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Abstract

Many state-of-the-art segmentation algorithms rely on
Markov or Conditional Random Field models designed to
enforce spatial and global consistency constraints. This is
often accomplished by introducing additional latent vari-
ables to the model, which can greatly increase its complex-
ity. As a result, estimating the model parameters or com-
puting the best maximum a posteriori (MAP) assignment be-
comes a computationally expensive task.

In a series of experiments on the PASCAL and the MSRC
datasets, we were unable to find evidence of a significant
performance increase attributed to the introduction of such
constraints. On the contrary, we found that similar levels
of performance can be achieved using a much simpler de-
sign that essentially ignores these constraints. This more
simple approach makes use of the same local and global
features to leverage evidence from the image, but instead
directly biases the preferences of individual pixels. While
our investigation does not prove that spatial and consis-
tency constraints are not useful in principle, it points to the
conclusion that they should be validated in a larger context.

1. Introduction

Segmenting natural images into semantically consistent
regions is of fundamental importance to computer vision
and image understanding, and good performance on the
PASCAL [4] and MSRC [26] datasets has become a de facto
standard for success. A number of recent approaches have
pushed the state of the art on these data sets by introducing
sophisticated graphical models that include constraints on
both local spatial smoothness and global consistency.

Markov Random Fields (MRF) and Conditional Random
Fields (CRF) are at the heart of many modern segmentation
approaches. A recent trend has been to model global con-
straints as latent variables, which interact with local vari-
ables either directly or through intermediate hierarchies.

However, these global variables are usually coupled with
global features which are computed at a global or very large
scale. Thus, it unclear whether it is the constraints or the

features that give these models their power. We therefore
ask the question, what happens when we collapse the super-
structures of global variables and incorporate their features
directly into the local variables with which they interact?

In this paper, we show that in doing so, we obtain very
similar performance levels by using only global features
that already appear in the literature [8] to leverage evidence
from the image and bias the preferences of individual pix-
els or superpixels. This results in a much simpler model
than those found in other recent approaches, which rely on
complex hierarchies and global context models. Moreover,
when using these global features, removing the local spa-
tial smoothness term only results in minimal performance
degradation.

To demonstrate our point, we compare increasingly com-
plex versions of a state-of-the-art CRF-based segmentation
algorithm patterned after the model proposed by Gonfaus
et al. [8] that has been shown to yield excellent perfor-
mance on the PASCAL and the MSRC datasets. As will
be shown, for the MSRC dataset, the simplest model which
relies exclusively on image features outperforms state-of-
the-art models which enforce spatial smoothness and global
consistency constraints. On the PASCAL dataset, the same
simple model shows only a slight decline in performance.

This is not to say that spatial constraints or other kinds
of global constraints are not useful in principle. However,
it does suggest that recently reported results do not conclu-
sively demonstrate their usefulness, at least in the context
of the MSRC and PASCAL datasets.

2. Motivation and Related Work

Markov Random Fields were originally introduced as
generative models [2], where each variable is exclusively
associated with its own observation. In the context of image
segmentation, this is to say that the data term, or “unary po-
tential” as it is sometimes referred to, of a given superpixel !
can only draw evidence from within itself. This requirement
has proved to be too stringent for most vision tasks includ-

!For simplicity, we will treat superpixels as atomic image regions for
the remainder of the text. However, for most algorithms, pixels can be used
interchangeably.



ing segmentation, and recent approaches have opted for the
more flexible Conditional Random Field (CRF) [15], which
allows the label of a superpixel to depend on features col-
lected from itself and its neighbors.

The Potts model is commonly used to enforce local spa-
tial smoothness constraints for image segmentation (Fig. 2).
Despite its continued popularity, there has been a consider-
able amount of work searching for more sophisticated spa-
tial smoothness terms. Gould et al. [9] use relative loca-
tion features to model class-specific spatial dependencies
between pixels. These are used to supplement appearance
based features when producing the final segmentation. In
their model, the smoothness term is pre-computed at a sep-
arate stage, not modeled jointly with the data term during
inference. Batra ef al. [1] also learn class-specific affini-
ties in a CRF framework, where these affinities model the
relationship between visual words instead of between pix-
els. Galleguillos et al. [7] model the full joint transition
likelihood between neighboring pixels, where the parame-
ters of their spatial model are set via simple counting of
co-occurrences in the labeled images. Though this is ar-
guably sub-optimal, the method was shown to perform well
in practice.

