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Abstract

We present an approach to discover and segment fore-

ground object(s) in video. Given an unannotated video

sequence, the method first identifies object-like regions in

any frame according to both static and dynamic cues. We

then compute a series of binary partitions among those

candidate “key-segments” to discover hypothesis groups

with persistent appearance and motion. Finally, using each

ranked hypothesis in turn, we estimate a pixel-level object

labeling across all frames, where (a) the foreground likeli-

hood depends on both the hypothesis’s appearance as well

as a novel localization prior based on partial shape match-

ing, and (b) the background likelihood depends on cues

pulled from the key-segments’ (possibly diverse) surround-

ings observed across the sequence. Compared to existing

methods, our approach automatically focuses on the per-

sistent foreground regions of interest while resisting over-

segmentation. We apply our method to challenging bench-

mark videos, and show competitive or better results than the

state-of-the-art.

1. Introduction

Video object segmentation is the problem of automat-

ically segmenting the objects in an unannotated video.

While the unsupervised form of the problem has received

relatively little attention, it is important for many potential

applications including video summarization, activity recog-

nition, and video retrieval.

Existing unsupervised methods explore tracking regions

or keypoints over time [4, 30, 5] or formulate clustering ob-

jectives to group pixels from all frames using appearance

and motion cues [11, 10]. Aside from the well-known chal-

lenges associated with tracking (drift, occlusion, and initial-

ization) and clustering (model selection and computational

complexity), these methods lack an explicit notion of what

a foreground object should look like in video data. Conse-

quently, the low-level grouping of pixels usually results in a

so-called “over-segmentation”.

Instead, we propose an approach that automatically dis-

covers a set of key-segments to explicitly model likely fore-

ground regions for video object segmentation. Our main

Input: Unannotated video

Output: Segmentation of high!ranking foreground object

. .

Figure 1. Our idea is to discover a set of key-segments to automat-

ically generate a foreground object segmentation of the video.

idea is to leverage both static and dynamic cues to de-

tect persistent object-like regions, and then estimate a com-

plete segmentation of the video using those regions and a

novel localization prior that uses their partial shape matches

across the sequence. See Figure 1.

To implement this idea, we first introduce a measure that

reflects a region’s likelihood of belonging to a foreground

object. To capture object-like motion and persistence, we

use dynamic inter-frame properties such as motion differ-

ence from surroundings and recurrence. Intuitively, a re-

gion that moves differently from its surroundings and ap-

pears frequently throughout the video will likely be among

the main objects of interest. Conversely, one that seldom

occurs is more likely to be an uninteresting, background ob-

ject. To capture object-like appearance and shape, we use

static properties such as a well-defined closed boundary in

space and clear separation from surroundings, as recently

explored in static images [8, 6, 1]. We use both aspects to

group the key-segments, estimating multiple inlier/outlier

partitions of the candidate regions. Each ranked partition

automatically defines a foreground and background model,

with which we solve for a pixel-wise segmentation using

graph cuts on a space-time MRF. The rank reflects the cor-

responding object’s centrality to the scene.

How does key-segment discovery help video object seg-

mentation? The key-segments are a reliable source for



learning the appearance of a foreground object, since they

were determined to be both object-like and frequently oc-

curring in the video. Furthermore, key-segments detected

across the sequence imply probability distributions for the

location and scale of the object in other frames, which we

show how to capture through a novel partial shape match-

ing localization prior. What is the advantage of having a

group of key-segments? An ensemble alleviates imprecise

segmentations on any individual key-segment and captures

background diversity in the video, since the background

visible in each key-segment’s frame can vary. In practical

terms, our approach substantially reduces annotator effort;

rather than outlining an object of interest, one can simply

use (or peruse) the suggested foreground object(s).

Contributions Our main contribution is an automatic ap-

proach for segmenting foreground objects discovered in

video. To our knowledge, no prior work explores category-

independent foreground segmentation for videos where

simple background subtraction is insufficient. Towards this

goal, important novel components of our technique include

(1) a new motion-based measure of object-like regions in

video that complements existing image-based cues, (2) a

localization prior using partial shape matches in video, and

(3) a space-time graph segmentation that accommodates the

key-segments. We apply our unsupervised method to chal-

lenging benchmark videos, analyze its components in de-

tail, and show state-of-the-art results compared to existing

unsupervised and supervised methods.

