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Abstract 

 
Sparse representation based classification has led to 

interesting image recognition results, while the dictionary 
used for sparse coding plays a key role in it. This paper 
presents a novel dictionary learning (DL) method to 
improve the pattern classification performance. Based on 
the Fisher discrimination criterion, a structured dictionary, 
whose dictionary atoms have correspondence to the class 
labels, is learned so that the reconstruction error after 
sparse coding can be used for pattern classification. 
Meanwhile, the Fisher discrimination criterion is imposed 
on the coding coefficients so that they have small 
within-class scatter but big between-class scatter. A new 
classification scheme associated with the proposed Fisher 
discrimination DL (FDDL) method is then presented by 
using both the discriminative information in the 
reconstruction error and sparse coding coefficients. The 
proposed FDDL is extensively evaluated on benchmark 
image databases in comparison with existing sparse 
representation and DL based classification methods. 
 

1. Introduction 
The past several years have witnessed the rapid 

development of the theory and algorithms of sparse 
representation (or coding) [30] and its successful 
applications in image restoration [1-3] and compressed 
sensing [4]. Recently sparse representation techniques have 
also led to promising results in image classification, e.g. 
face recognition (FR) [5-7, 10, 31], digit and texture 
classification [8-9, 11-12], etc. The success of sparse 
representation based classification owes to the fact that a 
high-dimensional image can be represented or coded by a 
few representative samples from the same class in a 
low-dimensional manifold, and the recent progress of 
l0-norm and l1-norm minimization techniques [28].   

In sparse representation based classification, there are 
two phases: coding and classification. First, the query 
signal/image is collaboratively coded over a dictionary of 
atoms with some sparsity constraint, and then classification 

is performed based on the coding coefficients and the 
dictionary. The dictionary for sparse coding could be 
predefined. For example, Wright et al. [5] directly used the 
training samples of all classes as the dictionary to code the 
query face image, and classified the query face image by 
evaluating which class leads to the minimal reconstruction 
error. Although this so called sparse representation based 
classification (SRC) scheme shows interesting FR results, 
the dictionary used in it may not be effective enough to 
represent the query images due to the uncertain and noisy 
information in the original training images. The number of 
atoms of such a dictionary can also be very big, which 
increases the coding complexity. In addition, using the 
original training samples as the dictionary could not fully 
exploit the discriminative information hidden in the 
training samples. On the other hand, using analytically 
designed off-the-shelf bases as dictionary (e.g., [8] uses 
Haar wavelets and Gabor wavelets as the dictionary) might 
be universal to all types of images but will not be effective 
enough for specific type of images such as face, digit and 
texture images. In fact, all the above mentioned problems 
of predefined dictionary can be addressed, at least to some 
extent, by learning properly a non-parametric dictionary 
from the original training samples. 

Dictionary learning (DL) aims to learn from the training 
samples the space where the given signal could be well 
represented or coded for processing. Many DL methods 
have been proposed for image processing [1, 3, 17] and 
classification [9-16]. One representative DL method for 
image processing is the KSVD algorithm [17], which learns 
an over-complete dictionary from a training dataset of 
natural image patches. However, KSVD is not suitable for 
classification tasks because it only requires that the learned 
dictionary could faithfully represent the training samples. 
Based on KSVD, Mairal et al. [14] added a discriminative 
reconstruction constraint in the DL model to gain 
discrimination ability, and used the learned dictionary for 
texture segmentation and scene analysis; however, this 
method is not convex and it does not explore the 
discrimination capability of sparse coding coefficients. 
Later, Mairal et al. [9] proposed a discriminative DL 
method by training a classifier of the coding coefficients, 
and verified their method for digit recognition and texture 
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classification. In [16], Pham et al. proposed a joint learning 
and dictionary construction method with consideration of 
the linear classifier performance and applied their method 
to object categorization and FR. Based on [16], Zhang et al. 
[10] proposed an algorithm called discriminative KSVD 
(DKSVD) for FR. All the works in [9], [10] and [16] try to 
learn a common dictionary shared by all classes, as well as 
a classifier of coefficients for classification. However, the 
shared dictionary loses the correspondence between the 
dictionary atoms and the class labels, and hence performing 
classification based on the reconstruction error associated 
with each class is not allowed. Different from these works, 
Yang et al. [13] learned a dictionary for each class and 
obtained better FR results than SRC. Ramirez et al. [11] 
used an incoherence promoting term to make the 
dictionaries associated with different classes as 
independent as possible. These methods use the 
reconstruction error associated with each class as the 
discriminative information for classification, but they do 
not enforce discriminative information into the sparse 
coding coefficients. 

