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Abstract

We propose a novel method for weakly supervised se-
mantic segmentation. Training images are labeled only by
the classes they contain, not by their location in the image.
On test images instead, the method predicts a class label
for every pixel. Our main innovation is a multi-image model
(MIM) - a graphical model for recovering the pixel labels of
the training images. The model connects superpixels from
all training images in a data-driven fashion, based on their
appearance similarity. For generalizing to new test images
we integrate them into MIM using a learned multiple kernel
metric, instead of learning conventional classifiers on the
recovered pixel labels. We also introduce an “objectness”
potential, that helps separating objects (e.g. car, dog, hu-
man) from background classes (e.g. grass, sky, road). In ex-
periments on the MSRC 21 dataset and the LabelMe subset
of [18], our technique outperforms previous weakly super-
vised methods and achieves accuracy comparable with fully
supervised methods.

1. Introduction

In this paper we consider the problem of semantic seg-
mentation, where one has to predict a label for every pixel
in the image. Labels correspond to semantic classes such as
cars, dogs and trees. We are interested in learning a classi-
fier for this task from weakly supervised data: each train-
ing image is annotated by labels specifying which classes
are present in the image, but no pixel-level annotation is
given (Fig. 1). This problem is very challenging because the
method has to recover latent pixel labels from just presence
labels, before it can generalize from the training set to test
images. Recently there has been significant progress in fully
supervised semantic segmentation [15, 14, 12, 21, 22, 26],
although the problem is still unsolved. The disadvantage
of fully supervised techniques is the need for manually la-
beling pixels in the training set, which is time consuming
and expensive. Performance of such systems is inherently
limited, since only small training sets can be manually la-
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Figure 1: Given a training set of images labeled only by the
classes they contain (top), we learn a classifier that segments and
recognizes visual classes in new test images (bottom).

beled. A few works have addressed the weakly supervised
setting [25, 24], but none achieved performance comparable
to fully supervised methods. A more detailed overview of
related work is given in sec. 5.

In this paper we present a weakly supervised method
that, for the first time, achieves results competitive with
fully supervised methods. Our main innovation is the multi-
image model (MIM) - a graphical model that integrates ob-
served image features and image labels together with latent
superpixel labels over the whole training set into one net-
work. We use MIM to jointly estimate the parameters of
local appearance models for the semantic classes and to in-
fer latent superpixel labels. For segmenting test images, we
integrate them into MIM by means of a learned multiple
kernel image similarity. As a secondary contribution, we
introduce an “objectness” potential based on [2], which fa-
cilitates separating between object classes (e.g. cars, dogs,
tables) from background classes (e.g. grass, road, water).
As demonstrated on the MSRC 21 and the LabelMe subset
of [18], the combination of these innovations enables to im-
prove over the state-of-the-art in weakly supervised seman-
tic segmentation performance, reaching a level comparable
with fully supervised methods (sec. 6).

water water
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Algorithm 1 MIM construction at training time

Input: sets of image superpixels and image labels 7 =
o AN C
{{xf}fvzjl,YJ} , distance function D (xf,xf,) - R,
j=1
parameters k,p. Let p (zf , :c{,) be the distance between

the center of mass of two superpixels, normalized by image
dimensions.
Output: multi-image connection set M.

1. initialize: M = ()
2. for each superpixel xZ in each image I’
(a) for each image I/ = ({x{l}fgl,Yj/) with
YIONY #0
N‘I

do among all superpixels {xg,/}i,; with
p (xf ,xf,’ ) < 0.3, select the p most similar
superpixels Bi ; = {xf ,}le according to D

(b) construct B_; = Uj/Bi ;

(c) keepin B_; only the k most similar superpixels

(d) add connection (yf , yg,/) to M for all xf,/ € B,

3. Return M

2. Multi-Image Model (MIM)

The backbone of our approach is MIM - a graphical
model of a set of weakly labeled training images. MIM
is based on a network of superpixels from all training im-
ages. The connections between superpixels capture their
appearance similarity and spatial relations. In this section
we address the problem of recovering the latent labels of
superpixels in the training set, by finding the approximate
MAP state of MIM. In sec. 3 we extend MIM for labeling
superpixels on novel test image, for which no annotation at
all is given.