It is well known that leveraging data from larger support
gives features more discriminative power. However, this has
a subtle side effect: it reduces the significance of the spatial
term, namely the smoothness or consistency constraints that
are encoded as edges of the CRF. As shown in Figure 1, if
the features of a superpixel are computed from a neighbor-
hood much greater than the superpixel itself, the smooth-
ness constraint between adjacent superpixels becomes al-
most redundant since they are associated with highly corre-
lated, largely overlapping observations.

Indeed, several other methods have found success using
simpler models that do not enforce smoothness, raising the
question about the necessity of more elaborate CRFs. It was
shown in [24] that much greater performance gains could be
attained by finding powerful image features rather than en-
forcing spatial constraints. This finding was echoed by Ver-
beek and Triggs [29] who concluded that complex smooth-
ness priors help only in the absence of global contextual in-
formation provided by image-wide aggregate features, and
by the success of the Semantic Texton Forests [25] which
do not involve any spatial model.

Consequently, recent CRF models for segmentation have
shifted their focus from regularizing local smoothness to
encouraging global consistency [13, 14, 8]. A further mo-
tivation for this is the belief that information stored in the
local nodes is incapable of capturing the “big picture” or
overview of the scene. To do this, Shotton et al. [25] train
an image-level classifier and use its prediction to modify the
probabilities given by the local pixel-level classifiers. Sim-
ilar to many other approaches [10, 22, 16, 21], the image-

Figure 1. Spatial support of local image features for neighbor-
ing superpixels computed at different scales. The bounding boxes
show the extent of the spatial support of the local features de-
scribed in Section 4.1, which are similar to the features used in [8]
and other works. In (a), one side of the bounding box is 4 times
the mean superpixel width. In (b), it is 6 times the mean superpixel
width. Because the regions significantly overlap, their class pre-
dictions will be highly correlated. This has the effect of reducing
the impact in performance attributed to the spatial term.

level cues are inferred separately from the labels of the pix-
els. Despite the lack of any spatial constraints, this method
achieved impressive performance that surpassed the state-
of-the-art. Joint inference of pixel labels and image-level
preference was studied by Kohli et al. [13], where robust
PN potentials are used to encourage consistency between
the labels of local and global variables. Ladicky et al.
[14] further propose an associative hierarchical CRF model,
which has a more elaborate structure that includes inter-
mediate layers in between. In these approaches, the label
sets for the global nodes are limited to the set of semantic
classes, possibly augmented by an additional “background”
label. This restricts image-level preference to a single class
at most, ignoring scenarios where there is more than one
dominant object type in the image.

To address this issue Gonfaus et al. [8] use more expres-
sive constraints called “harmony potentials”, which model
global preferences using the power set over all semantic
classes. Although this makes it possible to have multi-
ple preferences at the global level, the exponential sized
power set is prohibitively expensive to search and has to be
heuristically truncated to make it computationally afford-
able. Hence in practice, only a small subset is used.

An important but often overlooked detail of these hier-
archical models is the use of specialized global features de-
signed to enforce global consistency. As we will show, di-
rectly embedding these features into a much simpler graph-
ical model results in similar performance.

3. Segmentation using CRF Models

In order to investigate the effect of imposing spatial and
global constraints, we designed a CRF model inspired by
the one proposed by Gonfaus et al. [8], shown in Fig. 2(d).



(b) Robust PN model [12]

(a) Potts model

(c) Harmony model [8]

(d) Class independent model (DPG)

Figure 2. Increasingly more sophisticated CRF's for modeling global preference. Standard CRFs include local nodes V; connected by edges
&;. Observations are denoted by gray nodes. Class labels are indicated by color. High level preferences can be encoded by adding global
nodes V, connected by edges &£;. (a) The Potts model penalizes all the local nodes with a label different from the global node. (b) The
robust PV potential is similar to the Potts model but adds an extra “free label” label that does not penalize local nodes. (c) The harmony
potential allows different labels to coexist in a power set. However, the size of the power set makes optimization difficult. (d) The class
independent model (DPG) used in this work models each of the K classes with its own global node to make the inference more tractable.

