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Abstract

In this paper we propose a new approach to compute
the scale space of any omnidirectional image acquired with
a central catadioptric system. When these cameras are
central they are explained using the sphere camera model,
which unifies in a single model, conventional, paracata-
dioptric and hypercatadioptric systems. Scale space is es-
sential in the detection and matching of interest points,
in particular scale invariant points based on Laplacian of
Gaussians, like the well known SIFT. We combine the sphere
camera model and the partial differential equations frame-
work on manifolds, to compute the Laplace-Beltrami (LB)
operator which is a second order differential operator re-
quired to perform the Gaussian smoothing on catadioptric
images. We perform experiments with synthetic and real im-
ages to validate the generalization of our approach to any
central catadioptric system.

1. Introduction

In recent years the interest in omnidirectional cameras
has increased considerably. In particular in catadioptric
systems which are a combination of lenses and mirrors.
Baker and Nayar [2] have shown which catadioptric de-
vices have a single effective viewpoint, i.e. are central cam-
eras. This central property allows to easily calculate the
directions of the light rays coming into the camera. The
most useful central catadioptric systems are the paracata-
dioptric and the hypercatadioptric models, using a mirror of
paraboloidal/hyperboloidal shape, coupled with an ortho-
graphic/perspective camera.

Image processing has developed through the years tech-
niques for conventional (perspective) cameras. Among all
these techniques, feature detection/extraction is one of the
most relevant, since it represents a crucial step on higher
level techniques, such as matching, SLAM, structure from
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motion, navigation, localization, surveillance and many
more. A particular useful property for features is to be
scale-invariant. There are different approaches to detect
scale-invariant features. Some of them are based on the
scale-space analysis [15, 17]. Some others are based on
the grey scale intensity [13, 16]. SIFT [15] has become
the most used feature extraction approach. It has also been
used directly in omnidirectional images [10], although it is
not designed to work on them. This SIFT approach has in-
spired different works trying to replicate its good results on
different imagery systems, in particular on wide-angle cam-
eras. In [6] a Gaussian kernel is derived. It requires the
omnidirectional image to be mapped to the sphere. Then,
the spherical Fourier transform is computed and convolved
with the spherical Gaussian function. In [12] the image
is mapped to the sphere and obtain scale-space images as
the solution to the heat diffusion equation on the sphere
which is implemented in the frequency domain using spher-
ical harmonics. This approach introduces new drawbacks as
aliasing and bandwidth selection. A complete SIFT version
computed on the sphere also using the heat diffusion equa-
tion is presented in [7]. In [1 1] an approximation to spher-
ical diffusion using stereographic projection is proposed. It
maps the omnidirectional image to the stereographic image
plane through the sphere. It also maps the spherical Gaus-
sian function to an equivalent kernel on the stereographic
image plane. Then, the approximate spherical diffusion is
defined as the convolution of the stereographic image with
the stereographic version of the Gaussian kernel. More re-
cently [14] propose an improvement to the SIFT detector by
introducing radial distortion into the scale-space computa-
tion. In [5] a framework to perform scale space analysis for
omnidirectional images using partial differential equations
is proposed. It leads to the implementation of the linear heat
flow on manifolds through the Laplace-Beltrami operator.
Omnidirectional images are treated as scalar fields on para-
metric manifolds. Based on this work Arican and Frossard
[1] propose a scale invariant feature detector for omnidirec-
tional images. They deal with the paracatadioptric projec-
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Figure 1. Sphere Camera Projection Model

tion which is equivalent to the inverse of the stereographic
projection. They model this projection on the sphere and
obtain its corresponding metric. This metric is conformal-
lly equivalent to the Euclidean one making the computation
of the Laplace-Beltrami operator straightforward. Although
this approach could work with any catadioptric system, the
metric describing the reflecting surface (mirror) has to be
provided, which in some cases can be difficult to obtain.

In this paper we propose a new approach to compute the
scale-space for any central catadioptric system. We inte-
grate the sphere camera model [9, 3], which describes any
central catadioptric system, selecting it by one single pa-
rameter, with the partial differential equations on manifolds
framework through the heat diffusion equation [5, 1]. Using
this framework and the mirror parameter we compute the
metric representing that particular reflecting surface. Then
we use this metric to calculate the corresponding Laplace-
Beltrami operator. This second order operator allow us to
perform the Gaussian smoothing on omnidirectional im-
ages.