In this paper we propose a new discriminative DL 
framework which employs the Fisher discrimination 
criterion to learn a structured dictionary (i.e. the dictionary 
atoms have correspondence to the class labels so that the 
reconstruction error associated with each class can be used 
for classification). Meanwhile, the Fisher discrimination 
criterion is imposed on the coding coefficients to make 
them discriminative. To this end, in the DL process we 
make the sparse coding coefficients have small within-class 
scatter but big between-class scatter, and at the same time 
we make each class-specific sub-dictionary in the whole 
structured dictionary have good representation ability to the 
training samples from the associated class but poor 
representation ability for other classes. With the proposed 
Fisher discrimination based DL (FDDL) method, both the 
reconstruction error and the coding coefficient will be 
discriminative, and hence a new classification scheme is 
proposed to exploit such information. The FDDL method is 
applied to face, digit and gender recognition to evaluate its 
performance. Compared with the SRC method [5], not only 
higher classification accuracy is got by FDDL, but also a 
smaller dictionary can be learnt (e.g., on the Extended Yale 
B database, the learnt dictionary by FDDL with only 8 
atoms per class could still achieve better FR performance 
than SRC with 20 atoms per class). Compared with other 
state-of-the-art methods, FDDL has competitive 
performance in various pattern recognition tasks. 

The rest of this paper is organized as follows. Section 2 
briefly introduces the SRC scheme in [5]. Section 3 
presents the proposed FDDL model. Section 4 describes 
the optimization procedure of FDDL. Section 5 presents 
the FDDL based classifier. Section 6 conducts experiments, 
and Section 7 concludes the paper. 

2. Brief introduction of SRC 
Wright et al. [5] proposed the sparse representation 

based classification (SRC) method for robust face 
recognition (FR). Suppose that we have c classes of 
subjects, and let A = [A1, A2, …, Ac] be the set of original 
training samples, where Ai is the sub-set of the training 
samples from class i. Denote by y a testing sample. The 
procedures of SRC are as follows. 

i.) Sparsely code y on A via l1-norm minimization 

{ }2

2 1
ˆ arg min A γ= − +α y

α
α α ,               (1) 

where γ is a scalar constant. 
ii.) Do classification via 

( ) { }identity arg min ii
e=y ,                    (2) 

where 
2

ˆi i ie A= −y α , 1 2ˆ ˆ ˆ ˆ[ ; ; ; ]c=α α α α  and ˆiα  is 

the coefficient vector associated with class i. 
SRC use the reconstruction error ei associated with each 

class to do FR. Impressive results were reported in [5].  

3. Fisher discrimination dictionary learning 
To improve the performance of previous DL methods, 

we propose here a novel Fisher discrimination based DL 
(FDDL) scheme. Instead of learning a shared dictionary to 
all classes, we learn a structured dictionary D = [D1, D2, …, 
Dc], where Di is the class-specified sub-dictionary 
associated with class i, and c is the total number of classes. 
With such a D, we could use the reconstruction error for 
classification, as that in the SRC method [5].  

Denote by A=[A1, A2, …, Ac] the set of training samples, 
where Ai is the sub-set of the training samples from class i. 
Denote by X the coding coefficient matrix of A over D, i.e. 
A≈DX. We can write X as X = [X1, X2, …, Xc], where Xi is 
the sub-matrix containing the coding coefficients of Ai over 
D. Apart from requiring that D should have powerful 
reconstruction capability of A, we also require that D 
should have powerful discriminative capability of images 
in A. To this end, we propose the following FDDL model: 

( ) ( ){ }( , ) 1 21
( , )

arg min , ,D X
D X

J r A D X X f Xλ λ= + + ,   (3) 

where r(A,D,X) is the discriminative fidelity term; ||X||1 is 
the sparsity constraint; f(X) is a discrimination constraint 
imposed on the coefficient matrix X; and λ1 and λ2 are 
scalar parameters. Next let’s discuss the design of r(A,D,X) 
and f(X) based on the Fisher discrimination criterion. 

