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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive

impairment of memory and other cognitive functions, which makes regression analysis a suitable

model to study whether neuroimaging measures can help predict memory performance and track

the progression of AD. Existing memory performance prediction methods via regression,

however, do not take into account either the interconnected structures within imaging data or those

among memory scores, which inevitably restricts their predictive capabilities. To bridge this gap,

we propose a novel Sparse Multi-tAsk Regression and feaTure selection (SMART) method to

jointly analyze all the imaging and clinical data under a single regression framework and with

shared underlying sparse representations. Two convex regularizations are combined and used in

the model to enable sparsity as well as facilitate multi-task learning. The effectiveness of the

proposed method is demonstrated by both clearly improved prediction performances in all

empirical test cases and a compact set of selected RAVLT-relevant MRI predictors that accord

with prior studies.

1. Introduction

Through employing pattern classification methods, neuroimaging has demonstrated its

effectiveness in predicting Alzheimer’s disease (AD) status based on individual magnetic

resonance imaging (MRI) and/or positron emission tomography (PET) scans [5, 11, 18].

Because AD is a neurodegenerative disorder characterized by progressive impairment of

memory and other cognitive functions, it is important to understand how structural and

functional changes in brain can influence the performance of neuropsychological tests. As a

result, regression models have been used to study whether neuroimaging measures can help

predict clinical scores and track AD progression [19, 22]. For example, in [22], stepwise

regression was performed in a pairwise fashion to relate each MRI and FDG-PET measures

of the eight candidate regions to each of the four Rey’s Auditory Verbal Learning Test

(RAVLT) memory scores. This approach was univariate and thereby overlooked the

*Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (U01
AG024904, adni.loni.ucla.edu).
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interrelated structures within both imaging data and clinical data. In [19], using relevance

vector regression, the voxel-based morphometry (VBM) features extracted from the entire

brain were jointly analyzed to predict each selected clinical score, while the investigations of

different clinical scores are independent from each other.

In this paper, we embrace, rather than ignore, the complexity of the mapping between

interconnected imaging measures and interrelated clinical scores; and propose a novel

Sparse Multi-tAsk Regression and feaTure selection (SMART) method to jointly analyze all

the imaging and clinical data within a single regression model and common subspace. Our

research focuses on investigating the relationships between MRI measures and RAVLT

memory scores using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort [23].

Instead of including all possible imaging measures to predict memory performance, the

proposed SMART method is designed to select the most prominent imaging features that are

able to predict memory performance with improved prediction accuracy. Different from

LASSO [20] and other related methods that perform feature selection separately for each

individual memory score, the proposed sparse multi-task learning model treats each memory

score as a cognition task and selects imaging features that can jointly influence multiple

scores/tasks. We propose to use the combined ℓ2,1-norm and ℓ1-norm regularizations to

select features with high correlations to a subset of memory scores. To demonstrate the

effectiveness of the proposed SMART method, we apply it to identify relevant MRI markers

that can predict multiple RAVLT memory scores. Our empirical results yield not only

clearly improved prediction rates in all the test cases, but also a compact set of RAVLT-

relevant MRI predictors that are in accordance with prior studies.

2. Sparse Multi-Task Regression and Feature Selection

Recently sparse regularizations have been applied to classification based feature selection

studies. LASSO [20] was shown to efficiently select useful features for a single task.

However, in our work, we expect to estimate predictive models for several related memory

performance scores together, not an individual one. The multi-task feature learning [2, 15]

used the ℓ2,1-norm regularization to couple feature selection across tasks using a strict

assumption - all tasks share a common underlying representation. However, in many cases,

the common pattern is shared by many tasks, but not all.

To address this issue, we propose a new Sparse MultitAsk Regression and feaTure selection

(SMART) model to include both ℓ2,1-norm and ℓ1-norm regularizations for selecting

imaging features, i.e., morphometric variables, and predicting memory performance. The

combined convex norms help us pick up the features with high correlations to a subset of

tasks. The new objective leads to a more difficult optimization problem. To address this

problem, we derive a new efficient algorithm with proved global convergency. In this paper,

given a matrix M, we denoted its i-th row and j-th column as mi and mj, respectively.

