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Abstract

We consider the problem of quantizing data generated from
disparate sources, e.g. subjects performing actions with dif-
ferent styles, movies with particular genre bias, various
conditions in which images of objects are taken, etc. These
are scenarios where unsupervised clustering produces in-
adequate codebooks because algorithms likeK-means tend
to cluster samples based on data biases (e.g. cluster sub-
jects), rather than cluster similar samples across sources
(e.g. cluster actions). We propose a new quantization tech-
nique, Source Constrained Clustering (SCC), which extends
the K-means algorithm by enforcing clusters to group sam-
ples from multiple sources. We evaluate the method in the
context of activity recognition from videos in an uncon-
strained environment. Experiments on several tasks and
features show that using source information improves clas-
sification performance.

1. Introduction
We explore the problem of generating a codebook by clus-
tering features from data with large within-class variabil-
ity. In particular, we study the problem of data quantiza-
tion via K-means in the context of a BoW model, which
has demonstrated state of the art performance in a wide
range of computer vision tasks [3, 15, 19, 28]. The BoW
framework relies heavily on the assumption that the clus-
tering step produces a grouping of the samples which is
meaningful for the classification task. However, when data
comes from disparate sources the resulting clusters might
not be suitable for distinguishing between the desired se-
mantic classes. Example scenarios which use data from
disparate sources include: activity recognition tasks where
multiple subjects perform actions with varied styles in un-
constrained environments; object recognition tasks in which
the images come from environments with dissimilar charac-
teristics [22]; data from web sources with different presen-
tation style and bias, etc.

It is often the case that data collected in such settings ex-
hibits a large within-class variability for a range of semantic
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Figure 1. We want to cluster actions performed by different sub-
jects (a). In a BoW framework with K-means, a quick look at the
discretized videos (b) reveals clustering of subjects, which is due
to the distinctive styles of execution. SCC uses source informa-
tion and clusters actions, as seen from the χ2 distances between
the discretized videos (c) - 1A is closer to 1B, as desired, while
with K-means (d) video 1A is closer to 2A (same subject).

categories. This presents a challenge when learning code-
books via unsupervised clustering algorithms, which tend
to group samples from the same source, rather than clus-
ter samples from the same semantic class. For example, in
Figure 1, features from four video segments are discretized
according to a codebook learned via K-means. Due to the
different execution styles, the discretized samples from the
same source are closer to each other, than to the sample in
the same action class. This makes the codebook less suit-
able for distinguishing between the two action classes.

This paper proposes a quantization technique which ac-
counts for the problem of source clustering. We evaluate
the method in the context of activity recognition of sub-
jects performing actions in an unconstrained environment.



In addition to a synthetic data set example, we present re-
sults on two realistic data sets. First, we analyze the Hol-
lywood 2 data set [13], comprised of 69 different movies
with 12 manually labeled action classes. We consider each
movie as a source that generates examples in a particular,
often unique, style, which is due to producer and genre bias.
For example, “driving” could be a clip of a car moving on
a street, or a person behind the wheel. In the second data
set, the CMU Multimodal database [4], multiple subjects
were asked to prepare different recipes. The data set con-
tains tremendous variability within action classes, and even
simple tasks such as cracking an egg or opening a package
are performed in a multitude of ways and styles.

To address the large variability across sources, we pro-
pose Source Constrained Clustering (SCC), which imposes
the constraint that each cluster includes samples from sev-
eral sources. We ground this idea in the widely used setting
of learning a codebook for a bag-of-words (BoW) model.
This framework represents an image or video sequence as
an orderless collection of local features. The standard algo-
rithm proceeds by clustering all the training features, dis-
cretizing the original data using the learned cluster centers,
and finally training a model for classification of new exam-
ples. The usual K-means clustering step in a BoW frame-
work is replaced by a new optimization step which incorpo-
rates these source constraints. The new constraints require
source information for each training data sample, which is
generally readily available, or otherwise easy to annotate
(e.g., subject id or movie id, etc.).

Our hypothesis is that 1) we can incorporate source con-
straints in a K-means formulation; 2) source information
produces better quantization of the data according to seman-
tic classes. We evaluate this hypothesis across three data
sets and three types of features and show improvement in
classification performance when source information is used
to learn a codebook in a BoW setting.