2. Related Work

We review prior work along two major themes: interest-

ing region detection, and video object segmentation.

Detecting probable foreground regions Finding “inter-

esting” objects in image or video is a long-standing topic

in vision, addressed in various forms including saliency

detection, figure-ground segmentation, or object discovery.

Whereas most saliency detectors rely on bottom-up image

cues (e.g., [12, 9]), recent work suggests that higher-level

saliency may actually be learned from labeled data of seg-

mented objects [19, 1, 6, 8], drawing on classic Gestalt cues.

In particular, interesting approaches to generate and rank

an image’s multiple figure-ground segmentation hypothe-

ses are explored in [6, 8], with results showing that higher-

ranked figure proposals are more likely to be objects in an

image. Inspired by this premise, we expand the notion of

“object-like” regions to video, and introduce the requisite

motion and persistence cues.

Beyond single images, some work considers discovering

repeated patterns among pairs or groups of unlabeled im-

ages [26, 13, 16]. It is challenging since some unknown

portion of any image may contain the repeated pattern, call-

ing for iterative refinement techniques [13] or graph-based

segmentation of discovered objects [26, 16]. Video of-

fers stronger temporal consistency constraints than assorted

snapshots, which our approach aims to leverage.

In video with a stationary background, moving fore-

ground regions pop-out well with classic background sub-

traction algorithms (e.g., [28]). However, for generic videos

with unknown camera motion, lighting changes, and poor

resolution—or interesting but static objects!—they are inad-

equate. Repeated features in video are extracted in [18, 23];

however, the local feature approach means the objects are

often not delineated well from background, whereas we

seek fully segmented regions. More importantly, the group-

ing objective does not explicitly target discovery of a salient

object. To our knowledge, no prior work considers rank-

ing category-independent “object-like” foreground regions

in video, as we do in this work.

Video object segmentation Video object segmentation is

often performed in an interactive or supervised way. Inter-

active methods require a user to annotate object boundaries

in some key frames, which are then propagated to other

frames while a user stands by to adjust errors [2, 22, 32].

Tracking-based methods attempt to reduce the supervi-

sion to a manual segmentation on only the first frame

(e.g., [24, 29]). However, all such methods demand user

input drawing regions of interest, and may suffer from sen-

sitivity to a user’s annotation expertise.

Bottom-up approaches can segment videos in a fully au-

tomatic manner, based on cues like motion and appearance

similarity. Motion segmentation methods (e.g., [27]) clus-

ter pixels in video using bottom-up motion cues. Recent

methods either perform pixel-level segmentation in a spatio-

temporal video volume from scratch [10], begin with an

image segmentation per frame and then match segments

across nearby frames, e.g., [11, 4, 30], or use dense flow

to cluster long-term motion trajectories [5]. Without any

top-down notion of objects, however, such methods tend to

over-segment, yielding regions that taken alone may lack

semantic meaning.

Shape provides a strong grouping cue for object parts

of disparate appearance. Extensive work on weakly-

supervised object segmentation integrates top-down shape

priors, and some are applied to sequence data [15, 31]. In

contrast, we propose to segment generic objects (of un-

known categories) in video, with neither direct user inter-

action nor provided category exemplars. Beyond being un-

supervised, our shape-based prior is novel in that local par-

tial shape matches are used to prime object localization in

earlier/later frames of the video.

3. Approach

Our goal is to discover object-like key-segments in an

unlabeled video, and learn appearance and shape models

from them to automatically segment the foreground objects.
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Figure 2. Algorithm overview. See ordered steps (a) through (e).

There are three main steps to our approach: (1) scoring

each image region using appearance and motion cues to de-

termine how likely it is to belong to a foreground object; (2)

clustering the regions to discover key-segments that repre-

sent a single object, and ranking those clusters according

to their region scores; and (3) segmenting each foreground

object in the video using its model learned from the cor-

responding key-segments. The final output is a ranked set

of foreground object segmentations. We now describe each

step in turn.

