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Abstract
Non-rigid structure from motion (NRSFM) is a difficult, underconstrained problem in computer
vision. The standard approach in NRSFM constrains 3D shape deformation using a linear
combination of K basis shapes; the solution is then obtained as the low-rank factorization of an
input observation matrix. An important but overlooked problem with this approach is that non-
linear deformations are often observed; these deformations lead to a weakened low-rank constraint
due to the need to use additional basis shapes to linearly model points that move along curves.

Here, we demonstrate how the kernel trick can be applied in standard NRSFM. As a result, we
model complex, deformable 3D shapes as the outputs of a non-linear mapping whose inputs are
points within a low-dimensional shape space. This approach is flexible and can use different
kernels to build different non-linear models. Using the kernel trick, our model complements the
low-rank constraint by capturing non-linear relationships in the shape coefficients of the linear
model. The net effect can be seen as using non-linear dimensionality reduction to further compress
the (shape) space of possible solutions.

1. Introduction
The recovery of 3D object shapes from 2D image data is a fundamental task in computer
vision. The recovered 3D shapes provide necessary information to applications in object
recognition, face perception, biometrics, computer graphics, and human-computer
interaction, among many others [2, 3, 6, 7, 10, 11, 13–15]. In many of these scenarios, the
3D object of interest undergoes a series of shape deformations while being observed under a
varying pose. The recovery task is then known as the problem of nonrigid structure from
motion (NRSFM). Given a set of corresponding 2D points in a sequence of images depicting
a deformable object, the goal in NRSFM is to recover the 3D object shape and pose (i.e.,
relative camera position) in each image. In the absence of any prior knowledge on 3D shape
deformation, such as object rigidity, computing NRSFM is still a difficult, underconstrained
problem.

The large majority of works in NRSFM are variants of the standard matrix factorization
approach first proposed in [3]. This approach constraints all 3D shapes to lie within the
linear space spanned by a small number K of unknown 3D basis shapes. Recent research
work has attempted to define additional, general constraints to make this NRSFM
formulation more tractable [1, 10, 11, 13, 14].

However, work on NRSFM rarely analyzes some of the implications of modeling shape
deformation as linear combinations of basis shapes. As noted in [4], the deformation of
some shapes is better represented by moving points along curves. This is the case, for
example, of shapes with many uncorrelated articulations, relative rotation, and bending
effects. Linear models can only approximate these shape deformations at the cost of
requiring multiple basis elements that increase the number of unknowns that need to be
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estimated. As a result, the 3D reconstruction task becomes less and less constrained and
prone to error (e.g., a residual error on the small shape deformation that is difficult to
eliminate). This argument also applies to the case where a deformable 3D shape is seen as a
single point moving within a space containing the true, low-dimensional shape manifold.

In this paper, we propose a Kernel NRSFM approach to model and recover non-linear 3D
shape deformation from 2D image streams (Fig. 1). We first demonstrate how the “kernel
trick,” commonly used for non-linear dimensionality reduction in pattern recognition [12],
can be applied to the standard matrix factorization approach in NRSFM. As a result, we
model 3D shapes as the outputs of a non-linear mapping whose inputs are points within a
low-dimensional shape space. Our model complements the low-rank constraint by capturing
non-linear relationships in the shape coefficients of the linear model. The dimensionality h
of the new shape space is usually very small (h = 2 in our experiments) and h is also
independent of the number of basis shapes K used by the kernalized NRSFM algorithm.

In addition, assuming shape deformation is gradual, we solve for the smooth time-trajectory
of a single point within the h-dimensional shape space. This trajectory is compactly
represented using only the low-frequency coefficients of the Discrete Cosine Transform
(DCT) as in [6]. Using this representation, we introduce a novel formulation of the shape
basis constraints of [14] and enforce the basis shapes to lie somewhere along the smooth
shape trajectory, without the need to correspond to one of the observed shapes. As a result,
each basis shape is modeled by a single unknown, a time-parameter, regardless of the
dimensionality h. Therefore, the total number of unknowns in our model is reduced
considerably, while providing flexibility of representation.