The rest of the paper is organized as follows. In section 2
we explain the sphere camera model and its geometrical in-
terpretation for the different catadioptric systems. In section
3 the computation of the Laplace-Beltrami operator consid-
ering a generic catadioptric system is developed. Section 4
show experiments computing the scale space for different
catadioptric systems using synthetic and real images. Fi-
nally in section 5 we summarize the results of this paper.

2. Sphere Camera Model

According to [9, 3], all central catadioptric cameras can
be modeled by a unit sphere and a perspective projection,
such that the projection of 3D points can be performed in
two steps (Fig. 1). First, one projects the point onto the
unit sphere, obtaining the intersection of the sphere and the
line joining its center and the 3D point. There are two such
intersection points, which are represented as r+ . These
points are then projected in the second step, using a per-

spective projection M resulting in two image points, q4 ,
one of which is physically true. This model covers all cen-
tral catadioptric cameras, encoded by &, which is the dis-
tance between the perspective projection and the center of
the sphere. We have ¢ = 0 for perspective, { = 1 for para-
catadioptric and 0 < ¢ < 1 for hypercatadioptric systems.
A point on the sphere r = (X,Y, Z) can also be rep-
resented by two angles (6, ) (Fig. 2a). Depending on the
location of the projection point (mirror parameter &) we can
have different radial projection functions [8]. In the para-
catadioptric projection case (¢ = 1), which coincides with
the inverse stereographic projection (Fig. 2c¢), its radial pro-
jection function is 2 tan(g). In the perspective case where
¢ = 0 the corresponding projection function is tan(6). In
the hypercatadioptric case (0 < £ < 1) the radial projec-
tion function becomes (1 + &) 5ii§oz 5 (Fig. 2d). This func-
tion will be useful later to generalize the computing of the
metric for any mirror shape in central catadioptric systems.

3. Scale Space of Catadioptric Images

In this section we integrate the sphere camera model
(section 2) that models any central catadioptric system and
the techniques developed to compute the differential opera-
tors on non-Euclidean manifolds [4] such as the mirror sur-
faces present in catadioptric systems.

3.1. Differential Operators on Riemannian Mani-
folds

The scale space representation I (z, y, t) is computed us-
ing the heat diffusion equation and differential operators on
the non-Euclidean manifolds. It is defined as

OI(x,y,t)
ot

where A is the Laplacian-Beltrami operator and ¢ is the
scale level. The initial condition is I(z,y,t0) = I(x,y)
where I(x,y) is the original image.

We briefly define the differential operators on the mani-
folds which make possible the computation of the Laplace-
Beltrami operator. Let M be a parametric surface on R?
with an induced Riemannian metric g;; that encodes the ge-
ometrical properties of the manifold.

In a local system of coordinates z° on M, the compo-
nents of the gradient reads

= Al(z,y,1) ey

0
Oxl
where g*/ is the inverse of g;;. A similar reasoning is used

to obtain the expression of the divergence of a vector field
X on M

V= g¥ 2)

divX = ;gai(xiﬁ), (3)
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Figure 2. Simplified sphere camera model, showing the different radial projection functions. (a) spherical coordinates. (b) perspective
projection. (c) paracatadioptric projection. (d) hypercatadioptric projection.

where g is the determinant of ¢g*/. Finally, combining
these two operators we obtain the Laplace-Beltrami oper-
ator, which is the second order differential operator defined
on scalar fields on M by

1 ..
AT = —;(/3g" ;1 4

3.2. Computing a Generic Metric on the Sphere

As explained in section 2 omnidirectional images are
formed in two steps. The first one projects a 3D point to
the unitary sphere. Then this point is projected from the
unitary sphere to the image plane through a variable pro-
jection point, which is determined by the geometry of the
mirror (parameter £). If the system is calibrated [18], it is
also possible like in any conventional camera, to map the
catadioptric image to the unitary sphere.

In [5, 1], the mapping from paracatadioptric images to
the sphere is used for the computation of the differential op-
erators explained before. This allows to process the spheri-
cal image directly using the image coordinates. In this paper
we extend that approach to all central catadioptric systems.

