
Feature Seeding for Action Recognition

Pyry Matikainen Rahul Sukthankar∗ Martial Hebert
pmatikai@cs.cmu.edu rahuls@cs.cmu.edu hebert@ri.cmu.edu

The Robotics Institute, Carnegie Mellon University

Abstract

Progress in action recognition has been in large part due
to advances in the features that drive learning-based meth-
ods. However, the relative sparsity of training data and the
risk of overfitting have made it difficult to directly search for
good features. In this paper we suggest using synthetic data
to search for robust features that can more easily take ad-
vantage of limited data, rather than using the synthetic data
directly as a substitute for real data. We demonstrate that
the features discovered by our selection method, which we
call seeding, improve performance on an action classifica-
tion task on real data, even though the synthetic data from
which the features are seeded differs significantly from the
real data, both in terms of appearance and the set of action
classes.

1. Introduction
A human researcher who designs a feature has an almost

insurmountable advantage over a learning algorithm: they
can appeal to an intuition built over thousands of hours of
direct experience with the world to decide which parts of
the visual experience are important to consider and which
are noise.

In contrast, an algorithm that attempts to select or learn

Figure 1. Our method uses motion features from synthetic data
(left) to seed features that are effective for real data (right), even
though the two data sets share no common actions and are very
different in terms of appearance.

∗R. Sukthankar is now at Google Research

features directly from a target dataset risks overfitting, espe-
cially if a large number of candidate features are considered.

Intuitively, this problem might be avoided if a large
amount of related data were used to learn the features; one
promising method to produce such data is synthetic gener-
ation using computer graphics techniques. While graphics
methods are not quite yet at the point where plausible syn-
thetic images can be economically generated, in the special
case of motion, the widespread availability of mature mo-
tion capture technology has provided a wealth of resources
from which synthetic videos of human motion can be pro-
duced.

We propose a technique that we refer to as feature seed-
ing, in which synthetic data is used to select, or seed, fea-
tures that are robust against a wide range of tasks and con-
ditions. The actual model is learned entirely on real data;
synthetic data has just guided the choice of underlying fea-
tures. In this case, we only need enough similarity that the
same types of features are useful on both synthetic and real
data. In video analysis, for motion features we suspect we

d

[0,1]

d1
d2

dn

...

0 1 10 1

0 1 01 1

0 1 10 0
+

+

+

y1

y2

yn

... H

(a) (b)

(c)

(e)

Figure 2. System overview: a pool of randomly generated features
(a) is filtered, or seeded, on synthetic data (b) to produce a greatly
reduced number of features (e) that are likely to be informative.
We extract descriptors (e.g. trajectories) on real data (c), and these
descriptors are fed through the seeded feature set to produce label
vectors qi, one per descriptor. These label vectors are then accu-
mulated into a histogram H that represents the video clip.

can meet that requirement (see Fig. 1).
What we demonstrate is that one can leverage observa-

tions of human actions obtained from one source to classify
actions observed from another loosely related source, even
if the two sets of actions differ. This transfer is possible
because the two datasets are correlated — not necessarily
in terms of specific actions but because both depict humans
performing visually distinctive movements.

In more concrete terms, many popular bag of visual
words (BoW) techniques rely on quantizing descriptors
computed from video; generally either simple unsupervised
techniques such as k-means clustering [11, 15, 20, 24] or
hand-crafted quantization strategies [18] are used. Our sug-
gested seeding can be seen as employing synthetic data to
drive the selection of the quantization method itself.

The basic organization of our method can be seen in
Fig. 2. First, a set of synthetic video clips is generated
using motion capture data. These clips are generated in
groups, where each group is an independent binary clas-
sification problem. Next, raw motion descriptors are ex-
tracted from the synthetic data pool in the form of trajec-
tory snippets [18, 19] and histogram of optical flow (HOF)
descriptors around space-time interest points (STIP) [15].
Note that we are not proposing a complete system for action
recognition; we consider only motion features in a simpli-
fied recognition framework in order to isolate the effects of
our feature seeding.