2. Prior work
One example of prior work on activity recognition where
data comes from disparate sources is the Hollywood 2 data
set [13]. Video clips in the same action class but extracted
from different movies vary greatly in their visual charac-
teristics. Marszalek et al. [13] report classification results
of average precision 0.326 using a BoW framework and
STIP features, clearly showing the difficulty of the prob-
lem. The same approach applied to action classification
from YouTube videos of sport events shows that BoW ap-
proaches on real world data sets need further improve-
ment [16]. Similarly, prior work on clustering features ex-
tracted from video sequences from the CMU Multimodal
Database [4] shows that several algorithms cluster samples
from the same subjects, rather than discriminate samples
across action classes. This type of data sets (and simi-

larly [21, 14]) presents a challenge to standard codebook
learning algorithms because subjects perform the same ac-
tions in very different ways (e.g. cracking an egg using a
fork, the rim of a bowl, finger, or on the counter surface).
The bias of data from such unconstrained environments
complicates the creation of robust codebooks, because the
learned clusters represent styles, rather than contain repre-
sentative samples from multiple sources.

The solution we propose is an extension of the K-
means [12] algorithm – one of the most widely used tech-
niques for clustering and learning codebooks, due to its sim-
plicity and good performance. This work is inspired by
the constrained K-means clustering method proposed by
Bradley et al. [2], in which new constraints ensure that each
cluster contains a minimum number of data samples. Our
algorithm differs from this work by imposing a different
set of constraints – each cluster should contain data from
multiple sources. Among many other K-means extensions,
the work of Wagstaff et al. [24] is closely related to ours.
The authors extend K-means with must-link and cannot-
link constraints specified directly on the features using do-
main knowledge. This algorithm and its many extensions,
like soft-constrained clustering [11], have shown excellent
results. However, these methods are not suitable in sce-
narios with interest samples or aggregate features statistics,
where we do not have knowledge of how to constrain indi-
vidual data samples.

This paper builds on existing work on discriminative
clustering [5, 7, 1, 26]. Generative methods for clustering
such as K-means and spectral clustering do not provide a
feature selection or feature weighting mechanism to remove
irrelevant features for clustering. In our scenario, we are in-
terested in weighting the features such that each cluster con-
tains multiple disparate sources. Discriminative clustering
algorithms combine distance metric learning [18, 25] with
clustering algorithms. Typically, discriminative clustering
algorithms compute a low dimensional projection that also
encourages cluster separability. Unlike previous discrimi-
native clustering algorithms [5, 7, 1, 26] which are unsuper-
vised, this paper proposes to weakly guide clustering and
metric learning using source information.

3. Background

3.1. Regular clustering (RC): K-means

Consider the problem of clustering N data samples into K
clusters. Let D be aD×N real matrix of samples whereD
is the data dimension and N is the number of samples. K-
means clustering splits a set ofN samples intoK groups by
minimizing the within-cluster variation. That is, K-means
finds a grouping of the data that is a local optimum of the
following energy function [27, 6, 5]:



minimize G,M ‖D−MGT ‖2F (1a)

subject to:
K∑
c=1

gic = 1, ∀i ∈ [1, N ] (1b)

G : Binary (1c)

where G is a N ×K binary indicator matrix with elements
gic specifying if point i belongs to cluster c, and M is the
D ×K matrix of data means (see notation1).

The K-means algorithm performs coordinate descent
in (1a). Given an initial value for M, the algorithm iter-
ates between optimizing for G and recomputing M, until
the change in objective is small, or a maximum number of
iterations is reached. The constraint (1b) enforces that each
data point belongs to only one cluster.

3.2. Linear Discriminant Analysis (LDA)

LDA is a supervised algorithm which finds a projection of
the data onto a subspace where the distance between clus-
ters is maximized, while the distance within each cluster
c ∈ [1,K], is minimized. The formulation we use is [8]:

minimize B tr
(
BTSwB

)
(2a)

subject to: tr
(
BTStB

)
≥ 1 (2b)

where B is a D × (K − 1) projection matrix, and the co-
variance matrices are defined as:

Sw =
1

N − 1

k∑
c=1

∑
di∈c

(di −mc)(di −mc)
T (3a)

St =
1

N − 1

N∑
i=1

(di −m)(di −m)T (3b)

where the data mean is denoted by m and mc is the mean
for cluster c.