3.1. Finding Object­like Regions in Video

In order to segment a foreground object in the video,

we first need a representation of that object. Since we as-

sume no prior knowledge on its size, location, shape, or

appearance, we initially generate a diverse set of object

“proposals” in each frame using the static region-ranking

method of [8]. The proposals are guided by models learned

from true segmentations of arbitrary objects1, and have been

shown to better align with object boundaries than traditional

bottom-up segments do. For each frame in the video, we

generate roughly 1000 regions.

To find “object-like” regions among the proposals, we

look for regions that have (1) appearance cues typical to

objects in general, and (2) differences in motion patterns

relative to their surroundings. These properties are well-

suited for defining objects in video; any region that is salient

in terms of both appearance and motion may correspond to

a true object. Specifically, we define a function:

S(r) = A(r) +M(r), (1)

that scores a region r according to its static intra-frame ap-

pearance score A(r) and dynamic inter-frame motion score

M(r). See Figure 2 (a).

1Note those exemplars are disjoint from the objects appearing in the

videos we process; specifically, the region proposal function of [8] was

trained with Berkeley Segmentation data.

We compute A(r) using [8]. It reflects cues indicative of

a generic object, such as the probability of a surrounding oc-

clusion boundary, color differences with nearby pixels, and

the probability of belonging to a vertical surface. Note this

measure only looks at the appearance of the region within

each frame, and does not care about the motion.

We compute M(r) to measure the confidence that region

r corresponds to a coherently moving object in the video.

We compute optical flow histograms for the region r and

the pixels r̄ around it within a loosely fit bounding box, and

then score r as:

M(r) = 1− exp(−χ2
flow(r, r̄)), (2)

where χ2
flow(r, r̄) is the χ2-distance between L1-

normalized optical flow histograms. Note that this cue is

not simply looking for large motions or appearance changes

from background (e.g., as one would in background sub-

traction). Rather, we are describing how the motion of the

proposal region differs from its closest surrounding regions;

this allows us to forgo assumptions about camera motion,

and also to be sensitive to different magnitudes of motion.

Furthermore, the region r itself is a product of an object-like

ranking, not an arbitrary bottom-up segment.

Before combining A(r) and M(r), we rescale each to

standard Gaussians using the distribution of scores across

all regions in the video.

3.2. Discovering Key­Segments Across Frames

Given the scored regions, we next identify groups of

key-segments that may represent a foreground object in the

video. For each frame, we take the top N highest-scoring

regions to form a candidate pool C spanning the entire se-

quence. Many regions belonging to a foreground object

should be present in C (as they were predicted to be most

“object-like”), but there may also be noisy segments. Thus,

we specifically treat this stage as gathering multiple hy-

potheses among the highly ranked object-like regions, com-



puting multiple partitions of C. In Section 3.3 we explain

how to use them to segment the entire video.

To extract the groups, we first define similarity between

two regions rm and rn:

K(rm, rn) = exp(−
1

Ω
χ2
color(rm, rn)), (3)

where χ2
color(rm, rn) is the χ2-distance between unnormal-

ized color histograms of rm and rn, and Ω denotes the mean

of the χ2-distances among all regions. This measure gives

high affinity to regions that have similar color and similar

size. We compute the pairwise affinities between all regions

m,n ∈ C, to obtain the affinity matrix KC .

We next perform a form of spectral clustering [21, 20]

with KC to produce multiple binary inlier/outlier partitions

of the data, with the objective of maximizing the inliers’

intra-cluster affinity (normalized by the number of inliers).

Each eigenvector of KC produces a partitioning of the data;

we binarize the continuous eigenvector to form an indicator

vector that denotes the inlier set, using the technique in [20].

Each cluster (inlier set) is a hypothesis h of a foreground

object’s key-segments. We automatically rank the clusters

based on the average object-like score S(r) of its member

regions. If that scoring is successful, the clusters among the

highest ranks will correspond to the primary foreground ob-

ject(s), since they are likely to contain frequently appearing

object-like regions (as we confirm in Figure 5 below). See

Figure 2(a-b) for a summary of the pipeline so far.

3.3. Foreground Object Segmentation

Each ranked partition (“key-segment hypothesis”) auto-

matically defines a foreground and background model. For

now, suppose we extract a color distribution and set of shape

exemplars for each hypothesis (see Figure 2(c)). We next

devise a space-time Markov Random Field (MRF) model

that uses these models to guide a pixel-wise segmentation

for the entire video. In practice, we process the hypothe-

ses in rank order, exploiting the quality of the object-like

ranking discussed above.

