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Abstract

In this paper, we make three main contributions in the
area of action recognition: (i) We introduce the concept
of Joint Self-Similarity Volume (Joint SSV) for modeling
dynamical systems, and show that by using a new optimized
rank-1 tensor approximation of Joint SSV one can obtain
compact low-dimensional descriptors that very accurately
preserve the dynamics of the original system, e.g. an
action video sequence; (ii) The descriptor vectors derived
from the optimized rank-1 approximation make it possible
to recognize actions without explicitly aligning the action
sequences of varying speed of execution or different frame
rates; (iii) The method is generic and can be applied using
different low-level features such as silhouettes, histogram
of oriented gradients, etc. Hence, it does not necessarily
require explicit tracking of features in the space-time
volume. Our experimental results on three public datasets
demonstrate that our method produces remarkably good
results and outperforms all baseline methods.

1. Introduction
Various approaches have been proposed over the years

for action recognition. On the basis of representation, they
can be categorized as: time evolution of human silhouettes
[20], action cylinders, space-time shapes [22], and local 3D
patch analysis [13], generally coupled with some machine
learning techniques. Almost all the works mentioned
above rely primarily on an effective feature extraction
technique. These feature extraction methods can be roughly
categorized into: motion-based [4], appearance based [6],
space-time volume based [22], space-time interest points
or local features based [14, 16], and the closely related
methods to our approach that are based on the notion of
self-similarity [1, 7].

Our framework is shown schematically in Fig.1. We
construct a Self-Similarity Matrix (SSM) for each frame of
the video sequence using a feature vector. We then construct
Joint SSMs from this sequence of SSMs, leading to a
Joint Self-Similarity Volume (Joint SSV). Joint SSV is then

decomposed into its rank-1 approximation vectors using an
optimized iterative tensor decomposition algorithm. This
yields a set of compact vector descriptors that are highly
discriminative between different actions. To evaluate our
method on human action recognition, we used three public
datasets. To show that our method is generic and does
not depend on the input feature vector, we tested our
method using low-level features like silhouette, as well as
middle-level features like HOG3D. The final step used a
nearest neighbor classification using the descriptor vectors
produced by the rank-1 decomposition of Joint SSV.

The remainder of this paper is organized as follows:
Section 2 presents some preliminaries on the SSM and the
Joint SSM. Section 3 describes the construction of a Joint
SSV, followed by an optimized rank-1 tensor decomposition
algorithm in Section 4. Section 5 then describes the
similarity measure used to classify actions. Experimental
results and their analysis are presented in Sections 6 and 7.

2. Joint Self-similarity Matrix
Below are some preliminary results on SSM:
Definition 1: An SSM can be expressed by a N × N

matrix Ri,j(η, v) = Θ(η − ‖vi − vj‖p), i, j = 1, ..., N ,
where N is the length of a feature vector v, and η is a
threshold distance.

The threshold η filters the values of each SSM element.
We set η = 0 in this paper because this will give us a
complete representation for the Joint SSMs. Θ(·) can be the
Heaviside function (i.e. θ(x) = 0, if x < 0, and θ(x) = 1
otherwise) and ‖ · ‖ is chosen as an `p-norm in this paper.

It can be verified that the SSM holds the following
properties: Ri,j = Rj,i (Symmetry); Ri,j >= 0 for all
i and j (Positivity); and Ri,k <= Ri,j + Rj,k for all
i, j, k (Triangle inequality), and hence it is a metric. SSM
provides important insights into the dynamics of a vector,
which is especially advantageous in high dimensional
spaces [1]. The intuition behind the SSM is that, according
to recurrent plot theory, if we view the vector v as a
trajectory in 2D space, the SSM itself captures the internal
dynamics of this trajectory in a matrix form [2].

