
 

 

 
Abstract 

 
In this paper, a robust regression method is proposed for 

human age estimation, in which, outlier samples are 
corrected by their neighbors, through asymptotically 
increasing the correlation coefficients between the desired 
distances and the distances of sample labels. As another 
extension, we adopt a nonlinear distance function and 
approximate it by neural network. For fair comparison, we 
also experiment on the regression problem of age 
estimation from face images, and the results are very 
competitive among the state of the art. 
 

1. Introduction 
Distance metric learning is a heavily investigated topic 

(see [1] for a survey), and is frequently applied for 
computer vision problems, such as [3-4, 6-11] discussed in 
this paper. Distance functions or dissimilarity measures are 
pivotal to many models and algorithms in pattern 
recognition, machine learning, and computer vision, such 
as the k-Nearest Neighbors (kNN) based algorithms, Radial 
Basis Function (RBF) networks, Support Vector Machines 
(SVM), manifold learning, and kernel regression for 
various classification, clustering or regression problems. It 
is not only useful for supervised learning, but also supplies 
semi-supervised or unsupervised learning tasks (such as 
[2]) with pairwise side information quantifying the degree 
of similarity or dissimilarity among samples. Even 
combined with the simplest kNN classifiers, learning a 
distance metric from labeled examples yields quite 
competitive results, such as reported in [3]. 

Recently, researchers found that, effectively taking 
advantage of label information of data samples is helpful 
for both classification [4-9] and regression [10, 26] models, 
especially when the training set is of small size and less 
structured than the traditional homogeneous one [5, 6, 10, 
26]. In classification problems, label information is served 
as a weight term of energy objective functions to attract 
samples of the same class to move closer via learning a 

distance function [4-9]. Without binning1, these approaches 
[4-9] cannot be extended directly for regression problems, 
because the labels in regression problems are not discrete, 
leading to infinite number of classes. 

Like Weinberger et al. [3] and Xing et al. [5], Jin [10] 
adopted a linear distance function 2 by replacing the inverse 
covariance matrix in Mahalanobis distance with a 
symmetric and positive semi-definite matrix, and this 
matrix is learned via approximating a label-information 
biased Euclidean distance, according to the least square 
criterion. Such approximation is resolved by numerically 
minimizing an energy function using the Newton’s method 
similar to Xing et al. [5]. Based on the learned distance 
function, Gaussian Process Regression (GPR) is applied for 
human age estimation and reasonable performance is 
achieved on the FG-NET Aging Database [14]. The learned 
distance function is combined with a simple kNN regressor, 
and state-of-the-art results are reported. 

Before Jin et al. [10], Balasubramanian et al. [13] 
combined an analogous label-information biased Euclidean 
distance with manifold learning to estimate head pose. 
However, manifold learning techniques such as Isomap, 
Locally Linear Embedding (LLE), and Laplacian 
Eigenmap is not advocated in [10]. The reason is that, 
opposite to the fundamental assumption of manifold 
learning, the training data available in the human age 
estimation problem are usually sparsely and 
inhomogenously sampled. This is natural considering the 
difficulty of collecting face images of the same person over 
lifespan (remember, cameras are luxury and not popular 
five decades ago). 

To incorporate label information in the learning stage, a 
key issue is how to reconcile the inconsistencies between 
the feature space and the semantic space. Particularly, it 

 
1  Here, binning refers to finding appropriate split points to convert 
continuous age numerical values into a number of age bins. See [15] for a 
survey and performance evaluation among several popular binning 
methods. In Section 5, we also show experimentally that such binning 
conversion is suboptimal. 
2 Ironically, contrary to [10], neither of their distance functions can be 
referred to as a metric, because the distance functions defined in [10] do 
not satisfy the triangle inequality, one of metric axioms. Instead, they 
should be called non-metric distance or semi-metrics, in conformance to 
most existing literature such as [12]. In Section 4 and Section 5, we will 
discuss this in detail. 
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refers to how to handle the case in which two neighboring 
points are with disparate labels. In this paper, we further 
explore such discrepancy between the two spaces. We 
proposed an iterative framework, in which, outlier samples 
are prone to be corrected by their neighbors, and thus robust 
regression is achieved. It is easy to see from this framework 
that the method of Jin et al. [10] iterate only once, and it is 
feasible to iterate more times to obtain better results. 
Besides, we extend the first order correlation coefficients 
between dimensions of the feature space in [3, 5, 6, 7, 10, 
11] to a more generalized polynomial-like form, which is 
approximated via a variation of Neural Networks (NNs), 
called Compositional Pattern-Producing Networks (CPPNs) 
[16]. From these two aspects, the work of Jin et al. [10] may 
be viewed as a special case of our model. 