Consider the unitary sphere S? (Fig. 2a). A point on S?
can be represented in cartesian and polar coordinates as

(X,Y,Z) = (sinf cos p, sin O sin o, cos §) )

The Euclidean element in cartesian and polar coordinates
is defined as

di? = dX? + dY? + dZ? = d6? +sin® 0de®  (6)

Under the sphere camera model, a point on the sphere
(0, ), is mapped to a point in polar coordinates (R, ¢) in
the image plane. The 6 angle depends on the central cata-
dioptric system we are dealing with, while ¢ remain the
same. For example, a conventional perspective system is
described with § = arctan(R) and a paracatadioptric sys-
tem with § = 2arctan(£). In the general case (see Fig.

2
2d) we have

# = arctan ( R(1+§+ (HOLRQ@LD) ) @)
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In terms of these new coordinates the metric becomes

2
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Let (z,y) € R? on the sensor plane define cartesian co-
ordinates, where R? = z* + 32 and ¢ = arctan(¥)

diz =

4(1+€)(zdz+ydy)® ) 9)

2
4* = A(d(yde —2dy)” ~ GapEeT—eoT

where
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To verify the correctness of this approach we substitute
& to the values for which we already know the metric. For
& = 1 the result is the same as that one presented in [1].
In the case of ¢ = 0 that corresponds to the perspective
case we expect a cartesian metric but what we get is the
following

(1 + y?)da? — 2zydady + (1 + 22)dy?)
(I +22 + )2

di? = (10)

This is explained since there is no map from the sphere to
the plane being both conformal and area-preserving. How-
ever, from the generic metric we have already computed, we
are able to compute the Laplace-Beltrami operator. To deal
with the perspective case we only need to use the classical
Laplacian.

3.3. Computing the Generic Metric on the Normal-
ized Plane

The previous approach computes the metric on the
sphere and then it is projected to the image plane through
the angle # which encodes the radial projection function.
We have observed that using the sphere camera model we
are able to compute the metric directly on the image plane
and at the same time take into account the geometry of the
mirror, which is given by the mirror parameter €.

Let’s observe the perspective projection in cartesian and
spherical coordinates

<}Z<’;) = (tan&cosgp,tan@singa) = (x,y) (11)

The radial component is R = /22 + y? = tan(f) and
the Euclidean element in this case just takes into account
the (z,y) coordinates but also the two spherical coordinates

(0, 0)

ds? = d(tan @ cos p)? + d(tan §sin ¢)? = dz? + dy?
12)
The same approach applied to the paracatadioptric case
& =1 gives

X Y _ (sin@cosgo cos@cosgo) _ (:c )
1-21-2)  \T—cos0  1—cos0 )~ Y

(13)

and its corresponding Euclidean element with § =

2 2
2 arctan < ”x;y) and ¢ = arctan (£) becomes

16(dz? + dy?)

2
22 +y2+4)2
(xZ + y2 - 4)2( 5'3021‘;21_22’ - 1)

diZ =

The generic metric equation for any catadioptric system
is described by the following Euclidean element on the nor-
malized plane

(€cos® — 1)2d6? + (& — cos §)? sin® Odp?

2 _
ds” = (€ — cosh)4

15)

which allows to compute the Euclidean element on the nor-
malized plane with the substitution of # and ¢ in terms of
x and y (that equation is not shown here because of lack of
space).

3.4. Generic Laplace-Beltrami Operator

From (9) we can compute the generic metric in matrix
form g;; and its corresponding inverse matrix g*/

g (—TPE-1)+EF1
g _72( zy(€ —1)

zy(§—1) )
-2 (E-1)+E+1
(6

with

by = (2 +y2+01+6)?)°
27 (e (crer /I @D reere)

The determinant of (16) is

(22+(1+624+3?) " (@2 +y2) (6~ 1)—€—1)
(1+6) (e+624/T- @2 ry?) (@ -1 26+€2)
(17)
With all these elements we are now able to compute the
Laplace-Beltrami operator (4) which is represented by the
differential operators

det(gij) = —
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Algorithm 1: Smoothing catadioptric images using the
heat diffusion equation

—1-E24+(62-1) (2 +y2) —264/1- (2 - 1) (a2 +y?)
23)
An analogous process has been performed for the com-
putation of the metric in the normalized plane, but the equa-
tions are too big to fit in these pages. In the rest of the paper
we use the metric computed on the sphere.