This paper is organized as follows. Section 2 reviews the NRSFM methods that are more
closely related to our approach and presents the basic formulation we will need to derive our
algorithm. Section 3 introduces the kernel trick into the NRSFM matrix factorization
approach, discussing the implications and also problems that are addressed by our new
algorithm derived in Section 4. Experimental results are presented in Section 5 and the
conclusion in Section 6.

2. Related Work and Basic Formulation
2.1. Modeling 3D Shapes in a Linear Space

We first review the seminal matrix factorization model of [3]. For a NRSFM problem with T
images (cameras), the n input 2D point tracks are given in matrix form as

(1)

where [xt,j, yt,j]T is the 2D projection of the jth 3D point at time t (i.e., on the tth image), t =
1, 2, …, T, j = 1, 2, …, n.

Without loss of generality, assume for now that: (1) W is complete, meaning that no 2D
points became occluded during tracking; and (2) its mean column vector t ∈ ℝ2T has been
subtracted from all columns, making them zero-mean. With an orthographic projection
model and a world coordinate system centered on the observed 3D object, t gives the
observed 2D camera translations in each image.
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The authors of [3] model W as a product of two matrix factors of low-rank 3K, M ∈ ℝ2T×3K

and S ∈ ℝ3K×n,

(2)

Here ⊗ denotes the Kronecker product and I3 is the 3 × 3 identity matrix. The coefficients
of factor M are separated in a block-diagonal rotation matrix D ∈ ℝ2T×3T and a shape
coefficient matrix C ∈ ℝT×K defined as

(3)

Let  be the tth row of C. The unknown 3D shape of the tth image is modeled as the matrix
function

(4)

that is, a linear combination of K basis shapes Ŝk ∈ ℝ3×n as described by the shape
coordinates ct,k. The camera orientation (object pose) at image t is given by R̂t ∈ ℝ2×3, a 3D
rotation followed by an orthogonal projection to 2D.

The factors M and S are computed from the singular value decomposition (SVD)

, with all but the largest 3K singular values in Σ set to zero. This non-
unique, “implicit” solution is defined only up to a rank-3K ambiguity matrix Q ∈ ℝ3K×3K.
To recover D and C, an Euclidean upgrade step [1] finds a corrective Q for the solution W =
(M̅Q)(Q−1S̅) = MS.

2.2. Smooth Shape Trajectories in a Linear Space
To further constrain the estimation of the model above, many authors assume that the
observed 3D shape deformation is only gradual over time t = 1, …, T [2, 6, 11, 13]. For

instance, the shape trajectory approach (STA) in [6] considers  as a single K-
dimensional point describing a smooth time-trajectory within an unknown linear shape
space. This means that each shape coordinate ct,k varies smoothly with t. The shape
trajectory is then modeled compactly using a small number d of low-frequency DCT
coefficients,

(5)

Here, X ∈ ℝd×K represents C compactly in the domain of the truncated DCT basis matrix Ωd
∈ ℝT×d. The fth column of Ωd is the fth-frequency cosine wave with entries

(6)
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where σ1 = 1 and, for f ≥ 2, . Because the DCT bases are known a priori, the number
of unknowns in C is significantly reduced with STA.

In [6], the STA model was shown to subsume the factorization of the point trajectory
approach (PTA) of [2], which models independent 3D point trajectories instead of 3D
shapes. The two models are equivalent when X above is equal to X0 = [IK 0]T, the K × K
identity stacked over a block of zeros. Thus, for a factorization of rank-3K, the solutions of
PTA correspond to smoothed versions of those of STA. In contrast to PTA, STA can model
higher-frequency DCT coefficients in X without relaxing the low-rank constraint. However,
the Euclidean update step of PTA is easier to compute because the only unknowns in factor
M are those of the camera matrix D [2]. For this reason, STA starts with X = X0 and
computes D as done by PTA.