2.1. Joint Sparse Regularizations Using Mixed Non-Smooth Norms

To identify the predictable correlations between memory performance scores and

morphometric variables, the linear (least square) regression method is a standard way in

medical image analysis research. Given the morphometric variables of n training samples
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 and the associated memory scores , traditional least square

regression solves the following optimization problem to obtain the projection matrix W ∈

ℝd×c (the bias b is absorbed into W when the constant value 1 is added as an additional

dimension for each data):

(1)

where ||·||F denotes the Frobenius norm of a matrix, X = [x1, …, xn] ∈ ℝd×n and Y = [y1, …,

yn]T ∈ ℝn×c.

In the regular linear regression, the weight matrix W is not sparse. All morphometric

variables are involved to the memory scores prediction. However, some of them are

irrelevant to memory performance prediction. Therefore, it is desirable to select the

important morphometric variables for more accurate scores prediction. To this end, instead

of imposing the squared ℓ2-norm regularization as in traditional ridge regression, we impose

the ℓ2,1-norm regularization. Because the ℓ2,1-norm regularization penalizes each row of W

as a whole and enforce sparsity among the rows, it is able to select the most prominent

morphometric variables [14]. Specifically, we solve the following convex optimization

problem:

(2)

where ||·||2,1 denotes the ℓ2,1-norm of a matrix.

We further consider some important morphometric variables are only correlated to a subset

of tasks. The ℓ2,1-norm cannot handle them properly. Thus, we add an ℓ1-norm regularizer to

impose the sparsity among all elements in W and propose our new Sparse Multi-tAsk

Regression and feaTure selection (SMART) model as1:

(3)

Although our objective function is convex, it is difficult to be solved, because the both

regularization terms are non-smooth. Here, we propose an efficient algorithm to solve our

objective function in Eq. (3).

Taking the derivative with respect to wi(1 ≤ i ≤ c), and setting it to zero, we have

(4)

1This paper was first submitted to a conference in 2010 and we notice a similar objective in [12] when we prepare the camera-ready
draft of this paper. This research is an independent work.
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where Di(1 ≤ i ≤ c) is a diagonal matrix with the k-th diagonal element as , D̃ is a

diagonal matrix with the k-th diagonal element as . Thus,

(5)

Note that Di and D̃ depend on W and thus is also unknown variables. We propose an

iterative algorithm to solve this problem, which is as listed in Algorithm 1.

2.2. Algorithm Analysis

Theorem 1—Algorithm 1 decreases the objective value in each iteration.

Proof—According to Step 2 in the algorithm, we have

(6)

therefore we have
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The last step holds, because [14] for any vector w and w0, we have

. Thus, the algorithm decreases the objective value in

each iteration.

At the convergence, W(t),  and D̃(t) will satisfy the Eq. (5). As the problem

(3) is a convex problem, satisfying the Eq. (5) indicates that W is a global optimum solution

to the problem (3). Therefore, Algorithm 1 will converge to the global optimum of the

problem (3). Because we have closed form solution in each iteration, our algorithm

converges very fast.

3. Imaging and Memory Data

Both MRI and memory data used in this study were obtained from the ADNI database2.

ADNI is a landmark investigation sponsored by the NIH and industrial partners designed to

collect longitudinal neuroimaging, biological and clinical information from 822 participants

that will track the neural correlates of memory loss from an early stage. Further information

can be found in [13] and at www.adni-info.org. Following a previous imaging genetics study

[17], 708 out of 733 non-Hispanic Caucasian participants with no missing MRI

morphometric and RAVLT information were included in this study. The 708 participants are

categorized by three baseline diagnostic groups: healthy control (HC, n = 199), mild

cognitive impairment (MCI, n = 346) (thought to be a preclinical stage of AD), and AD (n =

163).

Two widely employed automated MRI analysis techniques were used to process and extract

imaging measures across the entire brain from all baseline scans of ADNI participants as

previously described [17]. First, voxel-based morphometry (VBM) [22] was performed to

define global gray matter (GM) density maps and extract local GM density values for 86

target regions. Second, automated parcellation via FreeSurfer V4 [9] was conducted to

define 56 volumetric and cortical thickness values and to extract total intracranial volume

(ICV). The full descriptions about these measures are available in [17]. All these measures

were adjusted for the baseline age, gender, education, handedness, and baseline ICV using

the regression weights derived from the healthy control participants.