Images are represented as sets of superpixels, ob-
tained by the oversegmentation algorithm [17]. Let 7 =

T

stances zf correspond to superpixels, coming in bags I7
corresponding to images. Each bag has a label set Y7,
which is a subset of the full label set Y ={1, ..., C}, corre-
sponding to classes Y7 cy={1, ...,C}). Every instance
x? has an associated latent label y/ € Y7. The bag la-
bel set Y7 contains the labels of all instances in that bag
(Y7 = Uy]). The task of weakly supervised learning is
to recover the latent labels yf and to learn a classifier that
predicts labels for each superpixel in a new image.

be the training set, where in-

Figure 2: MIM at training time, for five images and full label set
Y ={AB,C,D.EFG}. Blank nodes represent latent superpixel
labels {yf } They are connected to observed superpixel features
{:z:f } and image labels Y7 . Superpixels are interconnected by two
sets of connections S and M. S connects spatial neighbors in
individual images and M connects superpixels between images
sharing a label.

We first describe MIM on an abstract level and provide
implementation details in sec. 4. Fig. 2 shows a graphi-
cal representation of MIM. The total energy £ of MIM is a
function of latent superpixel labels y; and local appearance
model parameters 6:
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The first term is a unary potential 1) (yf , JJz , 9), mea-

suring how well the local appearance of a:f matches la-
bel yf , according to a classifier parameterized by 6. If
f(z,0) — RC is a multiclass classifier (e.g. a Random
Forest) outputting probabilities fy(x,6) for superpixel x
taking label y, then we can define the unary potential as
¥ (y,z,0) = —log f, (x,0). Our particular choice of f is
described in sec. 4. The second unary potential w(yf , Yij )
assumes oo on labels outside Y7 and zero otherwise, mak-
ing sure y/ € Y.

The pairwise potential ¢ encourages connected superpix-
els to take the same label if their appearance similarity is
high:

(ZS(Z/? y?' gcj acj/) :{ 1—D(xg7mg,) yi #yi/
RS YRRt B / ’ )

i
2)
where D (xz ; x{,) is a similarity metric between two su-

perpixels, scaled to [0, 1]. Our particular choice of similar-



ity metric is discussed in sec.4. Note how these potentials
are submodular, since 1 — D (a:f , xf,/ ) > 0 always.

The pairwise potential is defined over two separate sets
of connections - M and S. The first set S connects adja-
cent superpixels in the same image, to encourage spatially
smooth labelings, as in [22]. The second set M is built
in a data-driven fashion, by connecting similar superpixels
between different images sharing a label (Y7 (Y7 # 0).
These multi-image connections are an important novel char-
acteristic of MIM.

Constructing multi-image connections. The natural
representation of a single image is a graph, where each (su-
per)pixel is connected to its spatial neighbors [22, 1]. We
propose to transcend individual images and define a struc-
ture over the whole training set. Superpixels with similar
appearance and position from images that share weak labels
are connected. Ideally, we could connect all the superpixels
between all images sharing labels, but this would produce a
hardly manageable, overly complex model. The intuition is
that connections between superpixels with high appearance
similarity contribute most to the energy, since the pairwise
potential for very dissimilar superpixels is close to zero.
Therefore, we keep the size of the model manageable by
connecting each superpixel to a total of only & most similar
superpixels in other images, and to at most p superpixels in
one image. Also, the position of superpixels is taken into
account by connecting only pairs of superpixels whose po-
sition in their respective images is closer than 3/10 of the
image size. This is done to facilitate separating classes with
similar appearance but different positions (e.g. sky and wa-
ter). Algorithm 1 provides details.

Inference. Minimizing the energy in eq. (1) maximizes
the probability of superpixel labels y] and appearance
model parameters 6, given observed superpixel features xZ
and image labels Y7. Under fixed parameters @ the en-
ergy is submodular. Since it is a multilabel problem, we
cannot obtain global minima, but we can efficiently find a
good approximation using the Alpha Expansion algorithm
[13, 3, 5, 4]. If the labeling {y] } is fixed, the parameters 6
can be estimated using supervised learning methods. There-
fore, we alternate between these two steps to efficiently de-
termine both parameters 6 and labeling {y }. As an initial-
ization for 6, a solution from previous weakly supervised
methods [25] can be used. We provide details on estimating
and initializing 6 in sec. 4.