The final optimization stage of STA considers that S = M†W is a function of M and W, with
† denoting the Moore-Penrose pseudo-inverse [5]. The goal is then to minimize the
reprojection error

(7)

where ‖·‖F is the Frobenius norm. Given D computed as above, M is treated as a function of
X only. The higher-frequency DCT coefficients in X are then estimated using an iterative
Gauss-Newton algorithm to minimize (7).

2.3. Locally Linear and Articulated Models
The NRSFM algorithm in [11] relaxes the linearity assumption for the shape manifold by
using linear models to represent only small neighborhoods of shapes. Consequently, a
number of locally linear models need to be estimated and the total number of parameters is
larger than that of the standard NRSFM method [3]. Initialization of these parameters
requires an elaborate clustering of images with similar shapes, which can also be a
performance issue for the case of long image sequences.

Other specialized, articulated shape models [10,15] comprise a number of linear subspaces
and depend on a prior, non-trivial process of segmentation of point tracks and classification
of their motion subspaces. Although these methods convey additional information (e.g.,
positions and orientations of joints), experimental results show that misclassification usually
happens near joints and axes.

In the next sections, we propose a compact and general model for shapes with linear and
non-linear deformations. Our kernel NRSFM algorithm does not require prior clustering of
points or images. In contrast to [11], our method can smoothly interpolate between images
and reconstruct partially occluded 3D shapes. The flexibility of our approach is also
reflected by the fact that different non-linear models can be built according to the kernel
function used.

3. Kernel Non-Rigid Structure from Motion
In this section, we first introduce the kernel trick into the NRSFM matrix factorization
approach. We then discuss its implications and some issues that are addressed by our new
algorithm presented in Section 4.
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3.1. The Kernel Trick
Considering S = M†W, NRSFM by matrix factorization reduces to estimating M as to
provide a rank-3K approximation W* ≈ W given by W* = MM†W as in (7). We note that
M† = (MTM)−1MT can alternatively be expressed as M† = MT (MMT)†. The proof is easily
obtained from the SVD form of M. The new rank-3K approximation for W is then modeled
as

(8)

The rank-3K matrix M̃ = MMT ∈ ℝ2T×2T can be used to replace M in (7) giving equivalent
solutions. Substituting M = D(C ⊗ I3) into (8), we have

(9)

To apply the kernel trick to (9), we replace K0 in M̃ by a kernel matrix K ∈ ℝT×T whose (t, t

′)th entry is , instead of the standard inner product  ct′. The function κ(·, ·) can
be regarded as a generalized inner product and is known as a Mercer kernel [12]. Here, κ(·,

·) measures the similarity between two shape vectors,  and .

For clarity, in the following we will consider only the popular radial basis function (RBF)
kernel,

(10)

where γ is a scale parameter. However, note that our approach can be easily modified to use
a different kernel. If the linear kernel is used, for instance, one goes back to linear NRSFM
with K0 as in (9).

The kernel in (10) can be seen as a non-linear mapping of each low-dimensional shape

representation  into an infinite-dimensional space of radial basis functions, , where
a linear representation is more suitable. The “trick” is that we do not need to explicitly
represent the shapes in this infinite-dimensional space because the algorithm depends only
on the generalized inner products (10). Thus, the kernel trick gives a combination of two
mappings: (i) a non-linear mapping represented by the kernel function, capturing the non-
linearity of the problem; and (ii) a linear mapping represented by the matrix products in (9).

In NRSFM by matrix factorization, the problem with replacing K0 in (9) is that we cannot
guarantee that the new kernel matrix K will be of low-rank K (with K ⊗ I3 of rank 3K).
Thus, this version of kernel NRSFM becomes largely underconstrained. Next, we address
this problem by reintroducing the low-rank constraint into the derivations above.