Importantly, a top-ranked hypothesis helps form models

of both the object itself and the remaining background ob-

jects, for two reasons. First, the foreground features com-

mon to the selected key-segments are more pronounced,

while unique or isolated features are discounted. Second,

the diversity in background appearance is captured through

the (potentially) different backgrounds present in each key-

segment’s frame. For example, as the camera pans to follow

a primary object of interest, the surrounding background

can change substantially; so long as a key-segment hypoth-

esis spans frames from various backgrounds, it will help

propagate the figure-ground labeling accordingly.

Space-time graph definition We define a graph over

each frame’s pixels: a node corresponds to a pixel, and an

edge between two nodes corresponds to the cost of a cut

between two pixels. The energy function we minimize for

hypothesis h takes a familiar form:

E(f, h) =
∑

i∈S

Dh
i (fi) + γ

∑

i,j∈N

Vi,j(fi, fj), (4)

where f is a labeling of the pixel nodes, S = {p1, . . . , pn}
is the set of n pixels in the video, N consists of neigh-

boring pixels, and i and j index the pixels. Each pixel pi
is assigned to fi ∈ {0, 1}, where 0 corresponds to back-

ground and 1 corresponds to foreground. The pixel neigh-

borhood N consists of four spatially neighboring pixels in

the same frame, and two temporally neighboring pixels in

adjacent frames. We assign a pixel’s temporal neighbor in

the next frame by its optical flow vector displacement. Re-

lated space-time graphs are defined in [29, 30].

The neighborhood term Vi,j encourages label smooth-

ness in space and time. We use a standard contrast-

dependent function defined in [25], which favors assigning

the same label to neighboring pixels that have similar color.

The data term Dh
i defines the cost of labeling pixel i with

label fi, given key-segments in h. Specifically,

Dh
i (fi) = − log

(

α · U c
i (fi, h) + (1− α) · U l

i (fi, h)
)

,

(5)

where U c
i (·) is the color-induced cost, and U l

i (·) is the lo-

cal shape match-induced cost. Both terms are depicted in

Figure 2(d), and explained in detail next.

Appearance-based models To model the fg and bg

appearance, we estimate two Gaussian Mixture Models

(GMM) in RGB colorspace: (1) a GMM fgcolor for pix-

els in h’s key-segments; and (2) a GMM bgcolor for pixels

in the complement of h’s key-segments, among all frames

in h. We set U c
i (fi, h) to be the pixel-likelihoods computed

from each GMM. A pixel that has similar color to the fore-

ground (background) object will have high cost if labeled as

background (foreground).2

Location priors via partial shape matching Beyond

simple appearance terms, for video segmentation, we also

want to exploit the consistency of recurring foreground ob-

jects viewed over time. In particular, we have a strong lo-

calization prior from one frame to the next. Our use of op-

tical flow to define neighbors (see Sec. 3.3) partially cap-

tures this via label smoothness, but is closely tied to ap-

pearance agreement and can fail when the foreground and

background GMMs share similar color components. Thus,

as the final component of our model, we introduce a novel

technique to prime the location and scale of the foreground

object in a frame using key-segment shapes.

The main idea is to use the key-segments detected across

the sequence, projecting their shapes into other frames via

local shape matching. The spatial extent of that projected

2Note the − log(·) in Eqn. 5.



shape then serves as a location and scale prior in which we

prefer to label pixels as foreground. Since we have multiple

key-segments and many possible local shape matches, many

such projected shapes are aggregated together, essentially

“voting” for the location/scale likelihoods. See Figure 3.

More specifically, we project the key-segments onto each

frame in the video by matching Boundary Preserving Lo-

cal Regions (BPLR) [14]. A BPLR is a densely-extracted

local feature that preserves object boundaries and partial

shape.3 For each video frame, we generate BPLRs and re-

tain for shape matching those that produce better (lower dis-

tance) matches to the BPLRs of the key-segments than to

the BPLRs of their image complements. We create a vote

space that has the same size as the frame, and project the

matched key-segment onto the frame after aligning the lo-

cations and scales of the matched BPLRs. We weight the

votes according to the match similarity. This process is re-

peated for all retained BPLRs, and we normalize the vote

space such that the maximum value is one.