We further extend the SSM to Joint SSM based on the

1



Classifier

Figure 1: The flow of our action recognition framework. First, given an input action video, we extract either low-level
features like silhouettes in a frame-by-frame manner, or middle-level features like HOG3D from the partitioned video blocks.
Second, we transform the feature vector in each frame into an SSM. From the sequence of SSMs we then construct a
symmetric and unique 3D structure, which we refer to as the Joint SSV. Joint SSV carries information about action dynamics.
However, in order to handle its large dimension, it is decomposed into three compact and discriminative vectors, two of which
are identical (due to symmetry). These descriptor vectors characterize the internal dynamics of an action. Finally, the vectors
are used for measuring similarity with a database of actions for classification.

Figure 2: Visualization of the symmetric Joint SSV. The
middle figure shows its cut in three direction. The right
figure shows the X-section of the volume.

idea of Joint Recurrence Plot (JPR) theory, which will be
used in the construction of the Joint SSV.

Definition 2: The Joint SSM is defined as
JRv,w

i,j (ηv, ηw, v, w) = Θ(ηv − ‖vi − vj‖p1)Θ(ηw −
‖wi − wj‖p2), in which i, j = 1, ..., N , ηv and ηw are two
internal thresholds, p1 and p2 are two distance norms.

This extension is motivated by the fact that a recurrence
will take place if a point vj on the first trajectory v returns to
the neighborhood of a former point vi, and simultaneously
a point wj on the second trajectory w returns to the
neighborhood of a former point wi.

3. Construction of Joint SSV
Suppose we have vectors Ψ = {V1, V2, ..., Vt} with

Vi ∈ Rd. These vectors can be regarded as some specific
feature vectors varying over time T , say, extracted features
from video sequence. Our objective here is to build a unique
volume that simultaneously characterizes the dynamics of
not only each element of Ψ but also the relation amongst
consecutive ones. Based on the recurrent plot theory, the
Laplacian operator is applied on the SSM sequence to fuse
the consecutive SSMs. We define the gradient operator
∇t on Ψ as ∇tΨ = dΨ

dt = Vi − Vi−1. Since Γ(Ψ) =
{Γ(Vi)}i=1..t, we have∇tΓ(Vi) = Γ(Vi)−Γ(Vi−1). It can
be verified that Γ(∇t(Vi)) = Γ(Vi − Vi−1) = ∇tΓ(Vi).
Therefore, Γ∇2

t (Ψ) = ∇2
t Γ(Ψ), and we can further arrive

at the following theorem:
Theorem 1: Given a random vector Ψ and a

self-similarity matrix operator Γ : Rd → Rd×d, it holds
that Γ∇2

t (Ψ) = ∇2
t Γ(Ψ).

Figure 3: Rank-1 approximation Â = λU (1) ◦ U (2) ◦ U (3)

for original Joint SSV A.

The self-similarity matrix operator Γ and the second
order Laplacian operator ∇2

t are exchangeable in terms of
the SSM sequence. Now we define the Joint Self-Similarity
Volume based on Definition 2. Let ◦ be the element-wise
multiplication operator between two matrices:

Definition 3: The Joint Self-Similarity Volume
corresponding to a random vector Ψ is built via a
map Ξ : Rd×t → Rd×d×t such that each element
in T dimension is defined by a matrix satisfying
Ξi|i=1..t = Γ(Ψi) ◦ Γ∇2

t (Ψi).

This generates a symmetric 3D volume, that we refer to
as the Joint SSV.

4. Rank-1 tensor approximation
To obtain an optimal rank-1 approximation of Joint SSV,

we propose an alternating least-squares (ALS) method by
optimizing the components of the factorization of a given
SSV in an iterative fashion similar to [10, 11]. Given a real
N th-order tensor A ∈ RI1×I2×···×IN , there exists a scalar
λ and N unit-norm vectors U (1), U (2), · · · , U (N) such that
a rank-1 tensor Â = λU (1) ◦ U (1) ◦ · · · ◦ U (N) minimizes
the least-squares cost function

f(Â) = ‖A − Â‖2

over the manifold of rank-1 tensors, which can be analyzed
using the Lagrange multipliers and yields the following



equations [3]:

A×1 U (1)T · · · ×n−1 U (n−1)T ×n+1 U (n+1)T · · ·
×NU (N)T

= λU (n),

A×1 U (1)T ×2 U (2)T · · · ×N U (N)T

= λ,

‖U (n)‖ = 1.