For fair comparison with [10], our method is also applied 
to the regression problem of human age estimation. 
Literature related to age estimation from face images is too 
wide to review here. We refer readers to [17] (and also 
Section 5) for an up-to-date survey. 

The rest of the manuscript is organized as follows: 
Section 2 formulates our distance function model; Section 3 
details how to approximate the proposed distance function 
through NNs; Section 4 presents the iterative framework; 
Experimental results are discussed in Section 5 and finally, 
Section 6 draws concluding remarks and points out some 
possible future work. 

2. Problem Formulation 
Denote S = (Xi, yi) (1≤i≤N) as a training set of N labeled 

samples with inputs Xi∈Rd and their associated continuous 
non-negative labels yi. We use xiu denoting the u th 
component (i.e. dimension) of Xi. 

We follow the terminology in [10], and refer to the space 
constructed by the observed sample data (i.e. input data) Xi 
as the feature space. The semantic space refers to a space 
characterized by the labels yi. In other words, in the 
semantic space, data samples are distributed according to 
what their labels yi dictate. 

Mahalanobis distance is based on correlations between 
dimensions xiu and xjv (1≤i,j≤N,1≤u,v≤d). With the 
covariance matrix C, it is defined as 

         1( , ) ( ) ( )T
i j i j i jd X X X X C X X−= − −     

(1) 
Mahalanobis distance does not consider the labels yi. In 

[3, 5, 6, 7, 10], C -1 is replaced by a matrix to be computed, 
with the objective to satisfy 

( , ) ( ) ( )T
i j i j i j ijd X X X X A X X dd= − − =          (2) 

Where ddij is the desired distance between sample i and j. 
In [10], ddij is selected to be the Euclidean distance between 
Xi and Xj biased by labels yi and yj. We will discuss how to 
select ddij in Section 4. The distance of labels ddij=| yi – yj | 
is a feasible but not optimal choice. 

When solving computer vision problems, attention 
should be paid to equality constraints. Many equality rarely 
holds either theoretically (because the problem is 
over-constraint) or practically (because error is inevitable). 
In fact, most equality only implies approximate equality. 
Often, the difference between the left and right side of the 
equality is measured by a defined norm, and then 
accumulated (or integrated for continuous case) as an 
energy objective function for optimization. 

Square Eq.(2) on both sides, and using the least square 
criterion yields an energy objective function 

2 2

1 1

( ) (( ) ( ) )
N N

T
i j i j ij

i j

E A X X A X X dd
= =

= − − −∑∑    (3) 

Customarily, the perception and learning mechanism of 
human beings is complicated and might be simplistic to be 
model by a linear metric. For better illustration, we rewrite 
Eq.(2) in component-wise form 

1 1
( , ) ( )( )

d d

i j uv iu ju iv jv ij
u v

d X X a x x x x dd
= =

= − − ≈∑∑    (4) 

A doubt about Eq.(4) is that, why both the power of the 
factor (xiu–xju) and (xiv–xjv) is so coincidental to be 1? To 
address this question, we generalize Eq.(4) to be 

1 1 1

( , ) ( ) ( )k k

d d m
p q

i j uv iu ju iv jv ij
u v k

d X X a x x x x dd
= = =

= − − ≈∑∑∑  (5) 

Where 
1{ }m

k kp =
 and 

1{ }m
k kq =

 are two sequences containing the 
powers of (xiu–xju) and (xiv–xjv) respectively. As d(Xi, Xj)= 
d(Xi –Xj), d(Xi, Xj) is actually a function of d variables 
(xi1–xj1), (xi2–xj2),…, (xid –xjd). 

As suggested in [1], being continuous is a reasonable 
assumption for distance functions. In 1957, Kolmogorov 
[18] proved a theorem stating that, any continuous 
multivariate function can be exactly represented by 
superpositioning several continuous univariate functions. 
To make it easier to understand, we present the Kahane’s 
representation [19] of this Kolmogorov theorem below. 