4. Regular Clustering (RC) with LDA
Following existing work in discriminative clustering [5, 7,
1, 26], we formulate an energy function for joint clustering
and metric learning with dimensionality reduction. A key
observation is that we can re-write Sw in terms of the cluster
assignment matrix G:

Sw =
1

N − 1
(D−MGT )(D−MGT )T ,

1Bold capital letters denote a matrix X, bold lower-case letters a col-
umn vector x. xi represents the ith column of the matrix X and xij de-
notes the scalar in the ith row and jth column. IN is the N ×N identity
matrix, 1N is a column vector of ones. ‖X‖2F = tr(XTX) = tr(XXT )

is the Frobenious norm of X, and ‖X‖2B = tr(XBBTXT ). The Kro-
necker product Am×n ⊗Bp×q produces an mp× nq block matrix.

and thus the objective in (2a) becomes:

tr
(
BTSwB

)
∝ tr

(
BT (D−MGT )(D−MGT )TB

)
(4a)

= ‖D−MGT ‖2B, (4b)

which is the K-means objective from (1a), weighted by a
projection matrix B. We optimize the following error func-
tion, which combines metric learning (dimensionality re-
duction) and K-means clustering, and which we term RC
LDA:

minimize G,M,B ‖D−MGT ‖2B (5a)

subject to:
K∑
c=1

gic = 1,∀i ∈ [1, N ] (5b)

tr
(
BTStB

)
≥ 1 (5c)

G : Binary (5d)

We perform coordinate descent and alternate between
clustering with K-means in the projected space and com-
puting LDA. That is, we iterate between: 1) for a fixed B,
solve the standard K-means problem specified in (1); 2) for
fixed G and M, solve for the projection matrix, B, via the
generalized eigenvalue problem StB = SwBΛ. We stop
when the change in objective is small or until a maximum
number of iterations has been reached. Unlike [7], we use
the total covariance matrix St, which is more suitable for
expressing the source constraints in the next section. We
use K-means, which differs from the work of [5], who use
a continuous formulation to estimate G.

5. Source constrained clustering (SCC)
5.1. Overview

When quantizing data from disparate sources, we want to
discover clusters which 1) group similar samples and 2)
are representative of the sources. For example, in activity
recognition, K-means might cluster the particular styles of
subjects performing actions. However, we seek a discretiza-
tion that generalizes the styles, i.e. clusters which are rep-
resentative of the subjects. While it is impossible to know
the optimal number of sources that should be represented
in each cluster, SCC approximates this problem by con-
straining that each cluster contains a minimum number of
sources. Formally, we consider the problem of clustering
N samples from R sources into K clusters, such that each
cluster contains data from at least a fixed number of sources,
h. For each data point i ∈ [1, N ], we are given the source id,
s ∈ [1, R], which generated this point. We can add source
constraints to K-means by counting the number of sources
represented in each cluster.

First, we re-write the RC LDA problem (5) in a form that
will allow us to write a linear integer program (LIP) with



constraints that require each cluster to represent a minimum
number of sources. Then, we show the derivation of the
matrices used in the source constraints, and we present the
final SCC optimization problem.

5.2. RC LDA reformulation

We denote by vec(G) the column vector produced by con-
catenating the columns of the matrix G, so that the first N
entries, g11 . . . gN1, contain a 1 for samples in cluster 1, the
next N entries, g12 . . . gN2, contain a 1 for samples in clus-
ter 2, and so forth:

vec(G) =
[
g11 . . . gN1 . . . g1K . . . gNK

]T
NK

. (6)

The constraints in (5b) which ensure that a point belongs
to only one cluster can be expressed as:

Uvec(G) = 1N , (7)

where UN×NK = 1T
N ⊗ IN . The objective function (5a)

can be expressed using vec(G) and a column vector fNK

which contains the squared distances from each data point
to each cluster center:

fT vec(G) =



 (d1 −m1)TBBT (d1 −m1)
. . .