Each clip produces many descriptors– trajectory descrip-
tors produce on the order of 300 descriptors per frame of
video, while STIP-HOF produces closer to 100 descriptors
per frame. These descriptors are sampled to produce a can-
didate pool of features, where each feature is a radial basis
function (RBF) classifier,1 whose support vectors are ran-
domly drawn from the descriptors. Then the synthetic data
is used to rank features based on their aggregate classifica-
tion performance across many groups of synthetic data. We
denote the highly ranked features selected in this way as the
seeded features. The seeded features can then be applied to
real data and used as input to conventional machine learning
techniques. For evaluation, we consider the seeded features
in a standard bag-of-words framework, using linear SVMs
as classifiers.

2. Related work
Our proposed technique is related to both domain

adaptation and feature selection, but targets a different
level of information transfer than either. Domain adapta-
tion techniques can be powerful across limited and well-
characterized domains, such as in [14]. However, the gains
are often modest, and as the aptly titled work “frustrat-
ingly simple domain adaptation” by Daumé [10] shows,

1We use the word “feature” in the same way as in boosting ap-
proaches [27]: a feature is an individual base classifier.

even simple techniques can outperform sophisticated do-
main adaptation methods. Likewise, transfer learning meth-
ods such as transductive SVMs [8] can provide modest ben-
efits, but are often computationally expensive and often re-
stricted to datasets with shared classes.

In terms of feature selection, our method falls firmly into
the filtering category of the taxonomy of Guyon and Elis-
see [13], in which features are selected without knowing
the target classifier. The choice of a filtering method rather
than a wrapper is motivated by the larger risk of overfitting
in wrapper methods [13, 17, 29]. We use a feature ranking
technique [13, 29] that is inspired by boosting-based meth-
ods [9, 28, 29]. However, since we do not assume that the
specific task is known on the target data, we do not rank
features by their performance on a single task, but instead
on aggregate performance over a basket of independent ran-
domly generated tasks.

Typical domain adaptation techniques assume that the
specific task is the same between the source and target do-
mains [2, 10, 14], and this assumption is the most com-
mon one in transfer learning as well [8, 9, 12]. That is
to say, if the problem were action recognition, then these
techniques would need the specific actions of interest to
be matched across the domains. For example, Cao et al.
perform cross-dataset action detection, using one dataset
(KTH) [24] to improve performance on a related one (MSR
Actions Dataset II) [4]. However, the particular actions
that are detected are present in both datasets, and indeed
MSR was explicitly constructed to share those actions with
KTH. In contrast, our seeding technique requires no for-
ward knowledge of what classes are present in the real data,
and does not require any shared action classes at all between
the synthetic and target tasks.

A related idea is that of learning from pseudo-tasks, as in
Ahmed et al. [1], where the learning of mid-level features is
regularized by penalizing features for poor performance on
a set of artificially constructed pseudo-tasks. Our synthetic
data can be seen as pseudo tasks, but with the important
distinction that our synthetic tasks force features to be good
at the specific problem of human action recognition rather
than the more general problem of image processing.

We select from a pool of features that are computed
from raw descriptors, which may take many forms; we
consider trajectory fragments [18] and space-time interest
points [15]. These features are slightly modified Gaussian
radial basis function (RBF) classifiers. We choose to use
features of this form because RBF can approximate arbi-
trary functions [25], and random classifiers and features
have, by themselves, shown benefits over other represen-
tations [6, 23]. The choice of each feature as an indepen-
dent classifier means that, after features have been seeded,
only the selected features need to be computed on the test
dataset. As our method is capable of drastically reducing

Figure 3. Example frame from synthetic data. The synthetic video
is abstract in appearance, but the movement of the armature man is
derived from motion capture data. The texture does not match real
data in appearance and serves only to provide descriptor extractors
(e.g. trajectories derived from optical flow) with stable inputs.

the feature count (e.g., from 10,000 to 50 with no loss of
accuracy), this results in greatly reduced computational and
storage requirements, and simplifies subsequent stages in
layered architectures.

There has been limited work on using synthetic data
for action recognition. A number of approaches use syn-
thesized silhouettes from motion capture to match actions
(e.g. [7]), but these are limited to a constrained domain
(where silhouettes can be reliably extracted) and require
that the action being searched be present in the data set. Re-
cent work with depth cameras [26] demonstrates the power
of this type of approach when the synthetic model of the
task is very good. Another line of work by Qureshi and
Terzopoulos [22] uses synthetic crowds to tune sensor net-
works for surveillance. In still image analysis, Pinto et al.
use a screening approach to select entire models from syn-
thetic data [21]. In contrast, our approach selects generally
good features that are useful across models.