3.1. Discriminative fidelity term r(A,D,X) 
We can write Xi, the representation of Ai over D, as Xi 

=[Xi
1; …; Xi

j; …; Xi
c], where Xi

j is the coding coefficient of 
Ai over the sub-dictionary Dj. Denote the representation of 
Dk to Ai as Rk=DkXi

k. First of all, the dictionary D should be 
able to well represent Ai, and there is Ai≈DXi=D1Xi

1+…+ 
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DiXi
i+…+ DcXi

c= R1+…+Ri+…+Rc. Second, since Di is 
associated with the ith class, it is expected that Ai should be 
well represented by Di but not by Dj, j≠i. This implies that 
Xi

i should have some significant coefficients such that 
||Ai-DiXi

i|| 2 
F is small, while Xi

j should have nearly zero 
coefficients such that ||DjXi

j||2 
F is small. Thus we define the 

discriminative fidelity term as 

( ) 2 22
1, , ci j

ji i i i i i i j iF F Fj i
r A D X A DX A D X D X=

≠
= − + − +∑ . 

(4) 
An intuitive explanation of three terms in r(Ai,D,Xi) is 

shown in Fig. 1. Fig. 1(a) shows that although D is ensured 
to represent Ai well, Ri may deviate much from Ai so that Di 
could not well represent Ai. If we add another constraint 
that ||Ai-DiXi

i|| 2 
F  is small, better discrimination will be 

achieved, as shown in Fig. 1(b). Nonetheless, Ai may also 
be well represented by other sub-dictionaries, e.g. Di-1 in 
Fig. 1(b), which reduces the discrimination capability of D. 
With the third constraint that the representation of Dj, j≠i, to 
Ai is small, the proposed discriminative fidelity term could 
overcome this problem, as shown in Fig.1(c). 

 
      (a)                            (b)                           (c) 

Figure 1: Illustration of the discriminative fidelity term. (a) Only 
D is required to well represent Ai. (b) Both D and Di are required 
to well represent Ai. (c) The discriminative fidelity term in Eq. (4). 

3.2. Discriminative coefficient term f(X) 
To make dictionary D be discriminative for the samples 

in A, we can make the coding coefficient of A over D, i.e. X, 
be discriminative. Based on some criterion such as the 
Fisher discrimination criterion [18], this can be achieved by 
minimizing the within-class scatter of X, denoted by SW(X), 
and maximizing the between-class scatter of X, denoted by 
SB(X). SW(X) and SB(X) are defined as 

( ) ( )( )1 k i

c T
W k i k ii X

S X
= ∈

= − −∑ ∑ x
x m x m , 

( ) ( )( )1

c T
B i i ii

S X n
=

= − −∑ m m m m , 

where mi and m are the mean vector of Xi and X 
respectively, and ni is the number of samples in class Ai. 

Intuitively, we can define f(X) as tr(SW(X))－tr(SB(X)). 
However, such an f(X) is non-convex and unstable. To 

solve this problem, we propose to add an elastic term ||X||2 
F 

into f(X). So f(X) is defined as 
 f(X)= tr(SW(X))− tr(SB(X))+ η||X||2 

F,              (5) 
where η is a parameter. We will further discuss the 
convexity of f(X) in Section 4.  

3.3. The FDDL Model 
By incorporating Eqs. (4) and (5) into Eq. (3), we have 

the following FDDL model: 

( )

( ) ( )( )( )
1 11

( , ) 2
( , )

2

, ,
arg min

c
i ii

D X
D X

W B F

r A D X X
J

tr S X S X X

λ

λ η

=
⎧ ⎫+ +⎪ ⎪= ⎨ ⎬

− +⎪ ⎪⎩ ⎭

∑
. (6) 

Although the objective function J in Eq. (6) is not jointly 
convex to (D, X), it is convex with respect to each of D and 
X when the other is fixed. Therefore, an algorithm of 
alternatively optimizing D and X can be designed. Detailed 
optimization procedures are presented next in Section 4.  

4. Optimization of FDDL 
The FDDL objective function in Eq. (6) can be divided 

into two sub-problems: updating X by fixing D; and 
updating D by fixing X. The procedures are iteratively 
implemented for the desired discriminative dictionary D 
and the discriminative coefficients X. 