(dN −m1)TBBT (dN −m1)


... (d1 −mk)

TBBT (d1 −mk)
. . .

(dN −mk)
TBBT (dN −mk)





T

NK

vec(G).

(8)
The RC LDA optimization problem (5) can be written as:

minimize G,M,B fT vec(G) (9a)
subject to: Uvec(G) = 1N (9b)

tr
(
BTStB

)
≥ 1 (9c)

G : Binary (9d)

5.3. Source constraints

Sketch. First, we describe the source constraints for a clus-
ter c, then we construct the matrices used by the final linear
integer program (see Table 1). We enforce each cluster c
to have samples from at least h sources by constructing the
sum over all sources in the cluster and thresholding it by h.
If xcs is a binary variable equal to 1 when source s has at
least one data point in cluster c, we can express this as:

R∑
s=1

xcs ≥ h. (10)

Let wcs ≥ 0 be the number of samples source s has in clus-
ter c, as assigned by G. Since xcs ∈ {0, 1}, the inequality

xcs: Binary and xcs ≤ wcs (11)

GN×K - cluster assignments for each point (binary)
UN×NK - hard cluster assignment K-means (binary)
XK×R - source assignments per cluster (binary)
VR×K - sum unique sources in a cluster (binary)
QN×R - source assignments for each point (binary)
PRK×NK - select sources represented in each cluster (binary)
RRK×NK - select total number of samples in a cluster (binary)

Table 1. Matrices used in the SCC integer program formulation.

ensures that xcs is set to 0 if source s does not have any
points in cluster c.

LIP formulation. We now write the source constraints
in matrix form for all clusters. Let X be the K × R binary
matrix whose entries are xcs. Then (10) can be written as:

Vvec(X) =
(
1T
R ⊗ IK

)
vec(X) ≥ h1K . (12)

We can write (11) for all clusters and all sources as:

vec(X) ≤ Pvec(G), (13)

where the RK × NK binary matrix P selects the samples
each source has in the cluster specified by G. To construct
P, we represent the source information in a N × R binary
matrix Q, with elements qis = 1 if point i comes from
source s, and 0 otherwise. To get the number of samples
source 1 has in each cluster, take q1, the first column of Q,
and duplicate it K times:

ws = Q̃1vec(G) = (IK ⊗ qT
1 )vec(G), (14)

so that the vector ws of length K contains the number of
samples s has in each cluster, and Q̃1 is a K ×NK binary
matrix. Repeating for each source, the per cluster source
information matrix P is given by:

P =

Q̃1

...
Q̃R


RK×NK

. (15)

The optimization problem (9) with source constraints is:

minimize G,M,B,X fT vec(G) (16a)
subject to: Uvec(G) = 1N (16b)
vec(X)−Pvec(G) ≤ 0 (16c)

Vvec(X) ≥ h1K (16d)

tr
(
BTStB

)
≥ 1 (16e)

G,X : Binary (16f)



5.4. Regularization

Constraints (16c) and (16d) ensure that each cluster con-
tains samples from at least h sources. However, this does
not guarantee that the sources contribute a meaningful num-
ber of samples in participating clusters. Indeed, an undesir-
able solution would be to assign to cluster c some samples
from source s = 1, and only one data sample from each
of the remaining s = 2 . . . h sources. To account for this,
we add a regularizing constraint to ensure each source con-
tributes a non-trivial amount in every participating cluster.

Sketch. Let tc be the total number of samples in clus-
ter c and assume every cluster has at least h sources. We
approximate the fraction of samples sources should have in
each cluster by a fraction of h+R

2 samples of tc. We con-
strain wcs, the number of samples s has in c, to be within
θ̃ns samples of this quantity:

wsc ≥ γtc − θ̃ns, (17)

where γ = 2
h+R , and ns is the total number of training

samples generated by source s. The slack of θ̃ns samples
account for the case where the number of training samples
per source can differ greatly, and we cannot expect sources
to contribute the same number of samples. First, we set
θ̃ = 0, which approximates a uniform source distribution.
If the problem is infeasible, we relax it and try a range of
thresholds that take into account the number of samples per
source. We vary θ̃ from 0.05 to 0.4 in increments of 0.05,
and define θs = θ̃ns. Furthermore, (17) should hold only
if the solution assigns non-zero number of samples from s
to c, i.e. when xcs = 1, otherwise the constraint should be
inactive:

γtc − wsc ≤ θsxcs +N(1− xcs), (18)

where the right-hand side is θs if s has at least one point in c
(xcs = 1), or it evaluates to N otherwise. In the latter case,
the constraint is trivially satisfied, since xcs = 0 implies
wsc = 0, and it is always the case that γtc ≤ N .