Specifically, our objective is to find a rank-1 approximation
of Joint SSV such that there exists a scalar λ and three
vectors U (1), U (2) and U (3) with objective function

min
∑

i,j,k

(aijk − λU
(1)
i ◦ U

(2)
j ◦ U

(3)
k )2, (1)

where aijk denotes the Joint SSV, a 3-order tensor, as shown
in Fig.3. The ◦ is the outer product operator for vector, i
and j are spatial mode indices and i, j ∈ [1, I], I is the size
of Joint SSM; while k ∈ [1,K], K is the frame number
for this Joint SSV. Since each vector U (1), U (2) and U (3) is
determined only up to a scaling factor, we have

‖U (1)‖2 = ‖U (2)‖2 = ‖U (3)‖2 = 1.

On the other hand, Joint SSV is symmetric in spatial
dimension since its elements remain constant under any
permutation of the indices i and j, i.e. aijk = ajik,
therefore

U (1) = U (2). (2)

For clarity of presentation, we denote U (1), U (2) and U (3)

as ρ, ρ and ε, and we will call them the primary vector ρ,
and secondary vector ε, respectively. Under the constraint
of Eq.(2), the Eq.(1) can be solved by the technique of
Generalized Rayleigh Quotient (GRQ) in [23], and we
adopt the alternating least squares algorithm (ALS) in this
paper for the optimal SSV approximation.

Algorithm 1: Joint SSV rank-1 approximation

input : A 3-order tensor Joint SSV A ∈ RI×I×K ,
where I is the spatial dimension of Joint
SSM, and K is the temporal dimension of A

output: Two vectors ρ and ε that minimize
‖A − λρ ◦ ρ ◦ ε‖2, where ρ ∈ RI , ε ∈ RK ,
and ‖ρ‖2 = ‖ε‖2 = 1

Initialize U0 = [ρ(0), ε(0)]T ;
for t ← 0 to Nmaxiteration do

ρ̃(t+1) = A×2ρ
(t)×3ε

(t);
ε̃(t+1) = A×1ρ

(t)×2ρ
(t);

ρ(t+1) = ρ̃(t+1)/‖ρ̃(t+1)‖;
ε(t+1) = ε̃(t+1)/‖ε̃(t+1)‖;
λ(t+1) = A×1ρ

(t+1)×2ρ
(t+1)×3ε

(t+1);
end

In Algorithm 1, the ×i for i = 1, 2, 3 denotes the
multiplication between a tensor and a vector in mode-i of
that tensor, whose result is also a tensor, namely,

B = A×iρ ⇐⇒ (B)jk =
I∑

i=1

Aijkρi.

Starting with random initial values for ρ and ε, the
algorithm alternately changes ρ (or ε) while fixing the other
one, and iteratively achieves the optimal approximation.
The iteration stops when the difference between A and Â
arrives at a sufficiently small value.

5. Similarity measure for classification
Let Ψ and Ψ′ be the two initial input vectors, whose

corresponding decomposed vector pairs are v = {ρ, ρ, ε}
and w = {ρ′, ρ′, ε′}, respectively. We first normalize ρ and
ρ′ (as well as ε and ε′) to zero mean and unit variance, and
make ρ and ρ′ (as well as ε and ε′) of equal dimension. The
similarity between Ψ and Ψ′ is then defined as

D(Ψ, Ψ′) =
3∑

i=1

max d(vi, wi),

where d(vi, wi) denotes the cross-correlation of the ith

elements in v and w.

6. Experiments
We evaluated our method on 3 well-known public

datasets: Weizmann, KTH, and UCF sports dataset. Our
goal was to evaluate the feasibility of our technique on
various datasets with different Joint SSV schemes.