3.5. Smoothing Catadioptric Images Using the
Generic Laplace-Beltrami Operator

We compute the smoothing of the catadioptric images
using the heat diffusion equation. This equation is com-
puted at successive time steps, t; = k%02 is defined in
terms of the normalization and scale factors k and the base
smoothing level o,,.

The differentiation with respect to time in the heat dif-
fusion equation is discretized with time intervals, d;. To

compute the discrete differential representations of the im-

oI oI 2°I 9%I a I
age 5os 9y ry® Oz2 and we convolve the catadioptric

image with different kernels

I, =[-11] 1_[_3 L= —21]
1 0 10
Iy=|-2| L,=[1 -4 1 (24)
1 0 10

For a particular catadioptric system defined by £ we com-
pute the corresponding coefficients (19-23) which multiply
their corresponding convolved image. Then we compute
the specific Laplace-Beltrami operator. Finally, smoothing
is performed by updating I (z, y, t) with the differences that
have been computed at previous time steps. We summarize
the process in algorithm 1.

4. Experiments

In this section we perform several experiments using
synthetic and real images. The synthetic catadioptric im-
ages are generated using the raytracing softwaxe POV-
ray'and correspond to images from an office scene’. Two
hypercatadioptric systems with mirror parameters of ¢ =
0.9662%(m1) and & = 0.7054*(m2) are considered. We also
consider one paracatadioptric system & = 1 with radius
r = 2.5cm. The real images are acquired using the hy-
percatadioptric system designed by Neovision (m1).

Thttp://www.povray.org
Zhttp://www.ignorancia.org
3http://www.neovision.cz
“http://www.accowle.com

Input : I(z,y),t,d:, &, Tz, Ty, Iy, Txx, Tyy
Output: /(z,y,t)

Initialize required variables

[cIx,cly,cIxy,cIxx,clyy]+ CDCoef f (I(z,y), &)

ntimes « t/d;

I(z,y,t) « I(x,y)

for i < 1 to ntimes do
ImIx <+ clx *Convolve (I(
Imly « cly *Convolve ( (x,
ImlIxy « clIxy *Convolve (I(z,y, ) Ixy)
ImIxx « cIxx *Convolve (I(z,y,t), [zx)
Imlyy « clyy *Convolve (I(z,y,t), [yy)
LBO < Imlx + Imly+ImIxy+ImIxx + Imlyy
I(z,y,t) < I(z,y,t) + d; * LBO

end

z,y,t), [

y,t), 1

(a) (b) (c)
Figure 3. Smoothed catadioptric images with ¢ = 3. (a) ml. (b)
m?2 and (c) paracatadioptric. The first row represents the original
images, the second represents the smoothed images and the last
one the corresponding LB operators.

4.1. Smoothing of Synthetic Images

We follow the algorithm | with d, = 0.01. All the coeffi-
cients \;, ¢ = 1...5 are computed once since they only de-
pend on the geometry of the image and not on the gray val-
ues. Fig. 3 shows smoothed images with different mirrors at
the same scale factor ¢ = 3. They also show the correspond-
ing generic LB operator. We observe that the geometry of
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Figure 4. Comparison between generic LB operator and cartesian Laplacian. The first row show the smoothed images for scales t =
{1,2, 3,5} using our approach. The second row shows the corresponding generic LB operators. The third row, the cartesian Laplacians.
The last row presents the sum of the values (scaled for visualization purposes) of the generic LB and the cartesian Laplacian as a function

of the radius of a circle with origin at the image center.

each mirror is taken into account when the smoothing is per-
formed. The LB operator of m1 and the one corresponding
to the paracatadioptric system are similar since the mirror
parameter is close to 1. In the LB operators of mirrors m1
and m2, we observe how the intensities and thickness of the
edges vary with respect to the distance to the image center.
The differences between these LB operators are explained
since the geometries of these mirrors are different.