First, suppose that D is fixed, and the objective function 
J(D,X) in Eq. (6) is reduced to a sparse coding problem to 
compute X = [X1, X2, …, Xc]. Here we compute Xi class by 
class. When compute Xi, all Xj, j≠i, are fixed. Thus the 
objective function in Eq. (6) is further reduced to:  

( )
( )

{ }1 21
arg min ( , , ) ( )

i
i

i i i i iX
X

J r A D X X f Xλ λ= + +     (7) 

with  
( ) 2 2 2

1

c
i i i i k iF F Fk

f X X M M M Xη
=

= − − − +∑ , 
where Mk and M are the mean vector matrices (by taking nk 
mean vectors mk or m as its column vectors) of class k and 
all classes, respectively. It can be proved that if η>1-ni/n, 
fi(Xi) is strictly convex to Xi (please refer to Appendix A), 
where ni and n are the number of training samples in the ith 
class and all classes, respectively. In order to make fi(Xi) not 
only convex but also have enough discrimination, we set 
η=1. Then we can see that all the terms in Eq. (7), except 
for ||Xi||1, are differentiable, and Eq. (7) is strictly convex. 
The Iterative Projection Method (IPM) in [19] can be 
employed to solve Eq. (7), as described in Appendix B. 

When X is fixed, we update Di class by class. When 
update Di, all Dj, j≠i, are fixed. Now the objective function 
in Eq. (6) is reduced to: 

( )
( )

2

1,

2 2

1,

arg min
i

i

ci j
i jj j i F

D
cD i i

i i i i jj j iF F

A D X D X
J

A D X D X

= ≠

= ≠

⎧ ⎫− − +⎪ ⎪= ⎨ ⎬
⎪ ⎪− +⎩ ⎭

∑

∑
,      (8) 
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where X i is the coding coefficients of A over Di. 
In general, we require that each column of the dictionary 

Di, denoted by di
l, is a unit vector. Eq. (8) is a quadratic 

programming problem and it can be solved by using the 
algorithm in [13], which updates Di atom by atom.  

 
Table 1: Algorithm of Fisher Discrimination Dictionary Learning 

Fisher Discrimination Dictionary Learning 
1. Initialization D. 

We initialize all the pi atoms of each Di as random vectors 
with unit l2-norm. 

2. Update the sparse coding coefficients X. 
Fix D and solve Xi, i=1,2,…,c, one by one by solving Eq. (7) 
with the algorithm in Table 7 in Appendix B. 

3. Updating dictionary D. 
Fix X and update each Di, i=1,2,…,c, by solving Eq. (8) with 
the method presented in [13].  

4. Output. 
Return to step 2 until the values of J(D,X) in adjacent iterations 
are close enough, or the maximum number of iterations is 
reached. Output X and D. 
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                      (b)                                        (c) 
Figure 2: An example of FDDL process on the Extended Yale B 
face database. (a) The convergence of FDDL. (b) The curve of 
tr(SW(X))/tr(SB(X)) versus iteration number. (c) The curves of the 
reconstruction error of Di to Ai and the minimal reconstruction 
error of Dj to Ai, j≠i, versus the iteration number. 

 
The algorithm of FDDL is summarized in Table 1. 

FDDL converges since the two alternative optimizations in 
it are both convex. Fig. 2(a) illustrates the convergence of 
FDDL. Fig. 2(b) shows that the ratio tr(SW(X))/tr(SB(X)) 
(essentially the same as tr(SW(X))−tr(SB(X)) in representing 
the discrimination ability of X but is invariant to the scale of 
X) decreases as the iteration number increases, which 
indicates that X is discriminative after learning the 
dictionary D. Fig. 2(c) plots the curves of ||Ai-DiXi

i||F (i=10 
here) and the minimal value of ||Ai-DjXi

j||F, j=1,2,…,c, j≠i, 

showing that Di could represent Ai well, but Dj,  j≠i , has 
poor representation ability to Ai. 

With FDDL, we could use the sparse coding coefficients 
of each class, i.e., Xi, to compute the mean coefficient 
vector of that class, denoted as mi, which will then be used 
for the testing sample classification. 

5. The classification scheme 
When D is available, a testing sample can be classified 

via coding it over D. Based on the employed dictionary D, 
different information can be utilized for the classification 
task. In [16] and [10], a common dictionary is shared by all 
classes, and the sparse coding coefficients are used for 
classification. In SRC [5], the original training samples are 
used to form a structured dictionary to code the testing 
sample, and the reconstruction error associated with each 
class is used for classification. Compared to SRC, in [14] 
and [11] the testing sample is coded on each sub-dictionary 
associated with each class, and then the reconstruction 
error is computed for classification.   