In Section 4, we will explore the contributions of the data
term, spatial constraints, and global preferences by compar-
ing increasingly complex versions of this model.

3.1. CRFs with Global Preferences

The standard CRF model can be extended to incorporate
global consistency constraints as seen in Fig. 2(d). Such
models typically contain a set of nodes V = (V;, V,) where
the global nodes V, encode high-level preferences in addi-
tion to local nodes V; which represent superpixels.

The edges £ = (&, £,) represent interactions at two dif-
ferent levels. & model the relationship between neighbor-
ing local nodes. &, link local nodes to global nodes, which
serve to bias local labels to be consistent with global prefer-
ences. Thus, the extended energy function takes the form:

WY 1X) =" Dilyi)+ Y. Piiviy))

eV data term (i.4) €& pairwise term
+ Y Giglyi,g) (D
(1.9)€&, global term

where y; € {1,--- , K} are class labels for superpixels and
yg € {0, 1} represent the states of global preferences.
Minimizing this energy function is equivalent to per-
forming MAP inference on the CRF. Though this is in gen-
eral NP-hard on graphs with loopy structures, good approx-
imate solutions can be found using efficient energy mini-
mization techniques (we use belief propagation [19]).

3.2. Energy Function

The energy function in Eq. 1 consists of three terms: the
data term, the spatial term, and the global term, described
below.

Data Term The data term D;(y;) encourages agreement
between a node’s label y; and the local image evidence ;.
We model it as a linear combination of the output scores
given by S classifiers ¢, such as support vector machines
(SVM) trained to predict the label of a superpixel. It is writ-

ten as
S

Di(yi) = > wy) ses(wi,yi). 2)

s=1

Spatial Pairwise Term The pairwise term P;;(y;,y;)
represents the cost of transition from class y; to y;, and is
expressed in a non-parametric form as

Pij(yi yj) = wy, - 3)

Like the standard contrast-dependent Potts model [26], this
term encodes valid configurations according to the labels of
neighboring nodes (y;,y;). It also considers the difference
in color ||z; — x;||? between pairs of superpixels, as well as
their position relative to one another, allowing the model to
capture geometric relationships such as “sky should appear
above grass” (as illustrated in Fig. 3).

Global Term To enforce global consistency, a set of
global nodes are introduced, resulting in a global term

Gig(Yiryg) = wgyg “)

As shown in Fig. 2(d), this term expresses the dependency
between the local nodes and K global nodes whose labels
are inferred jointly with the local nodes. Our approach is
similar to the harmony potential approach [8], except that
it does not need to model the full power set of all class la-
bels. This makes it more computationally tractable, but sac-
rifices the capability of modeling category co-occurrence.
In contrast, other approaches like [12] can only bias the
local nodes towards a single class label.
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Figure 3. Learned spatial relationships in the pairwise term. The
pairwise term w” (2, ;, i, y;) in matrix form where columns
indicate classes y; belonging to superpixel ¢ and rows indicate
classes y; belonging to neighboring j for the MSRC-21 dataset.
Red colors indicate that y; is likely to appear above y;. Left-of and
right-of relationships are also learned but not shown here. Gradi-
ent information is also ignored for this illustration.

3.3. Parameter Learning

Asin [27,20], we express the energy function of the CRF
(Eq. 1) in a linear form F,,(X,Y) = w¥(X,Y), where
U(X,Y) is a vector defined as [¥” ¥F WC]. Here,
UL is a vector with S entries with U2 = ¢ (z;,y;). For
the pairwise interaction W*(X,Y’), assuming that the im-
age X is ignored results in a K-by-K table of values where

VP(X)Y) = 2 (i)eE \I/ij“yj is a sum of indicator vari-
ables in which the (a,b)-th entry is defined as
‘Ilif,)j,yi,yj (a’7 b) = I(y’b =a,Y; = b) (5)

Gradient information and spatial relationships are also in-
cluded in U¥(X,Y). The global term U¢ is formulated in
a similar manner.