We demonstrate that even crude, unmatched synthetic
data that makes no attempt to directly mimic the target
datasets can be used to improve performance, and further-
more, that this increase can be achieved by straightforward
selection mechanisms. Additionally, seeding a quantization
scheme from synthetic data outperforms both unsupervised
and heuristic quantization schemes.

3. Method
3.1. Descriptor extraction and handling

Our synthetic data can support a wide variety of motion
descriptors, and in this paper we consider two different ap-
proaches: trajectory based descriptors, and histogram of op-
tical flow (HOF) descriptors as per Laptev et al. [15].

For the trajectory descriptors, points are tracked using a
KLT tracker [3], with the number of tracked points capped
at 300. Each trajectory is segmented into overlapping win-
dows of ten frames, where each window or snippet is ex-

(a) (b) (c)

Figure 4. Examples of trajectory descriptors accepted by different
classifier features. Some features represent simple concepts, such
as leftward movement (a), or a quick jerk (b), while others do not
correspond to anything intuitive (c). Given limited labeled data
(c) could be indicative of overfitting. Feature seeding allows us to
confidently determine that the chosen features generalize well.

pressed as a set of coordinates in the image

di = {(x1, y1), (x2, y2), . . . , (xT , yT)}, (1)

where T = 10 is the number of frames in the overlapping
window. This is converted into a relative representation, so
that

di = {(dx1, dy1), (dx2, dy2), . . . , (dxT−1, dyT−1)}, (2)

where dxt = xt+1 − xt, and dyt = yt+1 − yt.
This relative representation is the basic trajectory de-

scriptor on which the k-means centers are computed. For
input to RBF features we perform an additional normaliza-
tion step to normalize the length of each link (dx, dy) to
1. This normalization to discard magnitude information is
similar to that used in other techniques [18, 19].

For the histogram of optical flow (HOF) based mo-
tion descriptor, we use the Space-Time Interest Points of
Laptev et al. [15] using a HOF descriptor around each
point (STIP-HOF). This method finds sparse interest points
in space and time, and computes HOF descriptors around
each. Each descriptor found in this manner is a 90-
dimensional vector.

3.2. Feature pool

3.2.1 Feature generation and evaluation

We consider a pool of candidate features, where intuitively
each feature can be viewed as an RBF classifier. Formally,
each feature evaluates a function of the form

fk(d) = clip(
∑
i

wk,i · e−βk,i||d−vk,i||2), (3)

where vk,i is one “support vector” for the feature fk, and
wk,i and βk,i are the weight and beta for that support vec-
tor. The clip(.) function clips the value to the range [0, 1],

so that values less than zero (definite rejections) are thresh-
olded to zero, while values above one (definite accepts) are
thresholded to one and all other values are unchanged. Our
experiments use RBF classifiers as features due to their gen-
erality, but in practice our method can employ any type of
classifier.

Given this functional form, we generate a pool (in our
case, of size 10,000) of features by randomly selecting sup-
port vectors from the synthetic dataset’s descriptors. The
weight associated with each support vector is chosen from a
normal distribution N(0, 1), and the β associated with each
support vector from a uniform distribution over the range
[0, 10]. These parameters were chosen arbitrarily to gen-
erate a large range of variation in the classifiers. Example
trajectory descriptors that might be accepted by these types
of features can be seen in Fig. 4.

The feature can also be seen as computing an intermedi-
ate representation q(d) corresponding to a descriptor d, so
that

q(d) = (f1(d), f2(d), . . . , fK(d)) . (4)

When the pool of features is evaluated, the “histogram”
bin corresponding to a feature is evaluated according to

bk(D) =
∑
d∈D

fk(d), (5)

where D is a set of descriptors (e.g., all the descriptors
computed from a given video). The entire histogram is ex-
pressed as

hD = (b1, b2, . . . , bK) =
∑
d∈D

q(d), (6)

which is to say that the feature fk is treated as an indicator
function for whether a descriptor belongs to label k, where a
descriptor might have multiple labels, and where the labels
a descriptor di takes on are given in the vector qi.