Although the methods in [5, 10, 11, 14, 16] lead to good 
results, they cannot use both the reconstruction error and 
the coding coefficient for image classification. With the 
proposed FDDL, however, the learned dictionary D will 
make both the reconstruction error and the coding 
coefficient discriminative. Naturally, we can make use of 
both of them for more accurate classification results. 
According to the situation of training samples, we propose 
two classification schemes, the global classifier (GC) and 
local classifier (LC). 

1) GC: When the number of training samples of each 
class is relatively small, the learned dictionary Di may not 
be able to faithfully represent the testing samples of this 
class, and hence we code the testing sample y over the 
whole dictionary D. In this case, the sparse coding 
coefficients could be got by solving 

{ }2

2 1
ˆ arg min D γ= − +y

α
α α α ,              (9) 

where γ is a constant. Denote by 1 2ˆ ˆ ˆ ˆ[ ; ; ; ]c=α α α α , where 
ˆiα  is the coefficient vector associated with sub-dictionary 

Di. We define the metric for final classification as 
2

2
ˆi i ie D= − +y α 2

2
ˆ iw ⋅ −α m ,              (10) 

where the first term is the reconstruction error by class i, the 
second term is the distance between the coefficient vector 
α̂  and the learned mean vector im  of class i, and w is a 
preset weight to balance the contribution of the two terms. 
The classification of y is made by Eq. (2). 

2) LC: When the number of training samples of each 
class is relatively large, the learned dictionary Di is able to 
well span the sample space of class i, and thus we could 
directly code y by Di to reduce the computational cost and 
the interference of other dictionaries. Denote by mi = 
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[mi
1;…;mi

k;…;mi
c], where mi

k is the sub-vector associated 
with sub-dictionary Dk. The coding coefficients associated 
with Di are got by solving 

{ }22
1 22 1 2

ˆ arg min i
i iD γ γ= − + + −

α
α α α αy m ,   (11) 

where γ1 and γ2 are constants. Here we require that not only 
Di should well code y with sparse coefficients, but also the 
coding vector α should be close to mi

i, the ith-class trained 
mean vector associated with sub-dictionary Di. Hence the 
metric for final classification is defined as  

22
1 22 1 2

ˆ ˆ ˆ i
i i ie D γ γ= − + + −y mα α α .           (12) 

The final classification rule is the same as Eq. (2). 

6. Experimental results 
We verify the performance of FDDL on applications 

such as FR, digit recognition and gender classification. 
Since the number of training samples is often small in FR, 
we used GC as the classifier. For digit recognition, each 
class has many training samples and thus we used LC as the 
classifier. For gender classification, we tested both the 
classifiers. The source code of FDDL can be found at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.  
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Figure 3: The recognition rates of FDDL and SRC versus the 
number of dictionary atoms. 

6.1. Parameter selection 
One important parameter in FDDL is the number of 

atoms in Di, denoted by pi. For FDDL, we usually set all the 
pi equal, i=1,2,…c. We use SRC as the baseline method, 
and analyze the effect of pi on the performance of FDDL. 
We take FR on Extended Yale B [21-22] as an example (the 
experiment setting is given in next subsection). Because 
SRC uses the original training samples as dictionary, we 
randomly select pi training samples as dictionary atoms and 
run 10 times the experiment to get the average recognition 
rate. Fig. 3 plots the recognition rates of FDDL and SRC 
versus different number of dictionary atoms. We can see 
that in all cases FDDL has about 3% improvement over 
SRC. Especially, even with the atom number pi=8, FDDL 
can still have higher recognition rate than SRC with pi=20. 
Besides, from pi=20 to pi=8, FDDL’s recognition rate drops 
by 2.2%, compared to 4.2% for SRC. This shows that 
FDDL is able to compute a compact and representative 

dictionary, which has less computational cost and higher 
recognition rate than SRC. The time complexity of FDDL 
classification is comparable to DLSI, and a little higher 
than DKSVD (shared dictionary with a smaller size).  

In all experiments, if no specific instructions, the tuning 
parameters in FDDL (λ1 and λ2 in dictionary learning phase, 
γ and w in GC or γ1 and γ2 in LC) and the parameters of 
competing methods are evaluated by 5-fold cross validation 
to avoid over-fitting.  