To train the model, two learning steps are required. For
the data term UL, S multi-class SVM classifiers corre-
sponding to S local and global feature scales are trained.
We also learn the parameters of the energy function, w =
[wD w? wG] , which encode prior knowledge about re-
lationships between the various object classes including
pairwise relationships. We learn these parameters using the
standard margin-rescaling Structured SVM (SSVM) [28].

The SSVM framework can be viewed as minimizing an
upper bound on the average training loss (up to a constant
factor C), as long as a labeling with cost no higher than that
of the ground truth can be found for every training exam-
ple. While this condition is not guaranteed due to the in-
tractability of exact energy minimization on loopy graphs,

an approximation can be found using efficient energy mini-
mization techniques [27, 5].

The SSVM framework finds parameters w balancing
model complexity and empirical loss. The loss function
measures how incorrect a labeling H is compared to the
ground truth Y. A natural choice of loss function is the 0-1
loss function that penalizes any error with the same weight
without considering the labels: §(hq,v;) = I(h; # yi)-
However, some classes occur more often, so in order to en-
sure a better balance, we weight errors inversely propor-
tional to the frequency of a class
y o if hi 7 yi

1
S(hi.y;) = 4 Trequency(y
(s 4:) { 0 , otherwise.

(6)

We also consider an alternative method to estimate w,
which was proposed in [8]. In this approach, a Gibbs-like
sampling algorithm changes a single parameter at each iter-
ation. A new value is drawn from a Gaussian distribution
with 4 = 0 and o = 1. If the new parameter improves the
score, it is kept. The drawback of this method is that it does
not scale well with the number of parameters and therefore
cannot be applied to high order CRFs. However, we found
this simple method to be very competitive when only con-
sidering the data term, as we will see in the next section.

4. Experiments

We conducted experiments on two popular datasets for
multi-class segmentation, the MSRC-21 [26] and PASCAL
VOC 2010 [4] datasets. We compare five increasingly com-
plex versions of the CRF model described in Sec. 3, as well
as previously published models. Below, we provide details
related to our implementation, experimental setup, and eval-
uation procedure.

4.1. Implementation

Prior to image segmentation, we extract features from
the image. To do so, we over-segment the image into su-
perpixels using the SLIC algorithm [23]. These superpixels
correspond to local nodes in the CRF models. For each su-
perpixel, we then extract local features at multiple scales, as
well as global features over the entire image. These features
are fed to classifiers in the data term, and a final solution is
inferred using belief propagation.

Local features It has been shown that using a combina-
tion of features computed from both the superpixels and its
surrounding area is more effective than using features just
from the superpixel itself [0, 8]. Therefore, for each su-
perpixel we extract a set of quantized visual words [30]
over five different neighborhood scales, which provides a
histogram-like descriptor. However, unlike [0, 8] who con-
catenated the features to create a single feature vector, we
build a bag-of-words descriptor at each scale.



To build the bag-of-words representation, we extract
patches over a grid with 50% overlap at several scales (12,
24, 36 and 48 pixels). These patches are described by shape
(SIFT) and color (RGB histogram) features. We then use k-
means to build a dictionary containing 1, 000 words for the
shape features and 400 words for the color features. The as-
signment of a query patch to a dictionary term is done using
a nearest neighbor search. The feature vectors are created
for 5 different scales by extracting patches inside the super-
pixel alone, then extending the neighborhood size by factors
of 1, 2, 4 and 6 respectively.

Global features Global features are similar to the local
features, but extracted over the entire image. They are fed
to a classifier who returns a single response for the whole
image. For the VOC 2010 data set, we used a bag-of-words
representation of the whole image, based on shape SIFT,
color SIFT [3], together with spatial pyramids [17]. For
MSCR-21, we used a simpler bag-of-words representation
based on SIFT and RGB histograms.