In order to verify the validity of our approach we perform
an experiment where we compare the generic LB operator
computed using our approach to the cartesian Laplace op-
erator. To obtain this operator we smooth the omnidirec-
tional image to the same scale ¢, using the corresponding
Gaussian kernel. Then, we compute the Laplacian of this
image using the cartesian operator I,,. We select the hy-
percatadioptric (m1) image for which we compute scales
t = {1,2,3,5} and their corresponding generic LB and
cartesian Laplacian. In Fig. 4 we show the results. We ob-
serve that the generic LB operator considers a difference

between the pixels close to the center and those close to the
periphery, while the cartesian Laplacian has the same effect
on all pixels, without taking into account their location with
respect to the center.

To quantify the last statement we sum the values of the
generic LB operator inside circles with different radii and
origin at the image center. We perform the same procedure
with the cartesian Laplacian. The last row of Fig. 4 shows
the comparison of these sums for the the different scales.
We observe that the pixels in the periphery have smaller
values in the generic LB operator than those on the nor-
mal Laplace operator. In the center where the resolution of
the catadioptric images is bigger the values of the Laplace-
Beltrami operator and the normal Laplace are similar.

4.2, Scale Space on Real Catadioptric Images

In Fig. 5 we show the pyramid that compose the scale
space of a hypercatadioptric image computed using our ap-
proach. We define the scale space to be composed of four
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Figure 5. Scale Space of a real omnidirectional image, composed of four octaves and four scales per octave. First octave 1024 X 768 pixels.
Second octave 512 x 384 pixels. Third octave 256 x 192 pixels. Fourth octave 128 x 96 pixels.

octaves and four scales per octave. The initial sigma is de-
fined as t = 0.8 and the rest are computed as explained in
Section 3.5. The value of the smoothing interval is defined
as k = 21/3,

4.3. Repeatability Experiment

In this experiment we test the repeatability of the ex-
trema points detected with the scale space computed using
our approach. The extrema points are obtained from the ap-
proximation to the scale-normalized Laplacian of Gaussian
through differences of Gaussians, similar to [15]. We gener-
ate nine synthetic images with rotations from zero degrees
to eighty degrees around the z—axis, with steps of ten de-
grees between each pair of images. The two extreme images
are shown in Fig. 6. We observe a drastic distortion on the
images, this is produced by the conic shape of the mirror.

Since the rotation of the catadioptric system is known,
we can map the detected features in the reference image x
to the subsequent images and compute the distance between
them. The matching criteria is the following

1% — %[ < b4 (25)

where, X is the mapped point. We use the Euclidean dis-
tance. The distance threshold §, has to be adapted to cap-
ture the matches with different scale levels and computed
as

0a = 0o - tx, (26)

where dg is the distance threshold parameter.

We compare our approach to SIFT algorithm. In partic-
ular we use Vedaldi’s implementation [19]. In Fig. 7 we
show the results of this experiment. We observe that the LB
approach has a clear advantage over the classical SIFT ap-
proach, obtaining double repeatability than the scale space

Y
Y

(a) (b)
Figure 6. Synthetic hypercatadioptric images. (a) Reference im-
age. (b) Image generated with the catadioptric system rotated 80°
around the z-axis.
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Figure 7. Percentage of correct matches through rotations of the
catadioptric system around the z—axis. The x—axis represents the
orientation of the catadioptric system in degrees with respect to
the initial position.

used by SIFT in extreme camera rotations. The low rate
shows the difficulties of matching catadioptric images.



5. Conclusions and Future Work

We have presented a new way to compute the scale-space
of omnidirectional images. We integrate the sphere camera
model which considers all central catadioptric systems with
the partial differential equation framework on manifolds to
compute a generic version of the second order differential
operator Laplace-Beltrami. This operator is used to per-
form the Gaussian smoothing on catadioptric images. We
perform experiments using synthetic images generated with
parameters coming from actual manufactured mirrors. We
observe that Laplace-Beltrami operator considers correctly
the geometry of the mirror, since the pixels at the periph-
ery have a different weight than those at the center. This
situation explains the natural non-homogeneous resolution
inherent to the central catadioptric systems. The near fu-
ture work is to implement a complete scale-invariant feature
detector also invariant to camera since the sphere camera
model allows to consider all central projections.
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