6.2. Face recognition 
We apply the proposed algorithm to FR on the Extended 

Yale B [21-22], AR [23], and Multi-PIE [24] face 
databases. In order to clearly illustrate the advantage of the 
proposed method, we compare FDDL with SRC, two latest 
DL based classification methods (discriminative KSVD 
(DKSVD) [10] and dictionary learning with structure 
incoherence (DLSI) [11]) and two popular classification 
methods (nearest neighbor (NN) and linear support vector 
machines (SVM)). Note that the original DLSI method 
codes the testing sample by each class. For a fair 
comparison, we also gave the results (denoted by DLSI*) 
by coding the testing sample over the whole dictionary and 
using the reconstruction error for classification. The 
default number of dictionary atoms in FDDL on each 
class is set as the number of training samples. The 
Eigenface [25] with dimension 300 is used in all FR 
experiments, and the parameters of FDDL chosen by 
cross-validation are λ1=0.005, λ2=0.005, γ=0.001, w=0.05 
for Extended Yale B, λ1=0.005, λ2=0.05, γ=0.005 and 
w=0.05 for AR, and λ1=0.005, λ2=0.05, γ=0.01 and w= 1 
(0.5) for MPIE Test 1 (Test 2). 

 
a) Extended Yale B: The Extended Yale B database 

consists of 2,414 frontal-face images from 38 individuals 
(about 64 images per subject) captured under various 
laboratory-controlled lighting conditions. For each subject, 
we randomly selected 20 images for training with the 
remaining images for testing (the experimental setting is 
more difficult than that in [5]). The images were 
normalized to 54×48. The results of FDDL, SRC, NN, 
SVM, DKSVD and DLSI are listed in Table 2. It can be 
seen that FDDL improves at least 2% over the other 
methods. DKSVD, which only uses coding coefficients for 
classification, does not work well. DLSI* has better results 
than DLSI, showing that coding the query image on the 
whole dictionary is more reasonable in this case. 

 
b) AR: The AR database consists of over 4,000 frontal 

images from 126 individuals. For each individual, 26 
pictures were taken in two separated sessions. As in [5], in 
the experiment we chose a subset consisting of 50 male 
subjects and 50 female subjects. For each subject, the 7 
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images with illumination and expression changes from 
Session 1 were used for training, and the other 7 images 
with the same condition from Session 2 were used for 
testing. The size of original face image is 60×43. The 
comparison between competing methods is shown in Table 
3. Again, FDDL has at least 3% improvement over the 
other methods. DLSI* has the second best performance; 
however, DLSI gets the second worst results because each 
class has only 7 training samples in this experiment.  
Table 2: The recognition rates of various methods on the 
Extended Yale B database. 

Method SRC NN SVM DKSVD DLSI 
DLSI* FDDL

Recognition 
rate 0.900 0.617 0.888 0.753 0.850 

0.890* 0.919 

Table 3: The recognition rates of various methods on the AR 
database. 

Method SRC NN SVM DKSVD DLSI 
DLSI* FDDL

Recognition 
rate 0.888 0.714 0.871 0.854 0.737 

0.898* 0.920 

 
Table 4: The recognition rates of various methods on the 
Multi-PIE database. 

Method SRC NN SVM DKSVD DLSI 
DLSI* FDDL 

Test 1 0.955 0.902 0.916 0.939 0.914 
0.941* 0.967 

Test 2 0.961 0.947 0.922 0.898 0.949 
0.959* 0.980 

 
Table 5: Error rates of various methods on digit recognition. 

Algorithms Error rate (%) 
FDDL 3.69 
SRSC 6.05 
REC-L 6.83 
REC-BL 4.38 
SDL-G 6.67 
SDL-D 3.54 
DLSI 3.98 
KNN 5.2 
SVM-Gauss 4.2 

 
c) Multi-PIE: The CMU Multi-PIE face database [24] is 

a large scale database of 337 subjects including four 
sessions with simultaneous variations of pose, expression 
and illumination. Among the 337 subjects, we chose the 
first 60 subjects presented in Session 1 as the training set. 
For each of the 60 training subjects, we used the frontal 
images of 14 illuminations1, taken with neutral expression 
(for Test 1) or smile expression (for Test 2), for training. 
For the test set, we used the frontal images of 10 
illuminations2 from Session 3 with neutral expression (for 

 
1 Illuminations {0,1,3,4, 6,7,8,11,13,14,16,17,18,19}. 
2 Illuminations {0,2,4,6,8,10,12,14,16,18}. 

Test 1) or smile expression (for Test 2). Note that Session 1 
and Session 3 were recorded with a long time interval. The 
images were manually cropped and normalized to 100×82. 