Learning As described in Sec. 3.3, extracted features are
fed to an SVM classifier trained such that its response
c(x;,y;) represents its perceived cost of assigning super-
pixel ¢ to the class label y; in the data term. We also train
a structured SVM to learn the parameters w of the energy
function E,,(X,Y") in Eq. 1, which represents a linear com-
bination of low-level classifier outputs on local (and global)
features. The parameters cover all possible category combi-
nations between two superpixels, two types of spatial rela-
tions (left-right and top-bottom), and 10 discretized gradi-
ent values. In total, the DP model incorporates 8862 param-
eter values, and the DPG model incorporates 9744 values.
During training, we sample a total of 8000 superpixels for
MSRC-21, and 20, 000 for VOC 2010 with equal numbers
of positive and negative examples for each class.

4.2. Experimental Methodology

Data Sets The MSRC-21 dataset contains 591 images,
with objects from 21 categories. To compare results with
those of other methods, we use the standard split of the
dataset [26]. The VOC 2010 dataset contains 20 object
classes plus a background class. The images are divided
into 3 subsets: training, validation, and testing.

Models Tested In order to better understand how spatial
and global constraints affect performance, we tested five in-
creasingly more complex versions of the CRF model de-
scribed in Sec. 3. Descriptions of the models appear below.

e D model — Includes only the data term, consisting of
the SVM classifiers scores. Equivalent to an energy
function E, (Y[X) = >,y Di(yi).

e DP model — Considers both the data and pairwise
terms of the energy function, ie. FE,((Y|X) =

> ey Dilyi) + Z(z‘,j)esl P (yi,y5)-

e DG model — Considers the data term and the global
term without the pairwise term, ie. E,(Y|X) =

Zievl Di(yi) + Z(i,g)eg_q Gig(yi, yg)~

e DPG model — The full model described in Eq. 1, in-
cluding the data, pairwise and global terms.

e D-sampling — Like the D model, only considers the
data term. Instead of learning parameters using the
SSVM, uses the sampling method of Sec. 3.3.

We also compared against four state-of-the-art CRF ap-
proaches including [25, 11, 14, 8] on the MSRC data set,
and six reported methods for the VOC 2010 data set which
are shown in Tables | and 2.

Local vs. Global+Local To test the effect of directly in-
troducing global features to the data term on the various
CRF models, we repeated each experiment twice. First,
we provided only local features to the classifiers in the data
term. In the second round, we included the global features
as well.

Evaluation Metrics For MSRC-21, we measure perfor-
mance for a given category by computing its pixel-wise
classification accuracy. Overall performance is measured
by averaging per-category classification accuracy across all
categories. A global pixel-wise accuracy is also reported.
For the VOC 2010 dataset, a similar procedure is used, but
performance is measured by the Jaccard index instead of
pixel-wise accuracy. The Jaccard index is the ratio of the
areas of the intersection between what has been segmented
and the ground truth, and of their union. It is written as

_ True Pos
~ True Pos + False Pos + False Neg

4.3. Results

MSRC-21 The results for MSRC-21 appear in Table 1.
When only local features are considered, there is a clear
advantage to adding spatial and global constraints (as indi-
cated in red). The pairwise term alone leads to an increase
by 6%, and adding the global term results in another 5%
increase. The average per-category accuracy of the various
CRF models ranged from 58% to 69%.

The second set of experiments introduces global features
into the data term. Under these conditions, previous gains
from adding the spatial and global constraints disappear,
while the overall performance of all methods increased. In
fact, the simple D model and D-sampling models now out-
perform the higher order CRFs. These results demonstrate

vOoC (N
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D model 54 94 59 72 67 95 70 66 86 45 93 72 68 27 52 27 43 70 1 19 37 67
Local features DP model 53 86 72 79 75 95 93 49 85 38 81 83 64 39 63 49 68 68 38 63 9 70
S=5 DG model 34 91 70 83 70 97 83 65 82 93 91 69 67 13 86 64 65 83 23 31 20 72
DPG model 54 88 83 79 82 95 87 70 85 81 97 69 72 27 88 46 60 74 27 49 28 75
D-sampling 52 83 74 50 72 89 86 68 73 69 83 67 69 22 68 25 67 54 14 46 50 69 61
D model 64 94 91 72 87 97 90 76 72 83 86 88 93 62 90 89 85 97 0 83 0 85 77
Local+Global features DP model 58 87 83 73 78 94 95 78 85 68 96 89 71 41 96 83 85 87 49 52 38 80 76
S=6 DG model 54 86 93 80 94 90 87 88 74 80 85 86 96 35 96 80 65 96 0 77 26 81 76
DPG model 65 87 87 84 75 93 94 78 83 72 93 8 70 50 93 80 86 78 28 58 27 80 76
D-sampling 50 83 87 81 84 90 97 72 75 79 90 95 79 52 97 81 80 89 51 64 60 79 78
[25] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67
[11] 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68
[14] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09 86 75
[8] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 77 75