3.2. The Low-Rank Constraint in Kernel NRSFM
To derive a low-rank formulation of kernel NRSFM, we consider a sparse approximation for
the kernel matrix K that has been used to speed up kernel methods [12]. Here, the idea

translates into reconstructing the shapes , ∀t, based only on their similarities to a subset of

these shapes, the active set, .

For an arbitrary subset with K shape vectors , we obtain a rank-K approximation of the
kernel matrix,
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(11)

where the (t, k)th entry of Kc,b ∈ ℝT×K is , and the (k, k′)th entry of Kb,b ∈ ℝK×K is

.

To derive kernel NRSFM algorithms with K as in (11), we use

(12)

as a replacement for factor M in (8). Another equivalent solution can be obtained with M̅
replacing factor M in (7). Because the factorization in (7) is non-unique, there are in fact
multiple equivalent solutions of the form M = M̅Q, with M̅ as above and Q ∈ ℝ3K×3K

arbitrary, but full-rank. Now consider the particular solution with . From (12),
our final form of M is then

(13)

This new form becomes more similar to that of the original M in (2). With (13) and W* =
MM†W, we now express the 3D shape of image t as the non-linear matrix function

(14)

where  is the tth row of Kc,b,

(15)

Equation (14) gives the non-linear mapping in Fig. 1.

After reintroducing the low-rank constraint, our kernel NRSFM approach considers the
kernel matrix K in (11) only implicitly. However, our factorization model with (13) still
captures the essence of the kernel trick: the kernel function in (10) defines a non-linear
mapping of shape vectors into a high-dimensional space where a linear representation is
computed from inner products only (the entries of Kc,b).

In addition, note that using the above active set in NRSFM is similar to enforcing the shape

basis constraints of [14] – i.e., constraining the basis shapes  to be identical to a subset

of the observed shapes . The problem with these basis constraints is that, from all
possible combinations of K out of T shapes, we do not know the active set that best
represents all shapes. To avoid a complex search algorithm for the optimal active set, we
elaborate this approach further in the following section.

4. Kernel STA
This section presents our new NRSFM algorithm, referred to as the Kernel Shape Trajectory
Approach (KSTA). KSTA uses the non-linear mapping of kernel NRSFM to further
constrain the STA model (Section 2.2) and reduce the number of dimensions of the shape
space. First, we avoid the combinatorial problem of Section 3.2 by removing the basis
constraints. Inspired by the STA model, we derive novel basis constraints that generalize the
idea in [14].
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4.1. New Basis Constraints on the Shape Trajectory
Removing the shape basis constraints simply implies that, while we factorize W with M as

in (13), we need to estimate the basis shapes , ∀k, together with the shape vectors .
Importantly, a basis shape no longer needs to be equal to a shape observed in one of the T

images. We now have as additional unknowns the K basis shapes, , and the parameters of

the kernel function used to compute the entries  of Kc,b.

Before we proceed with the modeling of additional constraints for  and , we note
another important difference introduced by the model in Section 3.2: now the low-rank

constraint is defined based solely on the number K of basis shapes . This means that all

vectors  and  can be modeled within a shape space with dimensionality h ≤ K (many

kernel functions only require that  and  be of the same dimension to compute their inner
product).

Thus, from now on we will consider the shapes

(16)

as points in an h-dimensional shape space. Because h determines the number of unknowns
we need to estimate (as discussed below), h should be small as to yield a compact model. In
our experiments, complex non-linear deformations were modeled with a very small h = 2.

Assuming that shape deformation is smooth from one image to the next, we adapt the STA

model in (5) and consider  to describe a smooth time-trajectory within the h-
dimensional shape space. Thus,

(17)

where  is the tth row of the DCT matrix Ωd and X is a compact representation of the shape
trajectory.