( )2 1
1 2 1 1

( , ,..., ) ( )n n
n p q pq p

f x x x g h x+

= =
= λ∑ ∑     (6) 

 Nielsen [20] pointed out that, this theorem can be 
interpreted in the context of Neural Network (NN). 
Specifically, any continuous multivariate function is 
equivalent to an NN with two hidden layers (i.e. four-layer 
NN) whose transfer functions are all continuous univariate 
functions. 
 However, Kolmogorov’s proof is not completely 
algorithmic as it does not describe how to derive g(·) and 
hq(·) from f(·). To solve this, many algorithmic solutions 
have been proposed, such as the one by Kurkova [21]. 
Nevertheless, they do not solve our problem of 
approximating d(Xi, Xj), because d(Xi, Xj) is unknown. 
What we know is only N2 input-output pairs i.e. {Xi –Xj, 
ddij}, as given by the training set. 
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3. Neural Networks 
As we are not able to solve the above formulated model 

mathematically, we resort to CPPNs [16]. CPPNs are a 
variation of NNs with a different set of transfer functions. 
While NNs typically only contain a certain type of sigmoid 
or radial basis functions, CPPNs can comprise a mixed 
configuration of various types of functions. CPPNs were 
originally invented to mimic the rationale of biological 
neurons, and it has been successfully applied to several 
problems in the area of cognitive science. 

The topology of our four-layer feed-forward back 
propagation NN is specifically designed for learning 
distance functions. The input, the 1st hidden, the 2nd 
hidden and the output layers has 200, 226, 3 and 1 neuron 
respectively (i.e. a 200-226-3-1 topology 3 ) for the case of 
the FG-NET Aging Database. For the sake of adjustability 
and flexibilities, the 1st hidden layer has multiple transfer 
functions, each of which is assigned a specific number of 
neurons as listed in Table 1. Note that the selected 9 
transfer functions are commonly used to approximate 
general high-order functions. The 2nd hidden layer has 3 
transfer functions, namely, f(x)=x, logsig(x) and 
radial_basis(x), for maintaining both linearity and 
non-linearity passed in from the 1st layer. 

Table 1. Transfer functions in the 1st hidden layer 
Transfer function definition No. of neurons assigned

f(x)=x 1 
f(x)=exp(x) 15 

tan_sig(x)=2/(1+exp(-2x))-1 30 
log_sig(x)=1/(1+exp(-x)) 30 

double_sig(x)=exp(-x)/(1+exp(-x))2 30 
double_log_sig(x)=sgn4(x)(1-exp(-x2)) 30 

f(x)=cos(x) 30 
radial_basis(x)=exp(-x2) 30 

f(x)=1-|x|,-1≤x≤1, f(x)=0 otherwise 30 
 

We use the Scaled Conjugate Gradient method proposed 
in [22] as the training algorithm. Similar to Eq.(3), the 
training of NNs i.e. weights and bias values adjustment is 
also according to the least square criterion 5. 

4. The Proposed Iterative Framework 
In this section, we will discuss how to select the desired 

distances ddij in Eq.(5) for each iteration. For expression 
convenience, we call the 1-D distance of labels as ideal 
distance idij=| yi – yj |, and the results of approximating ddij  
via a distance function as achieved distance adij=d(Xi, Xj). 
 
3 Other NN topologies with similar size only lead to a slight performance 
difference. Investigation of the optimal topology is a pure machine 
learning problem, which is out of the scope of this work. Here we only 
present a good network configuration, but its optimality is not guaranteed. 
4 sgn(x) denotes the sign function. sgn(x)=0 for x=0; sgn(x)=x/|x| for x≠0. 
5 It is referred to as Mean Square Error (MSE) in the context of NN. 

By reviewing Section 2, the ideal distance idij  corresponds 
to the semantic space, and each achieved distance adij  
corresponds to a learned space. Like the labels yi, the ideal 
distances idij  is fixed and do not change in the learning 
stage. 

He et al. [23] argued that, it is better to apply learning 
algorithms in the semantic space than directly in the feature 
space, because the former is more consistent with human 
perception. But this is just a good will, considering the fact 
that, the ideal distance is known only among the N points of 
the training set, as denoted by idij . This is exactly the reason 
that, we have to approximate idij  via d(Xi, Xj) according to 
the feature space, with the objective that adij  is as close to 
idij  as possible. 
 

 
(a) The strategies of [3, 10] 

 
(b) Our strategy to trade off the contradiction between idij  and adij  
so that the label of the blue squared sample (that turns yellow after 
training) is compromised to be ddij. This is the situation that [3, 10] 
fails to tackle. 
 
Figure 1. Schematic diagrams of the strategies in [3, 10] and this 
paper. Here we only take the neighborhood of one sample (Xi, yi) 
as an example. In both Figure (a) and (b), the left part is the 
situation of neighborhood before training and the right part 
delineates the situation after training. Data with similar labels are 
marked in the same shape and color. 
 