3. Generalizing to the test set

Having recovered the latent labels yi over the training
set 7 and learned parameters ), we want to segment a new
test image I* = {z!} for which no label at all is given. An
obvious way is to use the trained classifier ¢ (y, z, 6) on the
superpixels of I, and possibly smooth out the labeling by

Figure 3: The MIM model at test time. The test image I* is in-
tegrated into MIM through its ¢ = 4 nearest training images (ac-
cording to similarity metric K'). The latent test superpixel labels
y! are connected to superpixel’s features X* = {z!}, adjacent la-
bels and labels of training images superpixels yf . Note, that the
training superpixel’s yi labels are observed (groups of 4 shaded
nodes in the corners of the figure).

using the spatial pairwise potentials. Instead, we want to
use the full potential of MIM and integrate the test image
into it.

Let {z!} be the test image superpixels and {y!} their as-
sociated latentlabels. We infer these labels by minimizing:

(W) =" (0 (yhat,07) + (1)) +
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This energy function is analog to that used for training
in eq (1). The first term consists of the appearance potential
1, with parameters 6 learned during training. The second
term pu (y!, I') is a new Image Level Prior (ILP) potential
inspired by [21]. During MIM training, we modulated 1
with an 7(y!,Y;”) forcing superpixels to take a label given
to the image. Of course, this cannot be done for I, as its
labels Yt are unknown. In (3) its role is played by the ILP
potential y (y!, I'), which estimates the probability that I*
contains class y!. This estimator is based on global appear-
ance features, computed over the whole image, and can be
learned with supervised learning techniques, since image
labels are available during training (details in subsec. 3.1).
The pairwise potentials ¢ are defined over adjacent su-
perpixels S in the test image, as during training. The multi-
image connections M connect test image superpixels to su-
perpixels of training images. Since the training superpixel
labels y; are fixed, these pairwise potentials depend only
on test superpixel labels y! during the optimization of (3),
which effectively turns them into unary potentials. This
makes optimization easier. To build multi-image connec-
tions from the test image to training images we use Algo-



Algorithm 2 Integrating a test image into MIM.

Input: training set 7 = {Ij} , test image I* = {zt} N,
distance function between superpixels D (% , ;C‘i,) - R,
distance function between images /X (I el ) — R, param-
eters k,p, q. Letp (xi, x{) be the distance between the cen-

ter of mass of two superpixels, normalized by image dimen-
sions.
Output: connection set M*

1. select set N of the ¢ training images most similar to
test image according to K (I, 17)

2. for each test superpixel x!

(a) for each training image I’ € N/
{xg}iijl with

< 0.3, select the p most similar

do among all
)
superpixels B]f = {#]}F_, according to D

superpixels

(b) construct B, = U]B ;

(c) keep in B,: only the k‘ most similar superpixels

(d) add connection (y{, yl ) to M* for all z] € Byt;

3. output M.

rithm 2. Now we do not have access to the test image la-
bels, so we cannot easily choose a set of training image to
connect it to. For this, we propose to use a learned image

similarity metric K (p‘ , Ij/) — R to find the most similar

training images to I* and connect it to MIM through them
(see subsec. 3.1 for details on K). We first find the ¢ most
similar training images. We then connect superpixels {x!}
from I* to k most similar superpixels in these training im-
ages, but to at most p superpixels per image. This process
is described in Algorithm 2. Fig. 3 shows a graphical rep-
resentation of MIM at test time. For optimization we use
Alpha Expansion again and estimate the labels y! of the test
image I°.

3.1. Learning image metrics and ILP

The proposed scheme for labeling the test image I¢ in-
volves a similarity metric K and the ILP potential . We
explain here how to learn K and how to use it in the ILP
to predict test image labels. We use a nearest neighbor ap-
proach inspired by [9], which predicts the labels of the test
image based on the labels of the few most similar training
images, according to K. We define several image kernels
and learn K as their linear combination. Each kernel com-

pares images based on different global features (GIST, color
and quantized SIFT histograms; see sec. 4 for details). The
main difference to [9] is that we learn a different metric for
each training image instead of a universal one. This image-
specific metric enables images to place different weights on
the kernels. Thus an image with water or grass will rely
more on color features, while images of faces or cars will
prefer local feature descriptors. We experimentally found
this approach to have higher accuracy of predicting image
tags in our setting. Our similarity metric is defined as fol-
lows

K (I, 1) Zw Ky, (I', 1) 4)

where wi is the weight of the k*" kernel for training im-
age I7. We learn the weights on the training set by maxi-
mizing the likelihood of training labels, weighted by their
frequency over the training set as in [9]. The likelihood of a
label y to be present in the image label set Y is

L)) yeyvs —€l, (5)

q
PyeY') = Z

where Z is a normalizer making sure that result is in the unit
interval. Having separate weights for each training image
only increases the number of parameters, but otherwise does
not change the training problem. Therefore, we refer to [9]
for the training algorithm.