Table 1. MSRC-21 segmentation results. For each category, the pixel-wise classification rate

is provided. Bold entries indicate best

performance. Global reports the pixel-wise classification rate over the entire data set. Average reports the mean of all category classification
rates. The first five rows show results for the data term only (D model), the data and pairwise terms (DP model), data and global terms
(DG model), and the full model (DPG model). D-sampling includes only the data term, but learns parameter values using Gibbs sampling
instead of the SSVM. The second five rows show results when the global features are added. For reference, scores reported for other
methods are reported in the last four rows. Scores in red indicate that when only local features are considered, there is an advantage to
adding spatial and global constraints. Scores highlighted in yellow show that introducing global features eliminates the previous gains
attributed to adding the spatial and global constraints, while increasing the overall performance of all methods.

Figure 4. Example segmentations from the MSCR-21 dataset. (a) Original images (b) D model with local features, (c) DPG model with local
features, (d) D model with local+global features, (€) DPG model with local+global features, (f) D-sampling with local+global features, (g)

Ground-truth.

that the presence of the global classifier in the data term can
boost performance to levels similar to or even better than
the more complex models that include spatial and global
constraints. To the best of our knowledge, the D model
trained with the sampling method achieves the highest av-
erage score ever reported on MSRC-21.

PASCAL VOC 2010 Results for the PASCAL VOC 2010
dataset appear in Table 2. The results mirror our findings
on the MSRC-21 dataset. In red, we can see that when only
local features are considered, there is a clear advantage to
using spatial and global constraints. But the results high-
lighted in yellow show that providing global features to the
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VALIDATION SET
D model 317 97 1.1 9.1 09 3.0 274 129 144 0.0 21.2 00 0.0 3.7 26.8 229 0.0 30.0 9.6 23.1 0.0
Local features DP model 293 13.0 2.2 28 7.7 12.8 36.6 24.3 19.7 3.6 192 0.2 146 19 253 17.7 1.3 12,6 6.1 19.1 5.5
S—Su S DG model 76.2 30.8 6.8 1.6 00 44 34.1 0.7 23504 283 03 2.6 65 462 114 00 0.0 22 399 0.1
B DPG model 67.3 22.4 155 18.0 154 0.0 28.4 24.5 18.7 0.0 30.5 46 0.5 6.0 289 23.0 36 0.0 129 33.1 7.3
D-sampling 76.2 23.3 11.7 64 6.8 9.0 244 24.0 13.6 3.2 114 0.0 14.7 103 24.1 245 4.0 20.3 3.8 146 11.7 16.1
D model 73.0 38.9 13.3 21.1 25.7 12.2 37.7 32.7 29.0 0.4 355 11.5 9.5 188 30.1 1.8 6.5 36.1 8.1 43.7 19.9 24.1
Local+Global features DP model 76.7 29.8 16.8 6.0 21.6 13.2 39.8 33.0 16.1 0.0 25.5 0.5 21.8 13.8 45.1 34.1 3.0 35.0 29 472 263 242
S=6 ” DG model 74.1 27.8 0.2 229 20.8 16.7 32.5 29.1 254 7.1 30.8 149 15.7 16.0 455 29.3 5.7 323 17.2 420 0.0 24.1
- DPG model 64.3 27.1 18.2 23.1 21.0 15.0 35.3 29.2 23.7 7.8 16.9 21.5 17.3 18.8 30.7 31.5 6.7 27.8 12.2 39.5 26.7 24.5
D-sampling 78.8 44.1 21.0 16.9 28.7 24.8 59.3 40.0 30.3 7.0 26.8 6.8 18.2 17.0 35.2 34.3 31.2 18.7 11.5 47.3 18.1 293
TEST SET
BONN SVR 84.2 52.5 27.4 32.3 34.5 47.4 60.6 54.8 42.6 9.0 32.9 25.2 27.1 32.4 47.1 38.3 36.8 50.3 21.9 35.2 40.9 39.7
BROOKES 70.1 31.0 18.8 19.5 23.9 31.3 53.5 45.3 244 8.2 31.0 16.4 15.8 27.3 48.1 31.1 31.0 27.5 19.8 34.8 26.4 30.3
STANFORD 80.0 38.8 21.5 13.6 9.2 31.1 51.8 44.4 25.7 6.7 26.0 12.5 12.8 31.0 41.9 444 5.7 37.5 10.0 33.2 32.3 29.1
UC3M 73.4 459 123 14.5 22.3 9.3 46.8 38.3 41.7 0.0 35.9 20.7 34.1 34.8 33.5 24.6 4.7 25.6 13.0 26.8 26.1 27.8
UOCTTI 80.0 36.7 23.9 209 18.8 41.0 62.7 49.0 21.5 8.3 21.1 7.0 16.4 28.2 42.5 40.5 19.6 33.6 13.3 34.1 48.5 31.8
Harmony FG-BG 80.2 57.0 28.7 29.3 31.7 27.0 57.6 48.5 35.2 8.3 29.9 22.6 25.2 33.0 52.6 359 25.2 39.7 16.9 43.4 247 35.8
DPG model 64.8 33.4 16.6 17.8 23.4 17.2 45.7 35.0 30.3 6.0 21.5 21.0 21.9 29.6 32.6 29.6 23.3 24.9 15.7 26.4 21.1 26.6
D-sampling 779 49.4 23.1 19.2 24.8 26.1 52.4 449 329 6.5 35.8 22.3 25.5 21.9 58.1 34.6 26.8 39.9 17.5 38.0 25.3 335