Then, the vote value at pi gives its fg location likelihood:

U l
i (fi) =

{

P (pi|bg
shape(h)), if fi = 0;

P (pi|fg
shape(h)), if fi = 1,

(6)

and the bg location likelihood is its complement. U l
i (fi)

measures whether a pixel lies in a projected region of

the key-frames. Pixels that are part of a commonly pro-

jected region will have high probability of being labeled as

foreground2. See “Shape Fg estimate” in Figure 3.

When is this most useful? By using partial (local) shape

feature matches to drive each shape projection, we intend

to account for deformations and articulations that the fore-

ground object may exhibit. For example, a running mon-

key’s global shape can vary significantly from frame-to-

frame. However, its arms and legs will only undergo small

changes in shape. Thus, a local match (e.g., at the arm or

leg) derived from a key-segment can usefully map in the

rough global shape prior, despite the change in pose.

In addition, this likelihood helps disambiguate labels

when there are similar colors in both the fg and bg mod-

els, or if there is a background object that did not appear in

any of the key-segments’ frames. Note that the key-segment

color models only capture cues within their own frames.

This means that the background objects that appear in the

non-key-segment frames are not modeled, and may easily

be mislabeled as foreground. For example, if a tree with

brown leaves appears behind a brown monkey (the fg ob-

ject), the tree could otherwise be mislabeled as foreground.

Table 2 in the results specifically validates the impact of the

term U l
i (fi).

Minimization procedure for video labeling We mini-

mize Eqn. 4 with binary graph cuts [3], and use the resulting

3Other descriptors are feasible, but we specifically choose BPLR due

to its robustness when matching deformable objects.

Matched  BPLRs in 

key-segments 

Project object boundary 

w.r.t. matched BPLR 

in frame t 

… 

… 

Frame t Shape Fg estimate 

Superposition of projections 

Color Fg estimate 

Foreground 

estimate 

Figure 3. Fg location and scale estimates with BPLR matches.

label assignment as the foreground object segmentation of

the video for hypothesis h. See Figure 2(e).

For efficiency, rather than segment the entire video at

once, we sequentially label each frame in turn, using a

space-time graph of three frames that connects its two ad-

jacent frames. In addition, for better accuracy, rather than

simply pass through the frames in sequential order, we pro-

ceed in a greedy ordering from the most confident frames

that contain key-segments. That is, we start by labeling and

fixing the key-segments’ frames, and then solve others in

their order of temporal proximity. This more effectively

propagates the fg/bg labels of one frame to the next through

optical flow connections.

3.4. Summary of the Approach

To recap, our method takes an unlabeled video, and pro-

duces foreground-background segmentations ranked by the

object’s expected centrality to the scene. The main steps

are: (1) extract proposal regions from all frames, (2) score

all regions by S(r), (3) take top-ranked regions, and parti-

tion into inlier/outlier hypotheses. For each hypothesis, (4)

extract foreground model and local shape features from all

its key-segments, (5) match shape features across all frames

to create shape-based foreground likelihood maps, (6) min-

imize Eqn. 4 using graph cuts with series of space-time

graphs, (7) return binary pixel-wise segmentation.

Since our method ranks the foreground results by confi-

dence, one can use it in a completely unsupervised manner

to define the primary foreground objects (e.g., for summa-

rization). Alternatively, if a user is in the loop, s/he can

select the desired foreground object.

4. Results

The main questions in our experiments are (1) to what

extent are object-like regions better identified by using mo-

tion cues unique to video, (2) how well does our method

rank each hypothesis, and (3) how accurate is our method’s
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Figure 4. Precision-Recall curves for foreground object prediction. We analyze the different components of our video object-like scoring

function. (Ours): full model; (App.): appearance-based region scoring; (Motion): motion-based region scoring. Higher curves are better.
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Figure 5. Our ranked hypotheses and their mean ground-truth overlap scores. Our ranking focuses attention to primary foreground objects.

foreground object segmentation?

