf the
to compositional warps. The move to a compositional stack byp, we apply the inverse to the held outimage. This
warp has an interesting history in computer vision. The procedure is shown in Figure 5 and mathematically in Equa-
work of Baker and Matthews [1] exploited the composi- tions 17 and 18.
tional warp with great gains in computational efficiency

with their inverse-composition approach to image-to-imag p = argmin Z I1L(qs o p) = Liaa)ll,  (17)
alignment. However, for least-squares congealing, the.com 7
putational gains are of lesser importance compared to the @ — qop ! (18)

exploitation of the geometric symmetry the method ex-

ploits. LSC uses this symmetry in order to address the ob- leulati fth bi |
ject loss problem described in the previous section. calculation of the warp parametefs object loss may
. " still occur. Fortunately, this can be remedied by mov-
The symmetry which inverse-composition takes advan- . S .
tage of stems from the assumption that two images of simi- N9 the inversion inside the Gauss-Newton strategy which

: : = calculatesp. This procedure is a direct extension of the
lar objects are related geometrically. A compositionalpvar . o . : .
. : ! : . inverse-composition method of image-to-image alignment
which aligns one image with another can be inversely ap- roposed in [1]
plied to the other image in order to achieve an equivalentp P : s .
. SO . . The Gauss-Newton strategy for minimizipgs an iter-
result in alignment. i.e. in either case, the resulting clsje . ) . i . :
. o . ; ative procedure in which the initial estimate pfis incre-
are aligned, however their final alignment may have differ- . . . .
) . ) o mentally improved byAp in each iteration.
ing geometric appearance depending on which image was
fixed as a template. | argmin > 1 (a; 0 p o0+ Ap) ~ Li(a)ll,  (19)
In this paper we use a compact notation to refer to the Ap gy
inverse composed application of warp parameters. This no-
tation is as follows

One drawback of this formulation is that during the

P+« poAp (20)

As can be seen in Equation 19, the calculatiod\gs is al-
qop ' =WWl(x;p);q) (16) ways from the stack to the held outimage. Ensuring that the



Minimize Inverse compose

W(x;q;) p b
to
W(x;q;) W(x;q; o p_l) 8. Performance
f In this section we present the alignment capability of

cremental updatdp that is applied to the held out image
inside the Gauss-Newton optimization strategy.

AN

each of the LSC formulations. We show (i) that a signifi-
cantimprovementin performance is obtained when moving
from additive warps to composed warps and (i) moving to
an inverse-composed formulation has a dramatic effect on
A congealing performance for large numbers of images.

In all experiments presented in this section, images and
ground truth labels of the eyes and nose were sourced from

Updated

Stack of Images Held out image held out image the MultiPIE data set [4]. In all cases, the images used were
of front facing faces demonstrating no variations in expres
(@) (b) ©) sion and were taken under uniform lighting conditions.
Figure 5. This figure demonstrates the inner workings of the i To simulate initial misalignment we perturbed each of

verse composed formulation of least squares congealingary w

he im random warp. The magni f this war
is calculated which minimizes the measure of misalignmesnt b the images by a rando arp e magnitude of this warp

. . corresponded to a displacement of the labelled landmarks
tween the stack of images (a) and the held out image (b). A for- .
ward composed formulation would then have the warp apptied t equal_ to a percentage of Fhe distance between the left eye
the stack which could cause object loss in outlier images ith ~ @nd right eye. After applying the perturbation, we tracked
verse composed formulation avoids this situation by immgrthe  the labeled landmarks throughout the congealing process
warp and having it applied to the held out image instead. until the process had converged or reached a maximum
number of iterations.