For FDDL, the dictionary size of each class is set as half 
of the number of training samples. The experimental results 
of different methods are listed in Table 4. We can see that 
compared with the previous methods, FDDL has at least 
1% (in Test 1) or 2% (in Test 2) improvement with a 
smaller dictionary. SRC works the second best.  

In all the FR experiments, DLSI* advances DLSI, and 
DKSVD is worse than FDDL, SRC and DLSI*, which may 
imply that the reconstruction error associated with each 
class is more powerful than the coding coefficients in face 
classification.  

6.3. Digit recognition 
We then perform handwritten digit recognition on the 

widely used USPS database [26] with 7,291 training and 
2,007 testing images. We compare the proposed FDDL 
with state-of-the-art methods reported in [11], [9] and [8]. 
These methods include the best reconstructive DL method 
with linear and bilinear classifier models (denoted by 
REC-L and REC-BL) [9], the best supervised DL method 
with generative training and discriminative training 
(denoted by SDL-G and SDL-D) [9], the best result of 
sparse representation for signal classification (denoted by 
SRSC) [8] and the best result of DLSI [11]. In addition, 
some results of problem-specific methods (i.e., the standard 
Euclidean k_NN and SVM with a Gaussian kernel) 
reported in [11] are also listed. Here the original image 
(16×16) is directly used as the feature and the dictionary of 
each class has 90 atoms in FDDL with λ1 =γ1=0.1, λ2=0.001, 
and γ2=0.005.  

 

   
 

Figure 4: The learned bases of digits 8 and 9 by FDDL. 
 

Fig. 4 illustrates the learned bases of digits 8 and 9. Table 
5 lists the results of FDDL and its competing methods. We 
see that FDDL outperforms all the competing methods 
except for SDL-D (FDDL and SDL-D have very close 
results). It should be noted that SDL-D uses more 
information in DL and classification processes, including a 
learnt classifier of coding coefficients, the sparsity of 
coefficients, and the reconstruction error. In addition, the 
optimization of SDL-D method is much more complex than 
that of FDDL.  
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6.4. Gender classification 
In this experiment we chose a non-occluded subset (14 

images per subject) of AR consisting of 50 male subjects 
and 50 female subjects. Images of the first 25 males and 25 
females were used for training, and images of the 
remaining 25 males and 25 females for testing. We used 
PCA to reduce the dimension of each image to 300. In 
addition, we present the result of DLSI# (coding on the 
whole dictionary and classifying like SRC). Here pi is set as 
250 for FDDL and RBF kernel is adopted in SVM. 

Table 6 lists the recognition results of FDDL and the 
competing methods. It can be seen that FDDL with LC gets 
the best result when coding the testing image by the 
dictionary of each class (1.4% improvement over the 
second best one, DLSI); while FDDL with GC gets the best 
result when coding the test sample over the whole 
dictionary (1.1% higher than the second best one, SRC). 
Meanwhile, we can see that DLSI and FDDL with LC have 
better performance than DLSI# and FDDL with GC, 
respectively. This is because in gender classification, there 
are only two classes and each class has enough training 
samples so that the learned dictionary of each class is 
representative enough for the testing sample. 

  
Table 6: The results of different methods on gender classification 
using the AR database. 

SRC DK- 
SVD 

DLSI 
DLSI# 

FDDL with LC 
FDDL with GC 

SVM NN 

0.930 0.861 0.940 
0.900 

0.954 
0.941 

0.924 0.907 

7. Conclusion and discussion 
In this paper, we proposed a Fisher Discrimination 

Dictionary Learning (FDDL) approach to sparse 
representation based image classification. The FDDL aims 
to learn a structured dictionary whose sub-dictionaries have 
specific class labels. The discrimination ability of FDDL is 
two-folds. First, each sub-dictionary of the learned whole 
dictionary has good representation power to the samples 
from the corresponding class, but has poor representation 
power to the samples from other classes. Second, FDDL 
will result in discriminative coefficients by minimizing the 
with-class scatter and maximizing the between-class scatter 
of them. Consequently, we presented the classification 
schemes associated with FDDL, which use both the 
discriminative reconstruction error and sparse coding 
coefficients to classify the input query image. The 
experimental results on face recognition (FR), digit 
recognition and gender classification clearly demonstrated 
the superiority of FDDL to many state-of-the-art dictionary 
learning based methods. In future, we will apply FDDL to 
other classification tasks such as object recognition. 