3.3. Feature seeding/filtering

Given the pool of features, we select for, or seed, a good
set of features from the pool by rating them on a set of syn-
thetic data. In practice, the seeding is similar to a single
iteration of boosting, with the important difference that the
seeding attempts to find features that work well across many
different problems, rather than a single one.

Let Pn and Nn correspond to the sets of descriptor sets
(videos) in the positive and negative sample sets, respec-
tively, of a synthetic group n. Then we can express the rat-
ing ak,n of a feature k on group n (n = 1, . . . , N) as

ak,n = max
t

∑
D∈Nn

I(bk(D) ≤ t) +
∑
D∈Pn

I(bk(D) > t)

||Nn||+ ||Pn||
,

(7)

where bk(D) is the result of evaluating feature k on descrip-
tor set (video) D, and I(.) denotes the indicator function.

Note that this is just the accuracy of a decision stump on
the bk(D) values. We have also considered mutual infor-
mation based rating, but we find that it has slightly worse
performance, probably because the stump-classifier rating
we use here is a better match for the final SVM classifica-
tion. However, our method does not depend on any single
rating metric, and it is straightforward to swap this metric
for another.

Now, we express the aggregate accuracy of a feature over
all groups as

Ak = g({ak,n|n = 1, . . . , N}), (8)

where g(.) is a function that operates on a set. In our
case, we consider three possible aggregation functions g:
gmin(X) = min(X), gmax(X) = max(X), and gavg(X) =
mean(X). Intuitively, gmin takes the worst-case perfor-
mance of a feature against a collection of problems, gmax
takes the best-case performance, and gavg takes the average
case. Note that because the evaluation problems are ran-
domly generated from a large motion capture database (see
Section 3.4), it is unlikely that they will share any action
classes in common with the target task. The goal is to se-
lect features that perform well against a variety of action
recognition tasks (i.e., that can discriminate between differ-
ent human actions).

Then we simply rank the features according to their Ak
values and select the top s ranked ones. In practice, we use
seeding to select the top s = 50 features from a pool of
10,000.

Given a set of training and test videos on real data, we
compute histograms hD, where each histogram is computed
according to (Eqn. 6) over the reduced set of s features.
Then we simply train a linear SVM as the classifier.

3.4. Synthetic data generation

In order to perform our feature seeding, we must be
able to generate relatively large amounts of synthetic data.
Since it is difficult to produce synthetic data that is com-
parable to real-world data in terms of raw pixel-level ap-
pearance, we concentrate on the simpler task of generating
synthetic data that matches real-world data in terms of mo-
tion. We make no attempt to mimic real-world appearance:
the human model in our synthetic data is a abstract armature
(Fig. 3). However, in terms of motion it is a reasonable ana-
log, since its motion is derived from human motion capture
data (Fig. 1).

3.4.1 Synthetic data organization

The synthetic data is organized into groups of clips. Each
group consists of a number of positive samples all gener-

ated from a single motion capture sequence, and a number
of negative samples randomly drawn from the entire mo-
tion capture dataset. In this way, each task is an indepen-
dent binary classification problem where the goal is to de-
cide which clips belong to the action vs. a background of
all other actions. We reiterate that the actions used in the
synthetic data do not correspond to the actions used in the
final classification task on real data. Since the synthetic ac-
tions are randomly chosen out of motion capture sequences,
they may not correspond to easily named actions at all. The
two sets of tasks are unmatched so that the seeded features
can be used in any future classification task. Each clip is 90
frames long, and each group has 100 clips, corresponding to
50 positive samples and 50 negative samples. In this paper
we use 20 groups, for a total of 2000 clips.

A clip is produced by moving a simple articulated human
model according to the motion capture sequence, with some
added distortions. The synthetic data is rendered at a resolu-
tion of 320×240 and a nominal framerate of 30fps in order
to match the MSR and UCF-YT datasets (see Sec. 4.1).

3.4.2 Motion generation

The motion of the human model in the synthetic videos
is produced by taking motion capture sequences from the
CMU motion capture database [5] and adding temporal dis-
tortions and time varying noise to the joint angles.