In order to remove any global changes in scale caused
stack remains fixed is f::tchieved by applying the incremental by congealing, a transform which warped the average land-
update to the held outimage parametgrer mark position of the tracked labels to a landmark template

) was applied to the tracked landmarks. Once normalized, the
argmiin > lILi(a; 00+ Ap) — Li(g; 0 P, (1)  distance between the normalized labels and the correspond-
J# ing landmark template was collated. With the distributién o
p—poAp! (22) distances collected, it is now possible to determine the per
centage of the tracked landmarks which are within a certain
We see in Equation 21 that the incremental updefeis distance to the template. Obviously, the higher the percent
minimized in a manner which still has the stack of images age of points below this threshold the better.
aligned to the held out image, but instead of applying the  For the purpose of comparing performance for the var-
update to the stack of images, we use the geometric symioys factors which have an effect on congealing, we fixed
metry of composable warps to have its inverse applied to 5 pixe| distance threshold as the point to sample the above

the held outimage. cumulative distribution. We term this percentage as the per
With this formulation of least squares congealing the pa- centage of points converged. Other parameters that were
rameter update functiofy() is then simply, fixed for all experiments were: the field of view which con-
gealing uses to measure misalignment had an area of 30x30
EUMN (RS (23)  pixels (7 = 900) and the parametric functionV(x; p)

which models the type of misalignment to be removed was

We title this methodinverse-composed least-squares :
set to be an affine warp.

congealing For the remainder of this paper we distinguish
the four different formulations of least squares congeglin Additive versus Compositional Warps. The results pre-
(LSC) as follows: (i) when using an additive update, we sented in Figure 6 show the alignment performance as a
refer to this as additive LSC, (ii) when using a composed function of iteration when using a compositional warp over
update applied to the stack of images, we refer to this as for-an additive warp. The stationary nature of the curve for the
ward composed LSC, (iii) when using a composed updateadditive warp illustrates the inability of the additive fiou-
calculated on the stack of images which is then applied tolation to cause any improvement in alignment due to the
the held out image via inverse composition, we refer to this inconsistent changes in geometry that occur when applying
as partial inverse-composed LSC and lastly (iv) is inverse-the same warp additively to multiple images. The composi-
composed LSC which refers to the inverse composed in-tional approach however, does not suffer from this effect.
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Figure 6. The dl_fferen_ce in ahgnr_nent capability betweeaste B Partial Inverse Composition
squares congealing using an additive update versus a fboear-
posed update. Here we see that the additive approach performFigure 7. We illustrate the alignment performance diffeesbe-

terribly due to the inconsistent behaviour exhibited wheplyng tween forward composition and inverse composition forediffg

a single warp additively to multiple images. This test was-co numbers of images. The y-axis reflects the percentage detlac
ducted utilizing 20 images of faces with an initial randomoenof points within a threshold of the same image aligned using the
magnitude equal to 40% of the distance between the left gihd ri  ground truth labels.

eye.

The experimental results presented in Figure 7 were con-

The curves shown Correspond to the best performing ro_dUCted on collections of images which were |n|t|aIIy mis-

bust error configurations for both the additive and composedaligned to a distance of 50% of the distance between the left
least-squares congealing formulations. In this expertmen and right eye. In all cases, a number of robust error config-
20 images from MultiPIE were extracted and randomly mis- urations were trialed and the best performing configuration

aligned to 40% of the distance between the left and right Was selected.
eye. Sample output of applying inverse-composed congeal-

) ing to a synthesized data set consisting of 500 misaligned
Object L ossand Inverse-Composed LSC: The nextsetof  images can be found in Figure 8. The run time of this appli-
results shown in Figure 7 illustrate the effect that objessl  cation is approximately 16 hours on an Intel Xeon 2.66GHz
ha_s on alignme_nt performance as a function of the numberscpy. our (single threaded) implementation is based on
ofimages to align. Here, a forward composed least-squareshe assumption that there exists a data set which can not
congealing algorithm is compared against the partial andpe |paded entirely in to memory. Considerably faster im-
fully inverse composed formulation. As can be seen from yjementations of inverse-composed congealing are pessibl
the figure, a forward composed formulation is comparable \yhen not making this assumption.
to an inverse_composed formulaj[ior? when congea_lling N0 |n Figure 9 we apply congealing to the MNIST handwrit-
more then 30 images, but when aligning 40 or more images ten gigit database [6] to illustrate its ability to scale tal
the difference in alignment performance becomes more sig-gets consisting of many thousands of images. We demon-
nificant. Interestingly, retaining or resetting objectS@p-  syrate its performance by showing the average image of the