To model , we introduce new basis constraints that represent a compromise between the
traditional basis constraints and the unconstrained case. We will therefore only require that

the  be similar (not necessarily equal) to some . This new constraint is enforced by

modeling  somewhere along the continuous shape trajectory c(t). That is, we model the
time-samples

(18)

where ω(tk)T is a row vector of d low-frequency cosine terms (6) at time tk. Hence, each
basis shape introduces only a single, continuous new variable, tk, regardless of the
dimensionality h of the shape space.

4.2. Model Analysis
Indeed, linear models can represent a set of 3D shapes showing non-linearly deformations –
as the number of basis shapes K approaches the number of observed shapes T, perfect
representation is possible. Our claim is that, in linear NRSFM, non-linear deformations
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reduce the effectiveness of the low-rank constraint due to the need to use additional basis
shapes, increasing K.

Using the kernel trick, our model complements the low-rank constraint by capturing the
non-linear relationships in the shape coefficients of the linear model – i.e., the new Kc,b
approximates the original C in (2). The net effect can be seen as using non-linear
dimensionality reduction to further compress the (shape) space of possible solutions.

Let’s consider the compactness of the KSTA model above in comparison to linear NRSFM.
The original method in [3] defines C using TK parameters, while STA requires dK (with d
≪ T for smooth deformations). Through nonlinear dimensionality reduction and new basis
constraints, KSTA can further compress the model of Kc,b to dh + K + 1 unknowns, with h
≤ K ≤ d. This number includes the parameter γ used by the RBF kernel (10).

We note that our model bears some similarity with the non-linear dimensionality reduction
approach of [8], where the dimensionality of the latent space (h) and the size of the active
set (K) are treated as user supplied parameters. On the other hand, our method is not
probabilistic and we further compress the representation in the h-dimensional space using
the DCT-based trajectory model (17).

Another observation is that the user-supplied parameters d and h are often easy to set
(typically, d ∈ {0.1T, 0.3T} and h ∈ {2, 3}). Results vary considerably more according to
the choice of K, as observed with other NRSFM methods. Cross-validation methods and
additional priors have been used to automatically estimate K and to regularize the
reconstruction process when K is over-estimated [13]; these techniques will be used with our
model in future experiments. Here, for clarity, we focus on the new ideas introduced by
KSTA and assume K is known from prior experience with a particular application scenario.

4.3. Optimization
With M as in (13), we minimize the reprojection error

(19)

using the Gauss-Newton algorithm in [6]. To initialize M, we use D and X as computed by

STA with K = h. The initial basis shapes  are computed from equally-spaced points t1, …,

tK in the interval [1, T], . Let σb be the average Euclidean distance from each 

to each ; the initial kernel parameter is then .

In this paper, we fix the initial camera matrix D and only optimize with respect to the
parameters X, t1, …, tK, and γ. However, our algorithm can be modified to perform the
optimization of these parameters and also D in alternation, as in [10, 13]. The derivation of
the gradient and Hessian terms is summarized in Appendix A.

4.4. NRSFM with Occlusion
In cases of occlusion, W is incomplete and we need to modify the cost function (19) as in
[6]. Let the complete vector ŵj ∈ ℝ2Tj (Tj ≤ T) denote all the observed entries in the jth

column of W. Also, define Πj ∈ ℝ2Tj×2T as a row-amputated identity matrix such that Mj =
ΠjM and t̂j = Πjt have the rows of M and t that correspond to the rows of entries in ŵj. The
camera translation vector t is obtained from the initialization using STA. We then minimize
the reprojection error of the available observations,
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(20)

Appendix A discusses the use of the Gauss-Newton algorithm in [6] to minimize this new
cost function.

5. Experimental Results
We compare the performance of KSTA against four state-of-the-art NRSFM methods: the
approach using probabilistic principal component analysis (EM-PPCA) to model 3D shapes
[13]; the Metric Projections (MP) method [10]; and the DCT-based PTA [2] and STA [6].
Note that all these four methods make use of linear models.