Dataset: We test on two datasets: [29] and [10],

eight videos in total. We use the SegTrack dataset [29],

which contains six videos (monkeydog, bird, girl, birdfall,

parachute, penguin) and pixel-level ground-truth (GT) for

the primary foreground object. The videos span a wide de-

gree of difficulty with challenges such as fg/bg color over-

lap, large shape deformation, and large camera motion. To

our knowledge, it is the largest publicly available pixel-

labeled video dataset. We do not provide in-depth quan-

titative results on the penguin video, since it lacks the GT

to properly evaluate our algorithm; only a single penguin is

labeled as the foreground object amidst a group of penguins.

In addition, we generate qualitative results on two videos

from the dataset of [10]; note that it lacks pixel-level

ground-truth needed for quantitative analysis.

Implementation details: We use [8] to generate re-

gions. To describe color, we use Lab space histograms, with

23 bins per channel, and K = 5 component GMMs. To de-

scribe motion, we use optical flow histograms with 61 bins

per x and y direction, using [17]; we dilate a region’s bound-

ing box by 30 pixels when computing the background his-

tograms. We extract BPLRs every 6 pixels. We set N = 10.

For the graph-cuts minimization, we set α = 0.5 and

γ = 4 for the smoothness term. These parameters are fixed

for scoring all videos. We smooth the partial shape match

vote space with a Gaussian kernel to be robust to minor

alignment errors and shape deformations.

Generating regions takes about 3 minutes / frame, com-

puting GMMs takes about 2 minutes, and segmentation

takes about 1 second / frame with a Matlab implementation.

Object prediction accuracy We first evaluate our

method’s ability to predict object-like regions, and com-

pare: (1) the static appearance component [8] that computes

A(r), (2) the dynamic motion component M(r), and (3) our

full model S(r) that uses both.

Figure 4 shows precision-recall curves for the three vari-

ants on all regions in each video. A region r is considered

to be a true positive (i.e., foreground object), if its overlap

score = |GT∩r|
|GT∪r| is greater than 0.5.

The results clearly demonstrate that motion plays a

significant role in identifying foreground object regions

in video. This is particularly true for the birdfall and

parachute sequences, in which the foreground object has

large motion patterns compared to its surroundings. Static

appearance is important as well, as can be seen for the girl,

cheetah, and monkey videos. In the girl video, the fore-

ground object exhibits articulated motions in which one part

(e.g., arm) has substantially larger motion compared to an-

other part (e.g., torso), which explains the low precision of

the motion-only component. By accounting for both mo-

tion and appearance, our full model produces the best pre-

dictions overall.

Object hypothesis rank accuracy We next evaluate our

method’s hypothesis ranking. Figure 5 shows the mean

ground-truth region overlap score for each of the ranked

hypotheses. High rank hypotheses have high mean overlap-

scores, while low rank hypotheses have low mean overlap-

scores. This shows our automatically generated ranking is

highly indicative of how well each hypothesis represents the

primary object of interest. Among all videos, only the mon-

keydog sequence lacks a strong hypothesis among the top

three ranks. This is due to an artifact of the data: each frame

contains black margins, which artificially produce high mo-

tion scores (since their motion is constant, while the remain-

ing objects are moving or appear to be moving due to cam-

era motion); the top-three hypotheses predict these to be the

foreground object. However, the fourth ranked hypothesis

correctly predicts the monkey to be the primary object.

What do the hypotheses and their key-segments look

like? Figure 6 shows key-segments of the highest-ranked

hypothesis that corresponds to the primary object. The

number in parentheses indicate its rank. On six of the eight

videos, our very top-ranked hypothesis corresponds to the

primary foreground object. If desired, one could easily re-

rank the hypotheses to enforce diversity by penalizing pixel



Ours [29] [7] Top A(r) region Bg Sub

birdfall 288 252 454 26156 7435

cheetah 905 1142 1217 27728 28763

girl 1785 1304 1755 10236 45019

monkeydog 521 563 683 38083 31099

parachute 201 235 502 75168 27242

penguin 136285(*) 1705 6627 147686 61089

Manual seg? No Yes Yes No No

Table 1. Segmentation error as measured by the average number

of incorrect pixels per frame. Lower values are better. We com-

pare our method (Ours) with two state-of-the-art methods ([29]

and [7]), which require the first frame to be annotated. ∗See text

about penguin ground-truth.

overlap with higher ranked key-segments.