LIP formulation. The total number of samples in c = 1
are obtained by summing up the first N entries of vec(G):

t1 = [1T
N 0T

N . . .0T
N ]vec(G). (19)

For all clusters we can write:

R̃K×NK = (IK ⊗ 1T
N ), (20)

and for all sources we construct the binary selector matrix:

RRK×NK = 1R ⊗ R̃. (21)

We re-write (18) as:

γtc − wsc + (N − θs)xcs ≤ N. (22)

Using P and X defined in the previous section, con-
straint (22) for all clusters and all sources becomes:

γRvec(G)−Pvec(G)+(N1T
RK−θT )vec(X) ≤ N1RK ,

(23)
where θ = 1K ⊗ [θ1 . . . θR]T , a vector of length RK.

5.5. SCC algorithm

The final SCC optimization problem is:

minimize G,M,X,B fT vec(G) (24a)
subject to: Uvec(G) = 1N (24b)

vec(X)−Pvec(G) ≤ 0 (24c)
Vvec(X) ≥ h1K (24d)

(γR−P)vec(G) + (N1T
RK − θT )vec(X) ≤ N1RK

(24e)

tr
(
BTStB

)
≥ 1 (24f)

G,X : Binary (24g)

We approximately solve (24) as in [5, 7] by initializing M to
K samples at random, setting B = I, and iterating between:
1) solving for G and M in the standard K-means setting,
with B fixed; and 2) solve for B, using G and M found
in the previous step (see Algorithm 1). To solve the LIP
problem, we use the ILOG CPLEX [9] software.

Algorithm 1 SCC(D,M, h)

for t = 0... do // iterative clustering and metric learning
for s = 0... do // iterative SCC
fs ← ComputeObjective(Dt,Ms)
(G∗s+1,X

∗
s+1) = SolveLIP(fs, h) // Eq. (24)

Ms+1 ← ComputeMeans(Dt,G
∗
s+1)

end for
Mt+1 ←Ms, Gt+1 ← G∗s
Bt ← LDA(Gt+1,Mt+1) // metric learning
Dt+1 ← BT

t Dt; Btotal ← BT
t Btotal

end for
return Gt,Btotal

6. Experiments
We show that using source information when data comes
from disparate sources improves classification in a BoW
codebook task. Furthermore, we confirm that the improve-
ment in performance is correlated with the source variance.
To show that the approach can be applied to a broad class of
vision tasks, we perform experiments on three data sets and
three types of features in BoW classification tasks. First,
we illustrate SCC on a simple synthetic data set, then we
compare to previously reported results on the Hollywood 2
action data set [13], and finally we report results on action
classification on the CMU-MMAC data set [4].
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Figure 2. Synthetic data where samples generated by the same source are closer than the samples in the same class (see Section 6.1).
K-means groups sources (b), resulting in a non-discriminative feature quantization. Our algorithm, SCC, with h = 3, produces a more
meaningful clustering, as shown in (c) with rough cluster outlines. The quantized data is clearly separated into the two classes (d).

Given a data set of action sequences with class labels
we follow the standard procedure for codebook creation
in BoW frameworks. This includes extracting features (in
our case, STIP [10] and GIST [23]); generating disjoint
training, validation and testing sets; clustering training fea-
tures to learn a codebook; discretizing the features using the
learned cluster centers; and training a discriminative classi-
fier. We train a one-versus-all χ2 SVM classifier [17] and
report average precision (AP) as in [13]. We evaluate three
codebook creation schemes: RC Eq. (1), RC LDA Eq. (9),
and SCC Eq. (24) in two unsupervised tasks and two su-
pervised tasks. The former setting is the standard codebook
creation scheme which clusters all the features in an unsu-
pervised way. In the latter setting we use the training labels
to cluster samples within each class, creating one codebook
per class. This is useful in practice when large amounts of
data limit the size of the optimization problem that can be
solved efficiently.