6.1. Two schemes

HOG3D-based Joint SSV (JSSV-hog3d) We employed
the dense representation as in [20], and used the HOG3D
descriptor [8] at densely distributed locations within a
Region of Interest (ROI) centered around the actor, and
partition the volume into regular overlapping blocks. All
blocks were then partitioned into small regular cells.
Histograms of 3D gradient orientations, generated using
dodecahedron based quantization [8] with 6 orientation
bins, for cells within a block, were then computed, and
concatenated to form a block descriptor. Here we name all
blocks within the same temporal location a slice, as shown
in Fig.4.

We used the same configuration as in [20] for defining
ROIs but different block setup. We used 2κ × 2κ × 2τ

pixel blocks subdivided by 2 × 2 × 2 cells, and computed
the HOG3D descriptor for each block. Note that κ and τ
are parameters that control the size of blocks. We let κ
range from 2 to 4. Otherwise, the larger the κ is, the less
the number of blocks for each slice will be, which may be
disadvantageous for the computation of Joint SSVs. The τ



Figure 4: (Left) Extracting HOG3D feature descriptor after
the dense sampling for the action volume in ROI and the
partitioning of the volume into blocks; (Right) All blocks
with the same temporal location form a slice. Each slice
is further vectorized to a vector feeding into the Joint SSV
construction procedure.
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Figure 6: Converting silhouette features to time series using
the method in [21] for Bend and Jack actions from the
Weizmann dataset.

ranges from 1 to 5. It can control the depth of the generated
volume.

Slices overlap with each other between consecutive ones,
yielding a redundant representation, which enhances the
discriminative power [20]. Within each slice, all blocks
are concatenated in row order into a block sequence. This
sequence is a vector used for building the self-similarity
matrix. Using all slices, we then construct a Joint SSV out
of both SSMs and Joint SSMs using the procedure described
in Section 3.

Silhouette-based Joint SSV (JSSV-silh) We extracted
the contour from the silhouette in each frame and
transformed the contour into a time series using the method
in [21], as shown in Fig.6. The time series were normalized
to zero mean and unit variance before being fed into the
framework as input vectors to generate the Joint SSV.
Silhouettes can be easily extracted from static or uniform
action background, but harder or even impractical for more
challenging action sequences. For this reason, we merely
tested this scheme on Weizmann dataset, which provides
well-extracted silhouette features. Fig.8 shows a sequence
of generated SSMs for Bend action in Weizmann dataset,
and Fig.7 shows the visual difference between four different
actions.

6.2. Datasets and recognition rate

For all the results reported in this section, we performed
the recognition using nearest neighbor classification and
leave-one-out cross validation.
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Figure 7: SSM comparison among various action frames
using silhouette feature. (Top) Selected frames from
4 actions Jack, Run, Wave2, and Side; (Bottom) The
corresponding silhouette-based SSMs.
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Figure 9: Recognition rate under different HOG3D block
depth 2τ for three datasets using JSSV-hog3d scheme.

Weizmann dataset The Weizmann dataset 1 consists of
videos of 10 different actions performed by 9 actors. Each
video clip contains one subject performing a single action.
The 10 different action categories: walking, running,
jumping, gallop sideways, bending, one-hand-waving,
two-hands-waving, jumping in place, jumping jack, and
skipping. Each of the clip lasts about 2 seconds at 25Hz
with image frame size of 180× 144.

We evaluated two schemes separately, namely the
JSSV-silh and the JSSV-hog3d. For the former scheme,
we used the provided well-extracted silhouettes in dataset to
build input vectors for the whole framework, and we were
able to achieve a recognition rate of 100%. For the latter
one, we extract the ROI using the silhouettes and fitting
a bounding box around each of them. To be consistent,
all ROIs in our experiments are scaled and concatenated to
form a 128 × 64 × t volume, where t is the frame number
in sequence. We evaluated various block size setups (Fig.9
and Table 1) and observed that when κ = 4 and τ = 3 (i.e.
block size: 16×16×8), the JSSV-hog3d scheme yields the
best recognition rate of 100%, as shown in Table 1.