Our experiments considered the same datasets that where chosen by the authors of the
methods above. The number of frames (T) and the number of point tracks (n) are indicated
as (T/n) after a dataset’s name. We considered the motion capture sequences: drink
(1102/41), pick-up (357/41), yoga (307/41), stretch (370/41), and dance (264/75) of [2];
face1 (74/37) of [10]; face2 (316/40), walking (260/55), and the synthetic shark sequence
(240/91) of [13]. We also introduce another full-body motion capture dataset, capoeira
(250/41), with more complex deformations – the typical sideways swing of this African-
Brazilian mixture of dance and martial art (see supplementary video available at http://
www.ece.osu.edu/~gotardop).

We followed the same evaluation procedure in [2] and [6]. For each dataset, W is obtained
by applying an orthographic projection on the sequence of 3D shapes. Because the solution
of NRSFM methods is defined up to an arbitrary 3 × 3 rotation, we compute a single rotation
that best aligns all reconstructed and original 3D shapes. Let etj be the reconstruction error
(i.e., Euclidean distance) for the jth 3D point of frame t. We then compute a normalized
mean 3D error over all points and frames,

(21)

with σtx, σty, and σtz the standard deviations of the x-, y-, and z-coordinates of the original
shape in frame t.

For each algorithm, we report the best result of different runs with K ∈ {2, 3, …, 13}. For
all datasets, the reconstructions computed with KSTA were modeled within a 2-dimensional
shape space (h = 2). KSTA had the number of DCT bases set to d = 0.1T (i.e., 10%), except
for face1, face2, walking, and capoeira, on which we set d = 0.3T due to the presence of
higher frequency deformations. Table 1 compares the performances of the NRSFM methods
above in terms of the obtained error e3D. The value of K for the best solutions of PTA, STA,
and KSTA are also shown for comparison of these DCT-based methods.

Table 1 shows that the results of KSTA are consistently better than or similar to the best
results provided by the other methods on each dataset. Also, note that KSTA models all
these deformable shapes using a highly compact 2-dimensional shape space (h = 2).
Therefore, in comparison to the other linear algorithms, KSTA can better constrain the
reconstruction problem while the number of basis shapes K increases (because h is
independent of K).
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As shown in [2, 6], further decrease in the error e3D for stretch, pick-up, and yoga is
prevented by the larger errors in estimating the artificial rotations added to these sequences.
Future extensions to our algorithm include the use of a simple technique that refine the
estimated rotations and 3D shapes in alternation, as in [13] and [10].

An important observation is that, in comparison to STA, the non-linear mapping of KSTA
makes it more sensitive to the initialization of X. By varying the value of K in the initial
STA step (but still using the first h-columns of X as computed with STA), we have run
KSTA with different initializations and have obtained e3D error values as low as 0.0858 for
the walking dataset. Future experiments will investigate alternative initialization procedures
to consistently improve performance on all the datasets above.

Note that the walking dataset has recently been considered [13] as beyond the scope of
NRSFM methods without an specialized, articulated model. With KSTA, the reconstruction
error on this sequence has becomes of the same order of magnitude as that of the deformable
facial shapes. Fig. 2(a) shows examples of 3D reconstructions for this sequence in
comparison to the original 3D data (we show results for the same frames appearing in [13]).
The smooth and approximately periodic shape trajectory estimated by KSTA is plotted on
Fig. 2(b).

The flexible, kernel-based model of KSTA represents a promising contribution towards the
development of new NRSFM algorithms that can reconstruct 3D shapes with more complex
deformations. This argument is also supported by the large performance improvement
obtained on the capoeira dataset. Fig. 3(a) shows example reconstructions obtained with
KSTA on this sequence. The sharp changes in the shape trajectory of Fig. 3(b) captures the
time instant when the sideways motion is reversed. In this sequence, sudden changes in the
motion of hands and feet correspond to high-frequency deformation and introduce localized
reconstruction errors; see result for frame 120 in Fig. 3(a). In general, deformation
smoothness is also more weakly defined at the beginning and end of a sequence. Future
work will address detection and correction of these issues, affecting the results of NRSFM
algorithms that explore the assumption of smoothness of deformation.