After learning, the metric K is used to build connections
in Algorithm 2 and within the ILP potential, which is de-
fined as p (y!) = —log P (y! € Y'*), where P (y! € Y?) is
computed according to eq. 5.

4. Image features and local appearance models

We define here the local appearance model ¢ and the
superpixel similarity metric D used in MIM.

Superpixel features and potentials. We use Semantic
Texton Forests (STF) [21] in both unary and pairwise poten-
tials. STF is a local per pixel random forest classifier which
uses very simple and fast features, such as the color differ-
ence between two pixels. We train it from the weakly su-
pervised training set 7, using the geometric context dataset
[10] as an auxiliary task, as proposed in [25]. The per-pixel
output of the STF is then averaged over the pixels in a super-
pixel z to predict a score f,(x],0) for each class y. The
two main parameters of STF are the structure of the trees
(split rules in the nodes) and the class scores in the leaves.
As shown in [25], the structure of the forest obtained by
multitask learning on the geometric context dataset approx-
imates well the structure of a forest learned from a fully su-
pervised semantic segmentation dataset [21]. Thus, in this



paper we keep the structure of the forest fixed and only esti-
mate the class scores 6 in the leaves from the weakly super-
vised segmentation dataset 7. To initialize 6, we use method
of [25] on the same dataset 7. We globally rescale scores in
the leaves to [0, 1] for each class over the whole training set,
to ensure that infrequent classes are not overwhelmed by the
frequent ones.

To produce pairwise potentials ¢, we use the Bags of Se-
mantic Textons (BoST) representation produced by the STF
[21]. BoST is a histogram concatenating the occurrences of
tree nodes across the different trees when each pixel in a su-
perpixel is passed through the STF. For every pair of super-
pixels we can then define the similarity D (atz , xf,/ ) using
a hierarchical histogram difference kernel, as in [21]. This
metric D is used to define the pairwise potentials ¢ in eq. 2
and to connect superpixels between images in algorithms 1
and 2. We scale ¢ by median of maximum per superpixel
contribution of all pairwise potentials to energy in MIM to
make them comparable to unary potentials.

Objectness potential. The classes to be segmented can
be partitioned in two groups: objects such as bikes, animals
and cars, and backgrounds, such as sky, grass and road. Ob-
jects have a well defined boundary and shape, as opposed
to amorphous background regions. Background classes oc-
cupy most of the image and in weakly supervised case, they
tend to “flood” areas belonging to objects [18], because of
much higher frequency of background labels.

To counter this effect, we use the objectness measure of
[2], which estimates the probability that an image window
contains an object of any class. Objectness combines sev-
eral image cues measuring distinctive characteristics of ob-
jects, such as appearing different from their surroundings,
having a closed boundary, and sometimes being unique
within the image. We add to the unary potential of MIM
a measure of the objectness of a superpixel. We start by
sampling 10* windows using [2] according to their prob-
ability of containing an object . Then we convert this
measure to per-pixel probabilities by summing the object-
ness score over all windows covering a pixel, and globally
normalizing the result over the whole training set. Finally,
we convert the per-pixel probabilities to per-superpixel ones
P (y € Obj|x), by averaging over all pixels in a superpixel.
The overall unary potential is defined as

w (y7m70) =
—log fy (x,0) P (y € Obj|z) y € Obj
—log fy (z,0) (1 — P (y € Obj|z)) y ¢ Obj

(6)
where Obj is the set of object classes. Note how the object-
ness potential for a superpixel we propose here is different

'We used the source code released by the authors of [2] at http://
www.vision.ee.ethz.ch/~calvin/software.html

P(y € Objlpi;) = 7w P (Obj|w)

w:ipi jEW

3
Figure 4: Illustration of objectness. A pixel’s objectness is the
average objectness over all window containing it. The normaliza-
tion is global over the whole training set.

from the one in [6], which is directly the objectness proba-
bility for a window.

Image kernels. For metric learning, we use three ker-
nel types - GIST [20], color histograms and quantized
SIFT [19] histograms (gray scale and color). GIST is com-
puted over the whole image. Color and SIFT histograms
are computed over the whole image and separately for three
horizontal strips. SIFT histograms are also computed in
spatial pyramids [16]. These spatial partitionings introduce
some degree of localization in the global descriptors, mak-
ing them more distinctive. To compute the distances from
the descriptors we use L2 as the base metric for GIST, and
x? for the rest.