KTH dataset The KTH dataset 2 consists of 6 actions
performed by 25 actors in four different scenarios. We
followed the evaluation procedure in [20] but used slightly
different settings for the block size. We extracted the ROIs

1http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
2http://www.nada.kth.se/cvap/actions/



Figure 5: Screenshots for different action classes of 3 public datasets. (The 1st row) The Weizmann dataset and the KTH
dataset; (The 2nd row) The UCF sports dataset.

Figure 8: A sequence of computed SSMs for frames selected from the the Bend action in Weizmann dataset. Note that all
above SSMs have identical dimension. Both salient and subtle differences between silhouette contours can be revealed by
SSMs.

using the bounding boxes provided by [14], and evaluated
the JSSV-hog3d scheme on this dataset under various block
size configurations, as shown in Fig.9. When τ is small,
the block depth is small, making the final decomposed
vectors undiscriminating for classification. But as τ grows,
the recognition rate grows accordingly. This also agrees
with our intuition that larger blocks contain more cells, and
capture more stable gradient information compared with the
smaller ones. But as the block size becomes too large, more
redundant information is introduced, leading a reduced
recognition rate. Especially, our best recognition rate 100%
is achieved when κ = 4 and τ = 4, This outperforms both
the result in [20] (92.4%), which has a similar experimental
configuration as us, and the state-of-the-art approach in [5]
(94.5%).

UCF sports dataset The UCF sports dataset 3 contains
11 actions: golf swing (back, front, side), kicking (front,
side), riding horse, run, skate boarding, swing bench,
swing (side), and walk. This dataset also provides the
well-extracted bounding boxes for extracting the ROIs
from each action sequence. Each action contains unequal
number of samples. For consistency in our experiments, we
chose 10 samples for each action class. For those actions

3http://server.cs.ucf.edu/ vision/data.html

having less than 10 samples such as “golf-swing-back”,
“golf-swing-side”, and “golf-swing-front”, we increased
the amount of data samples by adding a horizontally flipped
version of existing samples. This resulted in 110 samples in
total. As shown in Table 1, our best recognition rate 86.9%
is achieved when κ = 3 and τ = 3, which is comparable
with the state-of-the-art in [9] (87.27%).

7. Conclusion
In this paper, we study the application of Joint

Self-Similarity Volume for action recognition in video
sequences. A new optimized rank-1 tensor approximation
algorithm is proposed for dimensionality reduction, which
can largely preserves the salient characteristics for scene
dynamics. A significant saving in both memory and
computational complexity can be achieved since only a
collection of rank-1 tensors is adopted as the reference
database. The algorithm also allows one to recognize
actions without explicitly aligning the videos in temporal
dimension. Due to the fact that the proposed formulation is
not dependent on the low-level features extracted from the
sequence, we can apply this framework using any type of
low-level feature vector, including feature vectors that are
view-invariant [18].



Table 1: (Upper table) Comparison of recognition rate for 3 action datasets under the JSSV-hog3d scheme. The κ and τ are
parameters controlling the block size 2κ × 2κ × 2τ ; (Bottom table) Comparison of recognition rate for 3 datasets between
our 2 different schemes and other methods.

Weizmann KTH UCF sports
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

κ=2 70.5 78.4 82.0 80.1 71.1 70.5 73.9 64.8 76.3 60.2 68.0 64.7 69.8 72.0 48.6
κ=3 75.0 76.5 86.2 87.3 85.4 75.5 70.4 84.8 88.0 84.0 63.9 72.8 86.9 80.5 76.4
κ=4 83.6 90.1 100.0 90.0 89.1 80.2 83.0 94.8 100.0 92.2 68.2 81.9 64.8 77.5 76.1

Methods Weizmann KTH UCF sports
JSSV-silh 100.0 - -

JSSV-hog3d 100.0 100.0 86.9
Schindler [17] 100.0 Gilbert [5] 94.5 Kovashka [9] 87.27

Zhang [24] 97.8 Lin [14] 93.4 Klaser [12] 86.7
Other methods J.Imran [7] 95.3 Schindler [17] 92.7 Wang [19] 85.6

Niebles [16] 90.0 Weinland [20] 92.4
Liu [15] 89.3 Liu [15] 82.8
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