Attempts have been made to reduce the gap between the 
feature space and its corresponding semantic space, such as 
manifold learning [23]. As plotted in Figure 1(a), a critical 
situation considered by [3, 10] is that, two neighboring 
points in the feature space are with large distance in the 
semantic space. Note that, unlike [3, 10], in regression 
problems it is not necessary to leave a margin among points 
of different labels, as the transition between labels are 

251



 

 

continuous and smooth. 
But what if the blue squared point shown in Figure 1(b) 

is impossible to be detached away? There exist three 
explanations for such situation: 1) The blue squared point is 
an outlier; 2) The dimensionality of the distance function 
learning algorithm 6 or the feature space is not high enough; 
3) Under the defined optimality criterion, it does not worth 
to detach this “heretical” point away. The actual situation 
might be a combination of the above three. But whatever 
reason it is, our strategy is to compromise by lowering our 
expectation on the desired distance ddij and making it closer 
to the currently achieved distance adij . 

Our observation is that, an appropriate desired distance 
ddij is of crucial importance, and it should reconcile the 
inconsistencies between the ideal distance idij  and a 
previously achieved distance adij . The chosen ddij should 
correspond to a transitional space between the semantic 
space and the currently learned space, so that the distance 
function learning process is essentially a process of 
transiting from the feature space to the semantic space. 

Eq.(1) in [13] and Eq.(7) in [10] composed two metrics 
in a multiplicative way, and the resulting distance function 
does not satisfy the triangle inequality (An obvious 
counterexample is to combine two three-point metrics both 
with d(a,b)=1, d(b,c)=1, d(a,c)=2). 

Although Tan et al. [12] argued that, non-metric 
distances might fit practical problems better than metrics. 
In their face image matching problem, their observation is 
based on a rationale intuitively explained as, both a human 
and a horse may be similar to a centaure, but a human and a 
horse is not similar to each other. This motivates them to 
use min{} function to define the similarity measure as the 
most similar sub-block between face images, and 
consequently the triangle inequality property is lost. But the 
situation is not analogous in either head pose estimation or 
age estimation: If age 31 is similar to age 32, and age 32 is 
similar to age 33, it is improper to claim that, age 31 is not 
similar to age 33. 

In this paper, we set the desired distance in the current 
iteration to be a weighted sum of the ideal distance and the 
achieved distance in the previous iteration: 

(1 ) 0 1ij ij ijdd id adα α α= + − < <       (7) 
Where α is a weight adjusting the importance of idij  and adij . 
It is not difficult to prove that, if idij  and adij  are both 
metrics, ddij is also a metric. 

Normally, it is not feasible to add two values of different 
scales and units, but idij  and adij  is supposed be close, since 
adij  tries to approximate idij . Note that, the weighted sum 
here is component-wise: if adij  is closer to ddij (and also idij  
very probably) for certain i and j in the previous iteration, 
the component ddij will be updated to be closer toward idij  
in the current iteration independently, regardless of other 
 

6  Here, the dimensionality of a regressor refers to the 
Vapnik–Chervonenkis dimension based complexity, see [24] for details. 

component e.g. ddi'j' (i '≠i or j '=j). 
Initially, adij  is set to be proportional to the Euclidean 

distance 7 of the feature space. The pseudo-code of the 
proposed iterative framework is outlined as follows: 
1. Initialize adij  according to the Euclidean distance 
between Xi and Xj 
2. ddij = α idij  + (1– α) adij  
3. adij= d(Xi, Xj), where d(Xi, Xj) is the output of the trained 
NN with ddij as target value 
4. If the stopping criterion is not met, goto step 2 

The stopping criterion is met when the average update of 
adij  in the current iteration is less than 0.01. A trick to save 
computing cost is that, we simply leave the weight and bias 
values of the NN in the previous iteration as the initial 
weight and bias values in the current iteration. From the 
perspective of NN, our algorithm may be viewed as a 
weight and bias value updating algorithm, in which, once 
the learned NN converges to target value ddij, the target 
value ddij is modified in terms of Eq.(7), and then weight 
and bias adjustment is needed again, so such process 
iterates. Figure 2 is a visualization of samples in the space 
based on iteratively learned distance functions. It shows 
that, after 3 iterations the aging trend is gradually clear. 

5. Experimental Results 
The final learned distance d(Xi, Xj) is combined with the 

common regression technique kNN with k=10. Our method 
is tested on the FG-NET database that actually serve as 
benchmark for human age estimation methods [10, 26-33]. 