The cognitive measures we use to test the proposed SMART method are the baseline

RAVLT memory scores from all ADNI participants [1]. The standard RAVLT format starts

with a list of 15 unrelated words (List A) repeated over five different trials and participants

are asked to repeat. Then the examiner presents a second list of 15 words (List B), and the

participant is asked to remember as many words as possible from List A. Trial 6, termed as 5

minute recall, requests the participant again to recall as many words as possible from List A,

without reading it again. Trial 7, termed as 30 minute recall, is administrated in the same

way as Trial 6, but after a 30 minute delay. Finally, a recognition test with 30 words read

aloud, requesting the participant to indicate whether or not each word is on List A. The

2http://www.loni.ucla.edu/ADNI
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RAVLT has proven useful in evaluating verbal learning and memory. The five RAVLT

scores are summarized in Table 1.

4. Experimental Results and Discussions

In this section, we evaluate the proposed SMART method by applying it to the ADNI

cohort, where a wide range of MRI morphometric features are examined and selected to

predict memory performance measured by five RAVLT scores shown in Table 1. The goal

is to select a compact set of RAVLT-relevant MRI features while maintaining high

predictive power.

4.1. Improved Memory Performance Prediction

In our experiments, we examine three different sets of morphometric variables 

for each participant, where d = 86 for VBM morphometric variables, d = 56 for FreeSurfer

morphometric variables, and d = 144 for the combined set of VBM and Freesurfer variables.

Evaluating the memory performance prediction on the three baseline diagnosis groups (HC,

MCI, AD) and the group with all participants (HC + MCI + AD) using the three types of

morphometric variables, we end up with a total of twelve test cases as in Table 2, where,

e.g., “FreeSurfer HC” denotes the test case conducted on the participants of MCI group

using FreeSurfer morphometric variables, and “VBM+FreeSurfer all” denotes the test case

conducted on all the participants using the combined morphometric variables by VBM and

FreeSurfer.

We compare SMART against multivariate regression (MRV) in memory performance

prediction. For each test case, we randomly pick 80% participants and use their

morphometric variables and memory scores as training data, and perform the prediction for

the remaining participants. The prediction performances assessed by root mean square error

(RMSE), a widely used measurement for statistical regression analysis, are reported in Table

2.

A first observation on the results in Table 2 shows that the proposed SMART method

consistently outperforms the conventional multivariate regression method in all the test

cases for all the cognitive tasks. The FreeSurfer measures, VBM measures, and combined

measures have similar predictive powers.

A more careful analysis shows that, using our method, it is easier to predict memory

performance for AD than HC, while MCI shows an intermediate pattern. This partially

agrees with the findings in [22], which claims that MR morphormetry is not related to

memory in HC, but positively related to memory functions in MCI and AD. Using

multivariate regression, the above trend holds only for FreeSurfer measures. For VBM and

combined cases, it is far more difficult to predict memory performance in MCI than HC and

AD (11.495 vs. 8.651 and 7.233 for VBM, and 68.22 vs. 12.265 and 14.552 for VBM +

FreeSurfer).

Finally, we can see that the most predictable outcome is T30 for AD group with RMSE of

1.050 for FreeSurfer, 0.904 for VBM, and 0.858 for the combined measures. Considering
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TOTAL is the sum of the 5 scores, the performance for AD group is decent with RMSE of

5.042 for FreeSurfer, 5.120 for VBM, and 4.805 for the combined measures. The least

predictable outcome is RECOG, whose RMSEs are generally greater than 2.7.

4.2. Feature Selection Capabilities

The main advantage of the proposed SMART method lies in its capability to simultaneously

perform regression analysis and feature selection. Besides reducing the computational

complexity of the learning model as in other applications, feature selection is of significant

importance in the study of neuroimaging, because it has a potential to identify the relevant

imaging predictors and explain the effects of morphometric changes in relation to memory

performance.

The heat map of the regression coefficients of each FreeSurfer measure w.r.t. each cognitive

task (W in Eq. (3)) learned by SMART is shown in Fig. 1. The bigger the magnitude of an

coefficient is, the more important the feature is in predicting the corresponding memory

score. For example, “HippVol” (hippocampal volume) plays the most important role in

memory performance prediction when testing on all participants, while “LatVent” (volume

of lateral ventricle) is the most effective predictor when the test is conducted on AD group.