5. Related work

Semantic segmentation has attracted a lot of attention,
but most works have focused on the fully supervised set-
ting, where pixel labels are given for the training images
[15, 14,12, 21, 22, 26]. The basic approach was formu-
lated in [22], where a conditional random field (CRF) was
defined over image pixels with unary potentials learnt by
a boosted decision tree classifier over texture-layout filters.
The main research direction for successive publications fo-
cused on improving the CRF structure, enabling inference
for multiple segmentations and introducing hierarchy with
higher order potentials [14, 12, 8] and integrating label co-
occurence statistics into it [15]. Another development were
faster and more accurate features [21].

Towards less supervision, the extreme case is unsuper-
vised object discovery, where unlabeled images of multiple
classes are given [23]. Our weakly supervised setting is in
the middle between the unsupervised and fully supervised
cases (i.e. we only have image labels on the training set).

To our knowledge, the same setting as ours was consid-
ered only in few previous works [25, 24, 7]. The earliest
work [7] considered an image with a set of accompanying
words. The authors posed the problem as machine transla-
tion and used an EM-type algorithm to solve it. In [24] a
matrix factorization approach (pLSA) was proposed for es-
timating the per-pixel labels. In [25] a multiple instance and
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Figure 5: Image illustrates the pipeline of the system on the test image - first unary potentials are produced by combining STF and
objectness prior, then ILP reweights class’s scores according to global features and then result is passed onto MIM.

multitask learning modification of STF [21] was proposed.
The STF structure was learnt in a multitask fashion with
geometric layout estimation [10] as the auxiliary task. Mul-
tiple instance learning, specialized for semantic segmenta-
tion, was used to reconstruct the scores in the leaves of the
STF. Because of the computational efficiency of the STF,
we use the output of [25] to initialize the unary potentials
of our MIM. However, the output of [24] could be used in-
stead.

The two weakly supervised previous works we compare
to [25, 24] can be seen as special cases of our MIM model
(trained in a different manner). The model [25] corresponds
to omitting all connections between superpixels and training
appearance models using multiple instance learning. The
model [24] has connections, but only within individual im-
ages. In contrast, MIM forms a larger structure over the
entire training set, connecting superpixels between images.
This regularizes the training of appearance models and bet-
ter recovers superpixel labels. Labeling a test image is also
different from [25, 24] and most existing works. Instead of
simply applying the learned appearance models, we connect
the test image to the network of training images using learnt
image similarities.

Also related are single-class weakly supervised segmen-
tation methods [I, 11]. They consider one class against
background and typically show no test time scenario. Ana-
log to our work, [1] also connects superpixels between im-
ages, but it does so in a predetermined fashion, encourag-
ing superpixels at similar image positions to be either both
foreground or both background. Instead, we connect in a
data-driven fashion, factoring in also appearance similarity.

Finally, our work is related to [6] by the use of an ob-
jectness potential. However, ours is defined on superpixels
rather than windows [6]. Importantly, our task is different
than that in [6]. While we consider learning a multi-class
segmentation model, [6] learns a bounding-box object de-
tector for a single class. As a consequence, our MIM model
differs substantially from the one in [6]. For example, the
nodes in MIM are image elements (superpixels) with class
labels as states, whereas nodes in [0] are images with can-
didate windows as states.

6. Experimental results

MSRC-21. We validate our method on the MSRC 21
dataset[22], containing 591 images of 320x213 pixels, ac-
companied by ground-truth segmentations of 21 classes We
use standard split into training and test set as defined in [22].
This dataset is best suited for our task, as all classes are la-
beled in all images and there is significant co-occurrence
between classes. Methods are typically compared using the
total measure (percentage of correctly classified pixels) or
the average per-class measure (percentage of correctly clas-
sified pixels for a class, averaged over all classes). The av-
erage criterion is preferable as it gives equal contribution
to classes with large and small expected area in the images
(e.g. dogs vs sky). We set the parameters for algorithms 1
and 2 as k = 21, p = 3, ¢ = 5. For the objectness prior,
classes sky, road, water, buildings and grass are considered
to be background and the rest belongs to object classes.
We use the objectness implementation released ? by the au-
thors of [2], whose parameters were estimated on a diverse
set of 50 images randomly sampled from various datasets
(see [2]). None of the images for training objectness come
from the MSRC 21 dataset.