We experiment with K = 30, 40, 60, 100 clusters. First,
we validate the method works even for a fixed value of the
parameter h = 5 for all experiments - a reasonable choice,
since h = 0 is RC, while h = R would imply all sources
should participate in all clusters, which is unrealistic in
these data sets. Second, we confirm SCC is not sensitive
to the choice of h by setting h = 2, 3, 5, 7, 10 and noting
a maximum change in overall AP of around 2%. For com-
parison, we also report results with varying values of h per
class, based on manual inspection of the per-class perfor-
mance. A complete validation system for discovering the
optimal h for each class would require a large amount of
validation data, currently unavailable for these data sets.

6.1. Synthetic experiment

We build a synthetic data set of 5 sources generating a se-
quence in each of two classes, 1 and 2. The sequences are
bags of ten 2D samples. The first component of the fea-
tures, x, is correlated with the class id, while the second,
y, is correlated with the source id. The samples are drawn
from Gaussian distributions with parameters chosen to sim-
ulate disparate sources. For every source yi, the distance
between the samples in the bag from class 1 and the bag
from class 2 is smaller than the distance to the correct class
bag from other sources (∆x < ∆y), as shown in Figure 2.

Figure 2 shows one representative clustering for K = 5.
RC clusters the samples from the same source – the dis-
cretized sequences from class 1 are nearly identical to the
discretized sequences from class 2, making it impossible to
train a classifier to distinguish the two classes. On the other
hand, SCC produces a quantization of the sequences which
clearly discriminates the two classes. For ease of visualiza-
tion, Figure 2 (d) shows the rough boundaries of the SCC
clusters in the original feature space (not LDA).

6.2. Hollywood movie data set

We use the clean dataset provided by the authors, which
contains 1707 action samples divided into a training set
(823 sequences) and a disjoint test set (884 sequences). Fol-
lowing [13], we subsample the STIPs at random, retain-
ing 10% of the features for training. To further reduce the
computational complexity, we learn a codebook per train-
ing action class. As shown in Table 2, we verify that perfor-
mance of per class codebooks is comparable to published
results [13], and thus the method is suitable for compari-



Marszalek RC RC LDA SCC SCC
et al. h = 5 varied h

AnswerPhone 0.088 0.103 0.098 0.112 0.116 4
DriveCar 0.749 0.797 0.794 0.824 0.841 7
Eat 0.263 0.381 0.465 0.382 0.493 3
FightPerson 0.675 0.564 0.584 0.620 0.630 7
GetOutCar 0.090 0.195 0.162 0.174 0.174 5
HandShake 0.116 0.100 0.112 0.166 0.172 7
HugPerson 0.135 0.188 0.154 0.195 0.212 3
Kiss 0.496 0.442 0.433 0.420 0.437 2
Run 0.537 0.422 0.494 0.489 0.476 2
SitDown 0.316 0.331 0.351 0.372 0.399 2
SitUp 0.072 0.099 0.093 0.131 0.131 5
StandUp 0.350 0.342 0.360 0.449 0.449 4
Mean AP 0.324 0.330 0.342 0.361 0.378

Table 2. Comparison of clustering methods for learning per class
codebooks from HoG+HoF features on the Hollywood 2 [13] data
set. SCC improves mean AP by 3.1%compared to RC, and 1.9%
compared to RC LDA for a fixed h = 5. Class specific value of h
gives a further 1.7% increase. As a reference to learning a global
codebook, the results from [13] are shown in the left column.

son. Table 2 shows the results with K = 100 for the three
clustering algorithms along with the previously published
results of Marszalek et al. [13]. We see improvement in
performance for 10 out of 12 actions compared to both RC
and RC LDA. The classes for which SCC performs better
than RC have a larger number of training sources and ex-
hibit stronger source clustering. In these scenarios, using
source information helps build more robust codebooks.