For each clip a motion capture file is chosen from the
2500 clips in the CMU motion capture database. If the clip
is meant to be a positive example, then the motion capture
file and approximate location within that file is given, and
the starting frame is perturbed by approximately±1s. If the
clip is meant to be a negative example, a motion capture file
is randomly chosen from the entire database, and a starting
position within that file is randomly chosen.

Next, temporal distortion is added by introducing a tem-
poral scaling factor (e.g., if the factor is 2.0, then the mo-
tion is sped up by a factor of two). Non-integral scaling
factors are implemented by interpolating between frames of
the motion capture file. Then, a random piece-wise linear
function is used to dynamically adjust the temporal scaling
factor of the rendered clip. In practice, we limit the random
scaling factor to drift between a value of 0.1 and 2.0. Con-
sequently, the timing of a rendered clip differs from that of
the base motion capture file in a complicated and nonlinear
fashion.

A similar approach is used to add time-varying distortion
to the joint angles. A random piece-wise linear function is
generated for every degree of freedom for every joint in the
armature, and this function is simply added to the joint an-
gles obtained from the motion capture sequence. The mag-
nitude of this distortion is ±0.3 radians.

We add several other distortions and randomizations to

the synthetic data. The viewing angle is randomly chosen
for each clip, as is the viewing distance. Additionally, the
position of the actor/armature is randomized for each clip.
The lighting is also randomized between clips, because the
effects and positions of shadows can have a significant ef-
fect on the extraction of feature trajectories.

4. Results
4.1. Datasets

We evaluate our method on two standard datasets: the
UCF YouTube “Actions in the Wild” dataset (UCF-YT) [16]
and the Microsoft Research Action Dataset (MSR) [30].
The UCF-YT dataset is a straightforward forced-choice
classification problem between 11 action classes (mostly
various sports). The dataset contains 1600 videos of ap-
proximately 150 frames each, and we divide these videos
into a training set of 1222 videos and a testing set of 378
videos. The UCF-YT dataset is further sub-divided into
subsets of related videos (e.g., all from the same sports
match, or sharing the same background); in order to avoid
training/testing contamination from closelyrelated videos,
we employ a stratified training/testing split that places each
subset either entirely in the training or the testing set.

The MSR Action Dataset consists of of sixteen rela-
tively long (approximately 1000 frames per video) videos
in crowded environments. The videos are taken from rela-
tively stationary cameras (there is some camera shake). The
dataset only has three actions — clap, wave, and box, with
each action occurring from 15 to 25 times across all videos.
The actions may overlap. For evaluation we consider MSR
to be three separate binary classification problems, i.e., clap
vs. all, wave vs. all, and box vs. all, rather than a three-
way forced choice because the actions overlap in several
parts. Each problem has an equal number of negative sam-
ples drawn by randomly selecting segments that do not fea-
ture the action in question, so for example, the wave vs. all
problem is a binary classification between the 24 positive
examples of the wave action and 24 negative examples ran-
domly drawn from the videos. Due to the limited amount of
data in this set, evaluation is by leave-one-out cross valida-
tion.

As described earlier, for feature seeding we use a syn-
thetic dataset, which consists of 2000 short videos; the “ac-
tions” in this dataset do not necessarily correspond to any of
the action classes in either the UCF-YT or MSR datasets.

4.2. Feature statistics

A natural question to consider is how informative these
RBF features are; that is, how likely is our seeding method
to find useful features. Because the features are evaluated
by treating them as stump classifiers, the worst an individual
feature could do is 0.5 accuracy; any lower, and the classi-

Figure 5. Accuracy distribution of RBF classifier features on syn-
thetic data, compared with the expected number of false positives.
Above accuracy 0.61, the majority of features are true positives.
The difference between these two distributions is statistically sig-
nificant to p < 0.001 according to the Kolmogorov-Smirnov test.

fier simply flips direction. Since there is noise in the data,
a classifier that is uncorrelated with video content can still
vary in value across videos, and this means that it is possi-
ble for it to obtain an accuracy better than 0.5 on the limited
data simply by chance. If we were considering a single fea-
ture, then we could ignore this unlikely possibility, but with
a pool of 10,000, statistically we can expect to see several
such false positives.

It is easy to empirically estimate the false positive distri-
bution by simply randomly permuting the labels of all of the
test videos; in this way, a classifier cannot be legitimately
correlated with the video labels, and the resulting distribu-
tion must be entirely due to false positives.