Table 2. PASCAL VOC 2010 segmentation results. For each category, the Jaccard index is provided. Bold entries indicate the best
performance. Average indicates the mean of the scores across all categories. The first ten rows show results reported on the validation set,
for increasing CRF complexity, as in Table 1. Tests are made for local features only, as well as local+global features. Results highlighted
in red indicate that local and global constraints improve performance when only local features are provided. But the results highlighted in
yellow show that providing global features to the model eliminates the need for complex models. The last 8 rows compare the performance
of our approach to other reported methods on the official VOC 2010 test set. Our models tend to underperform relative to the other methods
because our learning procedure does not optimize for the Jaccard index.

model eliminates the need for complex models.

The lower section of the table compares our models to
some of the best reported results on the PASCAL VOC 2010
test set. BONN SVR [18] obtained the best results, but their
method tries to produce globally consistent segmentations
by exploiting characteristic shapes of objects. However,
they do not report results on the MSRC-21 dataset, which
may prove to be more difficult for their model as it con-
tains classes such as grass, building, water, and sky, which
are difficult to characterize shapes. Our D-sampling model
achieves a similar score to the second highest competitor,
the Harmony potential model [8]. Note that our models
trained with the structured SVM tend to underperform as
they do not optimize for the VOC score.

5. Summary and Discussion

While we believe that spatial and global constraints are
useful in principle, their relative weakness when compared
to simpler models that consider global image features on
the PASCAL and MSRC-21 datasets is worth reflecting
upon. This suggests two possibilities for further consider-
ation. First, we should reconsider the effectiveness of cur-
rent approaches to modeling global and spatial constrains
in CRF frameworks. Second, we should consider the pos-
sibility that these datasets, while useful, have shortcom-
ings that need to be addressed if they are to be used to

validate segmentation approaches that employ sophisticated
constraints. For instance, in many images of the MSRC-21
dataset the ground truth is imprecise. This has the effect of
arbitrarily penalizing correct labels near boundaries. While
annotation quality of the PASCAL dataset is more precise,
the current state-of-the-art on this dataset is such that state-
of-the-art methods struggle to correctly label even half of
the pixels. Performance differences attributed to the com-
plexity of the CRF model may be overshadowed by other
error sources that lead to such poor overall performance.

Resources used in this paper are publicly available at
http://cvlab.epfl.ch/data/dpg/index.php.
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