6.3. CMU kitchen data set

The Carnegie Mellon University Multimodal Activity
database (CMU-MMAC) [4] contains multimodal measure-
ments of subjects performing different recipes with no prior
instructions. The actions vary greatly in time span, repeti-
tiveness, and manner of execution. From the 35 manually
annotated action classes from [20] we merge semantically
similar ones ( e.g. “take from cupboard left” and “take from
cupboard right” are combined, etc.), and we ignore actions
which have a very small number of instances. In total we
have 15 classes listed in Table 3. We use the videos from
the wearable camera and extract STIP and GIST features
from every fifth frame. 14 subjects are used for training and
two for testing. We average results over 4 disjoint sets of
withheld subjects, chosen at random.

6.3.1 Per class codebook using STIP features

Following the procedure of [13], we subsample the STIPs
at random, retaining 20% of the training data for learning a
codebook. Again, to allow for more training samples to be
used, we cluster samples in each class, learning one code-
book and distance metric transformation per class. In Ta-
ble 3 we report results for h = 5 and K = 40.

STIP GIST
RC RC LDA SCC RC RC LDA SCC

crack-egg 0.775 0.787 0.733 0.119 0.125 0.289
open-bag 0.683 0.640 0.707 0.296 0.191 0.240
fridge-door 0.891 0.906 0.922 0.669 0.515 0.594
pour-oil 0.567 0.198 0.563 0.030 0.050 0.031
pour-bowl 0.660 0.685 0.724 0.302 0.530 0.528
put-obj-lower 0.397 0.402 0.386 0.641 0.727 0.717
spray-pam 0.889 0.595 0.778 0.534 0.493 0.725
stir-egg 1.000 1.000 1.000 0.071 0.088 0.207
read-switch 0.863 0.807 0.844 0.416 0.515 0.595
take-fridge 0.633 0.676 0.611 0.309 0.283 0.490
take-drawer 0.569 0.503 0.710 0.705 0.485 0.736
take-top 0.891 0.733 0.872 0.817 0.846 0.772
take-bottom 0.394 0.567 0.654 0.561 0.502 0.521
twist-cap 0.547 0.560 0.533 0.091 0.295 0.206
walk 0.966 0.951 0.969 0.563 0.340 0.524
Mean AP 0.715 0.667 0.734 0.408 0.398 0.478

Table 3. Classification performance on the CMU-MMAC [4] data
set using STIP and GIST features. Using the source information
increases the mean AP by 2.5% for STIPs, and by 7% for GIST,
compared to RC.

A quick look at the videos shows large variability in
styles for the classes which show improvement, especially
for the “taking from drawer” and “taking from bottom cup-
board.” On the other hand, for classes with low or no im-
provement, we observe less style variability. For example,
the action “walk” from the counter to the fridge was per-
formed without much variance, and likewise for “stirring
egg,” and regular clustering has no problem in classifying
such actions nearly perfectly. The 2.5% average increase
in AP for this task also shows the benefits of using source
information.

6.3.2 Global codebook using GIST features

Prior work on the CMU-MMAC data set reports source
clustering when using GIST features [20]. These features
encode the style of execution more strongly and we see a
more pronounced source clustering problem compared to
using STIPs (several of the RC clusters contain samples
only from one subject). Our hypothesis is that using source
information in this case will have an even stronger impact
on performance. Indeed, the results in Table 3 show a 7%
improvement in AP when learning a global codebook in an
unsupervised manner using features from 11 training sub-
jects, and testing on 5 subjects., with K = 40 and h = 5.
There is a clear improvement in performance for 9 out of 15
classes. This additional experiment verifies that the concept
of SCC is beneficial across different types of features.

7. Conclusion

In this paper we presented SCC – a novel extension of K-
means for quantization of data generated by diverse sources.



Our experiments show improvement in classification perfor-
mance across several tasks and features compared to stan-
dard K-means in a BoW framework. In future work, SCC
can be applied to other interesting scenarios. For example,
training object detectors on data with large bias obtained by
combining multiple data sets [22]. In addition, SCC can be
applied to non-vision data sets, for instance in topic model-
ing from websites with different writing styles.
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