As can be seen in Fig. 5, the accuracy distribution of the
real features is quite different from the false positive distri-
bution. In particular, the real feature distribution is shifted
to the right of the random distribution, indicating that there
are more high-accuracy features than would be expected by
chance, even in the worst-case scenario that the vast ma-
jority of the features are uninformative. Note that the false
positive distribution takes on a log-normal type distribution,
albeit with a spike at 0.5 corresponding to zero-variance fea-
tures. The same test performed with the aggregation tech-
niques produces similar results, indicating that the aggrega-
tion techniques also reveal informative features.

4.3. Comparison with other quantization methods

Since the goal of the proposed technique is to improve on
the early quantization and accumulation steps of the bag-
of-words model, a natural baseline against which to com-
pare is the standard bag-of-words model consisting of k-
means clustering followed by nearest neighbor quantization
and histogram accumulation. Additionally, for the UCF-YT
dataset we compare against a somewhat more sophisticated
quantization technique, trajectons [18].

Our results on the UCF-YT dataset are shown in Ta-
ble 1. Here the feature shows large gains over both k-means

Table 1. Results on UCF YouTube dataset (motion features only).

Method Total accuracy (%)

Seeded RBF [STIP] (gmax) 34.4
k-means [STIP] 36.6
k-means [Traj] (MSR centers) 36.6
k-means [Traj] (synth centers) 37.0
Seeded RBF [STIP] (gmin) 38.6
Seeded RBF [Traj] (gmax) 38.9
Seeded RBF [Traj] (gavg) 39.4
Unseeded RBF [Traj] 40.2, σ = 1.9
Trajectons [18] 42.2
All 10,000 RBF [Traj] 46.0
Seeded RBF [Traj] (gmin) 46.0

Table 2. Comparison of seeding source on UCF YouTube.

Method / Source UCF-YT Synthetic

Seeded RBF [Traj] (gmax) 38.6 38.9
Seeded RBF [Traj] (gavg) 34.7 39.4
Seeded RBF [Traj] (gmin) 41.0 46.0

and random feature subsets, at 46.0% to 37.0% and 40.2%
respectively. Additionally, our feature selection improves
upon the trajectons quantization technique, which obtains
an accuracy of 42.2%. The power of our technique is fur-
ther emphasized by the fact that our technique uses only
50 features compared to the 216 of trajectons. Even with a
pairwise spatial relationship coding scheme, their technique
achieves 47.7%, which is only slightly better than the per-
formance of our independent features without any spatial
information.

Note that our performance with 50 seeded features
matches that of running the entire candidate set of 10,000
features. Beyond the obvious computational and storage
benefits of processing only 50 features instead of 10,000,
methods that build on top of these quantized features will
likely benefit from the reduced dimensionality (e.g., if pair-
wise relationships are considered, it is better to consider
50 × 50 rather than 10000 × 10000). While the “kitchen
sink” approach of feeding all 10,000 classifiers into an SVM
worked in this case (likely due to the resilience of linear
SVMs against overfitting), other classifiers may not be as
robust.

The results of this comparison on the MSR dataset are
shown in Table 3. Overall, the feature selection posts rel-
atively large gains in the gmax and gavg selection methods,
while gmin remains largely the same as for k-means. For the
individual classes, the selection method improves perfor-
mance on the clap and box categories, while performance
on wave is largely similar.

It is interesting that the selection techniques that perform

Table 3. Seeding outperforms k-means, unseeded RBF, and boost-
ing on MSR.

Method Clap Wave Box Total

Boosting (50/500) 65.0 60.0 57.0 60.7
Unseeded RBF 60.0 61.0 61.7 61.0
Seeded RBF (gmin) 60.7 62.5 60.4 61.2
k-means (MSR centers) 53.6 62.5 68.7 61.6
k-means (synth centers) 53.6 62.5 68.7 61.6
Boosting (50/10000) 75.0 64.6 52.0 63.9
Seeded RBF (gavg) 71.4 62.5 66.7 66.9
Seeded RBF (gmax) 75.0 58.3 70.8 68.0