To assess the performance of KSTA in NRSFM with occlusion, we reproduce the
experiment in [6, 10] and apply the algorithms above to the face2 dataset with ρ% of its 2D
entries randomly discarded. KSTA was run to minimize the objective (20) with the same
parameters described above for the complete dataset. Note that PTA does not handle
occlusion and, in [10], the performance EM-PPCA was shown to be inferior to that of MP.
Results of MP, STA, and KSTA, averaged over 100 trials, are shown in Fig. 4. While the
average e3D of MP increases with ρ above 30%, the performance of STA and KSTA show
little variation over all the tested levels of random occlusion.

The runtimes of KSTA on the complete datasets above were usually very short, around 5
minutes on a laptop PC with a 3 GHz dual-core processor. KSTA was implemented in
Mathwork’s Matlab™ and the source code is available at http://www.ece.osu.edu/
~gotardop/.

6. Conclusion
This paper addressed the problem of modeling complex non-linear shape deformations that
weaken a main pillar of NRSFM, the low-rank constraint. Using the kernel trick, we
proposed a new approach that generalizes the standard matrix factorization in NRSFM. The
derived kernel-based model complements the low-rank constraint by capturing the non-
linear structure in the shape coefficients of the linear model. Experimental results show that
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some complex articulated deformations can be modeled with a reconstruction error of the
same order of magnitude as that of simpler cases with facial shape deformations. These
results are obtained without the use of specialized articulation models.

Our kernel-based model is flexible and represents a promising contribution towards the
development of new NRSFM algorithms that can reconstruct 3D shapes with more complex
deformations. Although the results reported here have only considered the RBF kernel, the
use of our approach with other kernels is straightforward and will be investigated in the
future. Despite our aim at a general method, future investigation is needed to define kernels
that better suit the modeling of specific deformable 3D objects from 2D image streams.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

A. Gauss-Newton Optimization for KSTA
To use the Gauss-Newton algorithm in [6], we need to express the differential of M in
vectorized form, vec(dM), and in terms of the differential of the vector of unknowns,

(22)

From (13), using matrix differential calculus [9],

(23)

where V is a constant and sparse binary mapping that satisfies vec(dKc,b ⊗ I3) =
Vvec(Kc,b), as in [6]. In addition,

(24)

For the kernel (10) and κt,k the (t, k)th entry of Kc,b, the vectorized partial derivative
matrices are stacks of the form

(25)

(26)

(27)

where  is the kth column of the K × K identity matrix.
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Gradient and Hessian terms are computed as in [6] but using the new form of vec(dM) or,
when W is incomplete,

(28)
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Figure 1.
The deformation of a 3D shape (walking person) is modeled as the smooth time-trajectory of
a point in a 2-dimensional shape space. The 3D reconstruction of observed 2D shapes are
the outputs of a non-linear mapping of points on this shape trajectory.
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Figure 2.
Results of KSTA on the walking sequence. (a) Ground-truth (dots) and recovered 3D shapes
(circles) for frames 1, 34, 74, 122 (top), 160, 198, 223, and 255 (bottom). (b) Smooth
trajectory in 2-dimensional shape space (triangles indicate the bases shapes).
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Figure 3.
Results of KSTA on the capoeira sequence. (a) Ground-truth (dots) and recovered 3D shapes
(circles) for frames 1, 30, 60, 90 (top), 120, 150, 180, and 210 (bottom). (b) Smooth
trajectory in 2-dimensional shape space (triangles indicate the basis shapes).
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Figure 4.
Performance on the face2 sequence with missing data.
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