The selected features by our method are marked with “x”. The heat map of regression

coefficients of VBM measures are shown in Fig. 2. Fig. 3 visualizes the cortical map of

selected features for prediction of TOTAL score using FreeSurfer measures in the total

sample (left) and the AD sample (right).

Fig. 1 shows that “HippVol” is consistently selected in all the groups except AD,

implicating that it is an important indicator for cognitive decline and has a potential for early

detection of AD. This perfectly accords with many evidences in existing literatures [3, 4, 7,

8, 16, 21]. In addition, “EntCtx” (thickness of entorhinal cortex), “Parahipp” (thickness of

parahippocampal gyrus), “Precuneus” (thickness of precuneus) and “InfParietal” (thickness

of inferior parietal gyrus) are also selected in different test conditions. These areas are

important components of the brain’s episodic memory network [22], which has been proved

to be normally engaged during episodic recall and heavily impact the memory performance

[6, 10, 22]. Similar observations that our selections match literature evidences can also be

found in both Fig. 1 and Fig. 2, which concretely confirm the effectiveness of the proposed

method from neurobiological perspective.

Moreover, besides selecting common prominent features across all cognitive tasks through

imposing ℓ2,1 regularization as in Eq. (3), we also enforce sparsity on W through ℓ1
regularization, such that the relative importance of the selected features are properly

weighted. For example, as in Fig. 2, the “Hippocampus” (GM density) is only selected in

MCI and AD groups, but not selected by HC group. This observation, again, is extensively

supported in literature. It has been shown that, in normal aging, memory, including listing

learning measures with clinically applied retention intervals (< 1h), appears weakly related

to medial temporal lobe (MTL) [16], whereas memory has consistently been related to MLT

volumes in MCI and AD [16]. This provides one more evidence showing the ability of

SMART for properly identifying relevant features.
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5. Conclusions

In this paper, we proposed a new SMART model to perform both regression analysis for

memory performance prediction and morphometric variables selection in an MCI/AD study.

Different from related existing methods that ignore the interrelated structures within imaging

data or those within clinical data, SMART analyzes all the imaging and clinical data within

a single regression framework and common subspace, such that the predictive performance

can be improved by these correlations. Our experiments using the MRI and RAVLT data of

the ADNI cohort yielded promising results: (1) the prediction performance of SMART was

consistently better than conventional multivariate regression, (2) a compact set of imaging

predictors were identified in each test case and were in accordance with prior findings, and

(3) these selected imaging features could predict multiple memory scores at the same time

and had a potential to play an important role in determine cognitive functions and

characterizing AD progression. These promising results were consistent with our theoretical

foundation and prior studies, which demonstrated the effectiveness of the proposed method.
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Figure 1.
Heat map of selected features for prediction using FreeSurfer measures in (a) the total

sample, (b) HC, (c) MCI, and (d) AD. In each of (a–d), regression weights (i.e., coefficients)

for left and right measures are visualized as two separate panels, where columns in each

panel correspond to different memory scores. Since our method selects features with

absolute values ≥ 1, the range of the color map is limited to [−1,1] for a more effective

visualization. All selected features are marked with “x”.
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Figure 2.
Heat map of selected features for prediction using VBM measures in (a) the total sample, (b)

HC, (c) MCI, and (d) AD. In each of (a–d), regression weights (i.e., coefficients) for left and

right measures are visualized as two separate panels, where columns in each panel

correspond to different memory scores. Since our method selects features with absolute

values ≥ 1, the range of the color map is limited to [−1,1] for a more effective visualization.

All selected features are marked with “x”.
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Figure 3.
Cortical map of selected features for prediction using FreeSurfer measures in the total

sample (left) and the AD sample (right). Each map only visualizes the regression weights for

RAVLT-TOTAL score for individual cortical thickness measures (i.e., volume measures and

mean thickness measures of larger regions are not included). Since our method selects

features with absolute values ≥ 1, the range of the color map is limited to [−1, 1] for a more

effective visualization.
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Table 1

Descriptions of RAVLT cognitive measures.

Task ID Description

TOTAL Total score of the first 5 learning trials

TOT6 Trial 6 total number of words recalled

TOTB List B total number of words recalled

T30 30 minute delay total number of words recalled

RECOG 30 minute delay recognition score
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Algorithm 1
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