Table 1 gives the results for our approach on this dataset.
We compare to other semantic segmentation methods, both
fully supervised (FS [22, 21, 14]) and weakly supervised
(WS [24, 25]). Our method substantially outperforms both
previous weakly supervised approaches. It achieves 17%
better average per class accuracy than the next best method
[24]. Interestingly, our method is even competitive with
some fully supervised techniques, as it outperforms [22]
and matches [21] (but it is below the recent state-of-the-art
method [14]).

We have also implemented a fully supervised version of
our approach. In this case, the STF was trained fully su-
pervised. There was no training stage for MIM, since the
superpixel labels were known. Objectness, image similar-
ity metric K and ILP were used in the same fashion as in
weakly supervised scenario. At test time, labels of training
superpixels in MIM were set to the ground-truth labels and
test image was integrated using metric K. Experimenters
show, that fully supervised version of our approach delivers

Zhttp://www.vision.ee.ethz.ch/ calvin/software.html



performance comparable to the state-of-the-art (last row of
table 1). While using simpler features and no higher order
potentials, it is just 3% below [14].

Evaluation of components. We individually analyze the
impact of using MIM (for both training and testing) and ob-
jectness on the average and total accuracy measures. As we
can see in table 2, both proposed components contribute to
accuracy. Note how MIM delivers most improvement on
average accuracy when combined with the objectness po-
tential, which protects smaller object regions from being
flooded by background (e.g. a bird in the sky).

LabelMe [18]. To confirm our results on a second dataset,
we performed additional experiments on the LabelMe sub-
set of [18]. It contains 2500 images with 34 classes and
it is more challenging than MSRC-21. As in MSRC-21,
all classes are labeled in every image and there is signifi-
cant co-occurrence between classes. All training parameters
were kept the same as for MSRC-21. We obtain 14% aver-
age per-class accuracy with our weakly supervised method.
This is better than the fully supervised TextonBoost [22]
(13%) and worse than the fully supervised method of [18]
(24%, see fig. 9 in [18]; do not confuse with per-pixel ac-
curacy). To our knowledge, no weakly supervised results
were reported on this dataset yet.

Scalability. A modest computational complexity is im-
portant when considering scaling to thousands of images
and hundreds of categories. When training our method,
the largest cost is constructing the MIM. Complexity grows
quadratically with the number of images per class, but lin-
early with the number of classes, since only images sharing
a label are connected. Therefore, scaling to thousands of
images distributed over many classes is possible. At test
time, we first search for the £ most similar images in the
training set (linear time) and then connect only their super-
pixels to the test image (algo. 2). Most importantly, training
superpixel labels are fixed, so inference is performed only
on the superpixel labels of the test image (sec. 3). Inference
for an image takes only 7 seconds on a 2.66 GHz 64-bit
Intel processor.

7. Conclusion

We presented a weakly supervised semantic segmen-
tation method that, for the first time, can compete with
fully supervised ones. Our main contribution is MIM - a
graphical model for weakly supervised semantic segmenta-
tion with data-driven structure. MIM elegantly formalizes
a simple intuition of weakly supervised learning - similar
superpixels in images sharing a label are likely to belong
to the same class. We have also introduced an objectness
unary potential, that distinguishes objects from background
classes. At test time, we integrated the test image into MIM
by using multiple kernel metric learning.

STF based %, ¢ on S and p+ test train
2 2 5 |2|5 |z
= S 5 | 8=z | ¢
- - 53 | 46 | 51 | 63

yes - 55 | 58 | 66 | 70
- yes 59 | 56 | 77 | 70

yes yes 67 | 67 | 83 | 80

Table 2: Evaluation of our proposed novel components on
MSRC21. We test our technique with different components active
on top of the basic weakly supervised STF with ILP and pairwise
potentials only on S (top row). The two components are: infer-
ence on the full MIM (both on training and test set) and using the
objectness potential. We measured total per pixel accuracy and
average per class accuracy.

Future work will focus on far larger training sets, which
we believe will highlight the advantage of our approach vs
fully supervised ones. In principle, MIM can easily inte-
grate different levels of supervision, which might be another
interesting direction of research. We also plan to extend
MIM to higher order potentials as in [14].
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Figure 6: Segmentations on the MSRC test set. Row 1,4: Original images with overlayed ground truth. Row 2,5: output of unary
potentials (only the label with maximum score is shown). Row 3,6: results of the full system with MIM. Note how the inference with
integration of test image into MIM significantly improves results on images with many classes.
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