It is evident that the key-segments are representative ex-

emplars of the foreground object. This allows our method

to learn reliable color and shape models for segmenting out

the object in all frames, including those that did not produce

any key-segments, as we show next.

Object segmentation accuracy In this section, we eval-

uate our method’s final segmentation results. We compare

against two state-of-the-art methods: (1) the motion coher-

ence segmentation method of [29], and (2) the level set-

based tracker of [7]. These methods require human label-

ing of the object boundary in the first frame. In contrast,

our method requires no hand drawn supervision to guide

the segmentation. (One may choose among our method’s

ranked segmentation proposals, but this does not change

segmentation quality.)

Table 1 shows the results. To quantify segmentation ac-

curacy, we use the average per-frame pixel error rate [29],

ǫ(S) = |XOR(S,GT )|
F

, where S is each method’s segmen-

tation, GT is the ground-truth segmentation, and F is the

total number of frames. We evaluate our method with the

segmentation of the hypothesis that corresponds to the ob-

ject with ground-truth annotation.

Our method produces the best results on three of the five

videos (cheetah, monkeydog, parachute), and produces the

second best result on the birdfall video. Our higher error

on the girl video is caused by an over-segmentation of the

key-segments. This is primarily due to some inaccurate ini-

tial region proposals from [8], which is reasonable since the

object exhibits large appearance variation. For the penguin

video, our top-ranked hypothesis corresponds to the group

of penguins, whereas the ground-truth annotates only a sin-

gle penguin. Since the group of penguins are so close and

similar, it is not clear whether one or all penguins makes a

better foreground estimate.

The last two columns in Table 1 show error rates when

taking the region with the highest appearance-based score

A(r) per frame and when performing standard background

subtraction [28], respectively. Clearly, A(r) alone is insuf-

ficient to predict the primary object in the video. Back-

ground subtraction completely falls apart, since it cannot

Ours Ours w/o partial shape match

birdfall 288 414

cheetah 905 1024

girl 1785 1534

monkeydog 521 1261

parachute 201 188

Table 2. Segmentation error. Lower values are better. We compare

our full method (Ours) with a baseline that only models color in-

formation (Ours w/o partial shape match). Our partial shape

matching improves segmentation quality.

handle large camera motions. By taking into account both

motion and persistence to discover the key-segments, we

obtain significantly better foreground segmentations.

Figure 6 shows qualitative segmentation examples. Our

method produces high quality segmentations of the primary

foreground object. There are some failure cases as well,

such as when the object is mislabeled due to low contrast

with its surrounding regions (see last column of bird video),

and when parts of the object are missed (see the second and

third columns of girl video).

The last row shows a comparison to the unsupervised

method of [10]. Our method produces a figure-ground seg-

mentation at the object-level by automatically finding its

key-segments. In contrast, [10] relies only on bottom-up

pixel-level motion and appearance cues, which sometimes

results in an over-segmentation of an object.

Impact of partial shape matching Finally, we study the

impact of our partial shape matching location prior. We

compare against a baseline that only models color, but oth-

erwise follows the same pipeline as our full method. For

this baseline, we set γ = 50 as in [25] to adjust the scales

of the cost values between the methods. Table 2 shows the

results. The partial shape matching improves segmentation

accuracy in most videos. As discussed earlier, some of the

key-segments of the girl video are over-segmented, which

means that the projected shape can miss the articulated body

parts (e.g., arms); increasing the color term helps in this

case. Overall, we find a substantial advantage from the par-

tial shape match.

Conclusion We developed an algorithm that automati-

cally discovers key-segments and groups them to predict the

foreground objects in a video. We introduced a novel par-

tial shape match location prior that primes the foreground

object’s location and scale in each frame. By discovering

object-like key-segments, we overcome the limitations of

previous bottom-up unsupervised methods that often over-

segment an object, and obtain similar or higher quality

segmentation than state-of-the-art supervised methods with

minimal human input.
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Figure 6. Key-segments and corresponding segmentation results. The numbers indicate the rank of each hypothesis. The hypothesis

corresponding to the primary object has high rank, and its key-segments have high overlap with true object boundaries. The first three rows

show results on SegTrack [29] videos. The last row compares our results to [10]. Best viewed on pdf.
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