well are exactly inverted between MSR and UCF-YT, with
gmax and gavg performing well on MSR, while gmin performs
well on UCF-YT. In practice, gavg works like a weaker gmax,
so it is unsurprising that its performance is similar to that of
gmax on both datasets. Between gmin and gmax, however, we
suspect the difference is due to how similar the datasets are
to the synthetic data that was used for feature selection. The
MSR dataset is much more similar to the synthetic data than
the UCF-YT dataset, which may explain why the more ag-
gressive gmax selection performs better on the former while
the more robust gmin selection performs best on the latter.
More specifically, the MSR dataset has a fixed camera and
simple human motions, which matches the cinematography
of the synthetic data (albeit varying in the specific actions).
By contrast, UCF-YT exhibits highly variable cinematogra-
phy and includes non-human actions (e.g., horses and dogs)
as well as actions with props (e.g., basketballs and bicycles).

4.4. Comparison of base descriptors

The results of a comparison of base descriptors (trajec-
tories vs. STIP-HOF) is shown in Table 1. Overall, the
performance of STIP-HOF features is worse than that of
trajectory-based ones. However, note that the best selec-
tion method (gmin) outperforms k-means for both STIP and
trajectory features, and that gmin outperforms the other two
methods for both features.

4.5. Comparison to unseeded RBF features

As an additional baseline we compare the performance
of the features seeded from the synthetic data to that of
random sets of features. The purpose of this baseline is
to establish whether the gains seen with the classifier sets
over k-means are due to the selection process, or whether
the classifier-based features are inherently more informative
than k-means histogram counts. As can be seen in Tables 1
and 3, the performance of random feature sets is very sim-
ilar to that of codebooks produced by k-means, indicating
that random classifier sets are by themselves about only as
powerful as k-means codebooks. It is only after selection

(either on the data itself, if there is enough, or on synthetic
data) that significant gains are seen over the k-means base-
line.

4.6. Comparison with feature selection on real data

We perform experiments using AdaBoost for feature se-
lection on the MSR dataset (see Table 3). While boosting
on the data itself improves performance on the clap action,
the overall performance increase is modest, suggesting that
when features are selected from the entire pool of 10,000
classifiers, boosting overfits. When the features are boosted
from smaller subsets chosen at random, the overall per-
formance is closer to that of unseeded features. However,
the average performance of boosting on the real data is not
much better than that of random subsets, and lower than that
of seeded features.

Next, we evaluate the contribution of the synthetic data
itself, in order to rule out the possibility that it is only
the seeding technique (i.e., randomly partitioning the data
into groups and then evaluating aggregate performance) that
produces performance gains. We perform our feature seed-
ing using the real training data as the seeding source. In or-
der to mimic the structure of the synthetic data groups (one
action class vs. everything else), we partition the UCF-YT
training data into groups, where each consists of one action
class vs. the remaining 10. We further randomly partition
each group into five, for a total of 55 groups. We then per-
form the feature seeding. These results are shown in Ta-
ble 2. Note that for every selection method (e.g. gmin), the
seeding from synthetic data outperforms the seeding from
the real data. Additionally, the selection method gmin is the
best regardless of the seeding source. Thus, the synthetic
data itself plays an important role.

5. Conclusion
In this paper we propose feature seeding, a novel ap-

proach for using synthetic data to improve action recogni-
tion. Since the synthetic data (1) does not match the ap-
pearance of real world video and (2) is not guaranteed to
contain the same actions as the test datasets, it is difficult
to apply traditional domain adaptation, feature selection, or
transfer learning approaches. Nevertheless, we demonstrate
that seeding, which is a feature ranking selection technique
on appropriately organized data, significantly improves per-
formance on real world data. Seeding outperforms both the
popular k-means quantization method and a more sophisti-
cated engineered quantization method, demonstrating that
even in very different action datasets there are deep com-
monalities that can be exploited.

Tellingly, features seeded from synthetic data have bet-
ter performance than those seeded from the real data, de-
spite the similar sizes of the datasets, indicating that the
synthetic data itself contributes to the success of the tech-

nique. This highlights the potential benefits of appropriately
constructed synthetic data (i.e., where low-level descriptors
are similar to real data and high levels of variation can be
generated).