pears to be the main factor to the degraded performancegampjes for each digit class before and after congealing.
as the difference in performance between partial and fully

inverse-composed congealing is marginal. This is interest
ing, as object loss can still occur during the partial foraaul
tion as the parameter inversion occurs after the calcuatio  |n this paper we showed that the original formulation of
of the warp parameters. least-squares congealing utilizing an additive paramater

The significant difference in performance between the date to each image in the stack results in inconsistent ge-
forward and inverse composed formulations indicate thatometric transformations of images. We also showed that
the two methods are not equivalent. This is contrary to Lu- by using a compositional formulation, this inconsistent be
cas & Kanade (LK) image-to-image alignment where this is havior is removed, resulting in a dramatic improvement in
the case. This statement is only true when a stack of imageslignment performance. This result confirms that the ad-
is involved (V > 2). For the case when there are only two ditive and compositional formulation of least-squares-con
images to align using LSCN = 2), the equivalence be- gealing are not equivalent when aligning more than two im-
tween the forward and inverse composed formulation still ages, unlike the case forimage-to-image matching using the
holds as LSC withV = 2 is the LK method. Lucas & Kanade algorithm.

9. Conclusion
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Figure 8. A sample of the output of the inverse-composed kpsares congealing algorithm presented in this paper 0nrbges. The
initial misalignment for these images was set to a pointldigment of 50% of the distance between the left and right €e average
images on the right are on all 500 images. In this case 3%iesof congealing were performed. The field of view used firael to
30x30 pixels. No coarse to fine strategy was used.
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Figure 9. We apply congealing to approximately 6000 samgfilesch handwritten digit in order to demonstrate leastsegicongealing’s
ability to scale to many thousands of images. The samples aleained from the MNIST [6] digit database.

We made an additional contribution in this paper by iden- [3] M. Cox, S. Lucey, S. Sridharan, and J. Cohn. Least squares
tifying that outlier images in the image stack are at risk of congealing for unsupervised alignment of images.|HRE
having the object of interest being irrecoverably lost. To International Conference on Computer Vision and Pattern
alleviate this problem, we introduced an inverse composed  Recognition (CVPR)une 2008. .
formulation of LSC which does not suffer from this prob- [4] R. Gross, I. M. S. Baker, and T. Kanade. The CMU Multiple
lem. It achieves this whilst still maintaining the importan pose, illumination and expression (MultiPIE) databasehie

.. . . nical Report CMU-RI-TR-07-08, Robotics Institute, Carigeg
Err](;%eerty of aligning the stack of images with the held out Mellon University, 2007.

[5] E.Learned-Miller. Data driven image models throughtaon
uous joint alignment.Pattern Analysis and Machine Intelli-
gence, |IEEE Transactions p28(2):236—250, 2006.

References [6] Y. LeCun and C. Cortes. The mnist database. Online, May

2007. http://lyann.lecun.com/exdb/mnist/.

B. D. Lucas and T. Kanade. An iterative image registmatio

technique with an application to stereo vision Piroceedings

[1] S. Baker and I. Matthews. Equivalence and efficiency of im [7]
age alignment algorithms. IRroceedings of the 2001 IEEE

Conference on Computer Vision and Pattern Recognitioh of the 1981 DARPA Image Understanding WorksHc@81.

ume 1, pages 1090 — 1097, December 2001. [8] H.-Y. Shum and R. Szeliski. Systems and experiment paper
[2] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A uni- Construction of panoramic image mosaics with global and

fying framework. International Journal of Computer Vision local alignment. International Journal of Computer Vision

56(3):221-255, Feb. 2004. 36(2):101-130, 02 2000/02/01/.