Each face image in FG-NET has 68 labeled points 
characterizing shape features, which are combined with 
appearance features to form a face representation of 200 
parameters [26-28,30,31], called Active Appearance Model 
(AAM) [25]. Figure 3 gives some typical AAM labeled 
face images. We follow the popular test scheme, namely 
Leave-One-Person- Out (LOPO), which was usually taken 
for the FG-NET database, as suggested in [10, 26, 27, 
30-33]. 

For performance evaluation, two widely used criteria in 
[10, 26, 27, 30-33] are adopted: Mean Absolute Error 
(MAE) and Cumulative Score (CS). The MAE is defined as 
the average of the absolute errors between the estimated 
and the ground truth ages, *

1
| | /M

i ii
MAE y y M

=
= −∑ , where 

yi is the ground truth age for the test sample, y*
i is the 

estimated age, and M is the total number of test samples. 
The CS is defined as CS(w)=Me≤w/M×100%, where Me≤w is 
the number of test samples on which the absolute error of 
estimated age is no higher than w years. 

Table 2 and Figure 4 is the MAE over different age 
intervals and the CS of our method respectively. Compared 
 
7 It is scaled so that the mean of such Euclidean distance equals to the 
mean of idij . Note that, distance itself is first order derivative and we do 
not need to scale according to its variance. 
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Figure 2. The two rows illustrate the 2-D and 3-D view of FG-NET age data learned by our NN distance function in the first 3 iterations. 
The data points of age from 0 to 69 are colored from blue to red. 
 

 

 
Figure 3: Some typical sample images of FG-NET Aging 
Database. The 68 red spots are landmark points labeled by AAM. 
The first row shows collected aging images from the same person 
and the last row is from different persons. Ground truth age is 
displayed at the top of each image. Because original images in the 
database are not of the same size, they are properly scaled for 
displaying purpose. 
 

 
Figure 4. Cumulative scores on the FG-NET databases of the 
methods in [10, 32, 33] and this paper 
 
to recent methods in [32, 33], 1) our method has smaller 
MAE over almost all age intervals; 2) the CS(w) of our 
method is evidently higher when 3≤w≤6, which manifests 
the robustness of our method, because the absolute error of 
our estimated age tends to fall between 3 and 6 years rather 
than a larger range over 10 years. 

As a performance baseline for regression algorithms, 
two popular discretization algorithms, the entropy method 
and the density method in [15], are used to compute split 
points, so that every numerical age label yi falls into an age 
interval (i.e. an age bin) and then classification algorithms 
such as [3] can be applied in a brute force way. In order to 
get lower MAE, we manually tune the number of splits and 
find that, 38 split points are the best for the FG-NET dataset. 
We also tried a scheme that directly sets Xi as the inputs and 
yi as the target values to the NN illustrated in Section 3 and 
report the MAE under the name “direct NN” in Table 3. 
Table 3 shows that, neither direct NN nor binning plus 
classification can give satisfactory regression accuracy. An 
explanation is that, turning the problem to classifying age 
bins demands more samples to depict the infrastructure of 
each age bin class. This is exactly a prominent challenge of 
FG-NET, as it does not provide sufficient samples over 
some age intervals. As a series of previous literature, we 
also present an up-to-date performance comparison among 
the state of the art in Table 4. 

Table 2: MAEs over different age intervals of our method 
Age Interval #img. FG-NET 

0-9 371 2.04 
10-19 339 4.69 
20-29 144 3.84 
30-39 79 6.73 
40-49 46 14.30 
50-59 15 23.60 
60-69 8 29.22 
70-93 0 – 

Overall 1002 4.67 

Table 3. MAE comparison of suboptimal methods as baseline 
Method FG-NET 

Entropy Binning[15]+Classifier[3] 18.06 
Density Binning[15]+Classifier[3] 17.42 

direct NN 7.13 

3                18                 30                45                 54

22                 0                  16                55               69
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Table 4. MAE comparison of different methods 
Method FG-NET 

WAS[27] 8.06 
AGES[27] 6.77 

KAGES[28] 6.18 
QM[29] 6.55 

MLPs[29] 6.98 
RUN[30] 5.78 
BM[31] 5.33 

LARR[26] 5.07 
PFA[32] 4.97 
RPK[33] 4.95 

Linear metric+GPR[10] 5.08 
Proposed 4.67 

6. Concluding Remarks 
In this paper we propose an iterative framework for 

distance function learning in regression problems, of which, 
as an example, the single iteration module is chosen to be a 
CPPN and the assembled algorithm is applied for human 
age estimation. We expect to see more applications of this 
framework to other challenging regression problems. 
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