We believe that this general approach, in which synthetic
data is used to select for robust algorithms, is an especially
important avenue of exploration given the increasing de-
mands placed on learning-based techniques and the sparsity
of appropriately annotated data. Although the experiments
presented here focus on the video action recognition do-
main, the proposed approach is broadly applicable to many
learning-based vision tasks.

Acknowledgments

This research was sponsored in part by the Army Research
Laboratory and was accomplished under Cooperative Agreement
Number W911NF-10-2-0061. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Gov-
ernment. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein.

References
[1] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Train-

ing hierarchical feed-forward visual recognition models us-
ing transfer learning from pseudo-tasks. In ECCV, 2008. 2

[2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Analy-
sis of representations for domain adaptation. In NIPS, 2007.
2

[3] S. Birchfield. KLT: An implementation of the Kanade-
Lucas-Tomasi feature tracker, 2007. 3

[4] L. Cao, Z. Liu, and T. Huang. Cross-dataset action detection.
In CVPR, 2010. 2

[5] Carnegie Mellon University Graphics Lab. CMU graphics
lab motion capture database, 2001. 5

[6] G. Carneiro. The automatic design of feature spaces for local
image descriptors using an ensemble of non-linear feature
extractors. In CVPR, 2010. 2

[7] Y. Chen, R. Parent, R. Machiraju, and J. Davis. Human ac-
tivity recognition for synthesis. In IEEE CVPR Workshop on
Learning, Representation and Context for Human Sensing in
Video, 2006. 3

[8] R. Collobert, F. Sinz, J. Weston, L. Bottou, and T. Joachims.
Large scale transductive SVMs. Journal of Machine Learn-
ing Research, 7, 2006. 2

[9] W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer
learning. In ICML, 2007. 2

[10] H. Daumé III. Frustratingly easy domain adaptation. In Pro-
ceedings of Association of Computational Linguistics, 2007.
2

[11] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In VS-PETS,
2005. 2

[12] L. Duan, D. Xu, I. Tsang, and J. Luo. Visual event recogni-
tion in videos by learning from web data. In CVPR, 2010.
2

[13] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, 2003. 2

[14] K. Lai and D. Fox. Object recognition in 3D point clouds
using web data and domain adaptation. International Journal
of Robotics Research, 29:1019–1037, 2010. 2

[15] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 2, 3

[16] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions
from videos “in the wild”. In CVPR, 2009. 5

[17] J. Loughrey and P. Cunningham. Overfitting in wrapper-
based feature subset selection: The harder you try the worse
it gets. In Research and Development in Intelligent Systems
XXI, pages 33–43. Springer, 2005. 2

[18] P. Matikainen, M. Hebert, and R. Sukthankar. Representing
pairwise spatial and temporal relations for action recogni-
tion. In ECCV, 2010. 2, 3, 6

[19] R. Messing, C. Pal, and H. Kautz. Activity recognition using
the velocity histories of tracked keypoints. In ICCV, 2009.
2, 3

[20] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing of human action categories using spatial-temporal words.
IJCV, 79(3), 2008. 2

[21] N. Pinto, D. Doukhan, J. DiCarlo, and D. Cox. A high-
throughput screening approach to discovering good forms of
biologically inspired visual representation. PLoS Computa-
tional Biology, 5(11), 2009. 3

[22] F. Qureshi and D. Terzopoulos. Surveillance in virtual re-
ality: System design and multi-camera control. In CVPR,
2007. 3

[23] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, 2007. 2

[24] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: a local SVM approach. In Proceedings of Interna-
tional Conference on Pattern Recognition, 2004. 2

[25] J. Shawe-Taylor and N. Cristianini. Support Vector Machines
and other kernel-based learning methods. Cambridge Uni-
versity Press, 2000. 2

[26] J. Shotton, A. Fitzgibbon, M. Cook, and A. Blake. Real-time
human pose recognition in parts from single depth images.
In In CVPR, 2011. 3

[27] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001. 2

[28] X. Wang, C. Zhang, and Z. Zhang. Boosted multi-task learn-
ing for face verification with applications to web image and
video search. In CVPR, 2009. 2

[29] T. Windeatt and K. Dias. Feature ranking ensembles for fa-
cial action unit classification. In Proceedings Artificial Neu-
ral Networks in Pattern Recognition, 2008. 2

[30] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In CVPR, 2009. 5