Very recently, Zhang et al. [32] indicated that it is the 

collaboratively representation strategy in SRC, but not the 
l1-norm sparsity constraint, that truly helps FR. Based on 
our experimental experience, removing ||X||1 and preserving 
only the term ||X||2 

F  in the FDDL model in Eq. (6), and 
replacing  |α|1 by ||α||2 

2  in Eqs. (9) and (11) can indeed lead 
to similar FR results but with much less computational cost. 
However, it is not clear yet if this is true to other pattern 
classification tasks. It needs more investigation about the 
role of l1-norm sparsity in dictionary learning.  
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Appendix A: The convexity of fi(X) 
 

Let [ ]1
i j

j
i n n

E
×

=  be a matrix of size ni × nj with all 

entries being 1, and let 
i i

i
i n n i iN I E n×= − , 

i i
i i i iP E n E n= − , j j

i iC E n= .  

From ( ) 2 2 2

1

c
i i i i k iF F Fk

f X X M M M Xη
=

= − − − +∑ , we 

can derive that  
( ) 22 2 2

1,
c k
ki i i i i i i i iF F FFk i

f X X N X P G Z X C Xη=
≠

= − − − − +∑ , 

(13) 
where 

1,

c i
k kk k i

G X C
= ≠

= ∑ , 
1,

ck k
k k k j jj j i

Z X E n X C
= ≠

= −∑ . 

Rewrite Xi as a column vector, ,1 ,2 ,, , ,
T

i i i i d⎡ ⎤= ⎣ ⎦χ r r r , 

where ri,j is the jth row vector of Xi, and d is the total number 
of row vectors in Xi. Then fi(Xi) equals to 

( ) ( ) ( ) ( )

( )( ) ( )

2 2

2 2
2

2

21,
2

diag diag diag

diag diag

T T T
i i i i i i

Tc k T
i i ik k i

f N P G

C Z η
= ≠

= − −

− − +∑

χ χ χ

χ χ
, 

where diag(T) is to construct a block diagonal matrix with 
each block on the diagonal being matrix T.  

The convexity of fi(χi) depends on whether its Hessian 
matrix ∇2fi(χi) is positive definite or not [27]. ∇2fi(χi) will 
be positive definite if the following matrix S is positive 
definite: 

( )( )1,

TcT T k k
i i i i i ik k i

S N N PP C C Iη
= ≠

= − + +∑  . 

After some derivations, we have 

( ) ( )2
1

1 2 2 ci
i i kk

S I E n n n nη
=

= + − − +∑ . 

 In order to make S positive define, each eigenvalue of S 
should be greater than 0. Because the maximal eigenvalue 
of Ei

i is ni, we should ensure  

( ) ( )2
1

1 2 2 0c
i i kk

n n n n nη
=

+ − − + >∑  

For n=n1+n2+…+nc, we have η>1-ni/n, which could 
guarantee that fi(Xi) is convex to Xi. 
 

Appendix B: The coding algorithm of FDDL 
 

We rewrite Eq. (7) as 

( ) ( )
( ){ }1

arg min 2
i i

i iX X
J Q X Xτ= +               (14) 

where ( ) ( ) ( )2, ,i i i i iQ X r A D X f Xλ= + , τ=λ1/2, and fi(Xi) 
and r(Ai,D,Xi) are defined in Eqs. (4) and (7), respectively.  

Define ,1 ,2 ,, , ,
i

TT T T
i i i i nX ⎡ ⎤= ⎣ ⎦x x x , where xi,k is the kth 

column vector of matrix Xi. Because Q(Xi) is strictly 
convex to Xi, the sparse coding problem in Eq. (14) could 
be solved by the Iterative Projective Method [19]. Table 7 
describes the algorithm of minimizing Eq. (14), whose 
speed could be improved by approaches like FISTA [29]. 

 
Table 7: The coding algorithm of FDDL 

Coding algorithm of FDDL 
1. Input: σ, τ >0.  
2. Initialization: ( )1

iX = 0  and h=1. 
3. While convergence and the maximal iteration number are 

not reached do 
    h = h+1 
    ( ) ( ) ( )( )1 11

2
h h h

i i iX X Q Xτ σ σ
− −⎛ ⎞= − ∇⎜ ⎟

⎝ ⎠
S  

where ( )( )1h
iQ X −∇  is the derivative of Q(Xi) w.r.t. ( )1h

iX − , 

and τ σS is a soft thresholding function defined in [19]. 

4. Return ( )h
i iX X= . 

 


