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Abstract

We present a new method to combine possibly in-
consistent locally (piecewise) trained conditional models
p(yα|xα) into pseudo-samples from a global model. Our
method does not require training of a CRF, but instead gen-
erates samples by iterating forward a weakly chaotic dy-
namical system. The new method is illustrated on image
segmentation tasks where classifiers based on local appear-
ance cues are combined with pairwise boundary cues.

1. Introduction

The use of Markov Random Fields (MRF) and their
discriminatively trained cousin Conditional Random Fields
(CRF) is ubiquitous in computer vision. For instance, CRFs
have been used extensively in image segmentation and la-
beling [2, 9, 7], as well as object recognition [12], image
denoising and image restoration [13], and stereo [11].

The standard approach for learning such models is to first
propose local potential functions ψα(yα,xα,wα) on local
overlapping subsets of variables yα, conditioned on some
input variables xα and parameterized by parameters wα.
The exponentiated sum of all these potentials then compiles
into an undirected graphical model, usually with a very high
treewidth. This high treewidth renders inference in such
models computationally very expensive. Unfortunately, in-
ference is a necessary ingredient in tuning the parameters
wα from data and applying the model to new test data.

The question naturally arises if there is an alternative
procedure by which we can still exploit the graphical model
structure but avoid the computationally costly learning pro-
cedure. Our first observation is that we often have power-
ful local classifiers that we would like to directly embed in
our joint model. For instance, in image segmentation one
can train a discriminative classifier from local appearance
cues: p(yα|xα) where we can think of α as an indexing
a super-pixel (if the classifier does not directly provide a

Figure 1. Combining an independently trained local color model
with boundary model for segmentation. Images from left to right
are the actual image, the ground truth segmentation, the probabil-
ity of foreground using local color information and the result of
combining local color and boundary cues using herding.

probabilistic output we can easily calibrate its score into a
probability afterwards.) Moreover, we can also obtain infor-
mation about pairs of super-pixels by detecting boundaries
and representing this in a probability distribution p(yβ |xβ)
where β now represents a pair of super-pixels. Figure 1 il-
lustrates the power of combining such local classifiers into a
global estimate. The question is, how can we combine these
conditionally trained local probability models into a global
model?

The approach we take is to enforce that a joint model
must respect these local distributions as marginals as much
as possible. Because the local models were trained inde-
pendently, this may not always be possible. In technical
terms: the set of marginal probability distributions lies out-
side the marginal polytope. In this case, we would like
to find the joint distribution that has marginals inside the
marginal polytope that are as close as possible (in some
sense to be defined) to the input marginals. We will prove
that the proposed procedure orthogonally projects the in-
consistent marginals onto the marginal polytope.

Instead of returning a joint model parameterized by a sin-
gle estimate w?

α, we propose an algorithm - called herding
- that generates a sequence of parameters wα’s and labels
yα’s [15]. This sequence is produced by running a deter-
ministic nonlinear dynamical system jointly in parameter



space and label space. Input to this dynamical system are
the local marginals (or more generally average feature val-
ues). The output label sequence can then be used to seg-
ment the image. If the input marginals are consistent and
some easy to check conditions are satisfied, then one can
show that the generated label sequences actually respect
the input marginals: |p(yα|xα) − p̂T (yα|xα)| ∼ O( 1

T )
where p̂T is the empirical marginal computed over a label
sequence of length T . (Note that convergence is faster than
the usual O(

√
1/T ) rate for stochastic averages.) Perhaps

the most surprising result is that this can often be achieved
without solving NP-hard inference problems. Instead, one
only needs repeated local maximizations on the underlying
graphical model (but with different parameters) until a sim-
ple local condition related to the ”perceptron cycling the-
orem” is met [6]. For inconsistent input marginals this no
longer holds but we can prove that the label sequence corre-
sponds to a set of consistent marginals which are closest (in
the L2 sense) to the input marginals. In this case suboptimal
maximization may lead to a suboptimal projections, provid-
ing a natural tradeoff between accuracy and computation.

We illustrate these ideas for the task of image segmenta-
tion where we integrate local appearance and boundary cues
into a joint graphical model. We show that our algorithm
is competitive with the traditional approach of learning the
CRF directly. We predict that our approach is much more
broadly applicable and could be useful for the computer vi-
sion community. The reason for our optimism is that 1) it
readily integrates locally trained conditional models, 2) it
is very easy to implement and 3) approximations to global
maximization may still lead to good performance.

2. Conditional Random Fields

A conditional random field is a standard approach to
combining local features into a global conditional distri-
bution over labels. One first defines potential functions
ψα(yα,xα) where yα is a subset of the labels associated
with potential ψα and xα are input features. The label sub-
sets indexed by α are assumed to overlap and form a loopy
graph over the labels y. For instance, the subsets could cor-
respond to all pixels and all pairs of pixels in an image.
These local potentials are combined in a CRF which speci-
fies a joint probability distribution over all labels by

Pcrf-1(y|x) =
1

Z
exp

[∑
α

wαψα(yα,xα)

]
(1)

{wα} are model parameters, one associated with each po-
tential function, that are typically learned from data. Max-
imum likelihood training of such a model with respect to
some dataset with empirical distribution P̂ (y|x) has the in-
tuitive property that expectations of the potential functions

under the model match those of the training data

EPcrf-1 [ψα] = EP̂ [ψα] (2)

While this is quite elegant, it poses a practical problem
that each potential function ψα has a distinct parameter wα
to be estimated. In typical image labeling problems, there
may be thousands of weights to learn (e.g. one for every
pixel and pair of pixels for every image). In other words,
there is less than one pixel of information per parameter,
leading to extreme overfitting.

To avoid this explosion of parameters, a typical approach
is to share parameters across potential functions. For in-
stance, if we have pixel-wise and pairwise potential func-
tions we could use a single parameter λ to trade off their
relative importance.

One of the main questions we wish to address in this pa-
per is how to most effectively use the information of local
discriminative classifiers p(yα|xα) whose parameters are
trained on all the pixels of an image or a training set of im-
ages. In the CRF approach one can incorporate these local
classifiers by taking the log probabilities as local potential
functions so that ψα(yα) = − log(p(yα|xα)). For exam-
ple, [5] use the following CRF model for segmentation

EPcrf-2(y|x) =−
∑
i

log(p(yi|xi))

− λ
∑
i,j

log(p(yi 6= yj |xi, xj)) (3)

where local unary models pi(yi|xi) and pairwise models
pij(yi 6= yj |xi, xj) are trained independently and then a
single weight λ is fit that calibrates the relative importance
of the unary and pairwise terms.

Unfortunately, in such a locally trained model, there is
no longer reason to expect that the model matches the train-
ing data in the previous sense that EPcrf-2 [ψα] = EP̂ [ψα]
since we have only one parameter to tune and a very large
collections of these moment constraints (nr. of pixels plus
nr. of neighboring pairs of pixels).

Instead, we might like to impose that our global model
at least still approximately matches the constraints,

EP [ψα] = Epα [ψα] (4)

where P̂ has been replaced with pα. For features of the form
ψα,zα(yα) = I[yα = zα], this condition implies that the
joint distribution marginalizes down to local distributions∑

y\yα

Pcrf-2(y|x) = pα(yα|xα) (5)

However, with independently trained local classifiers, no
joint model can achieve this as the pα are likely to be mutu-
ally inconsistent.



The Herding approach which we describe in the next sec-
tion provides an elegant solution to this problem. Given
locally trained discriminative models, it produces a se-
quence of states . . .yt,yt+1 . . . that on average satisfy the
marginalization condition (Eqn. 4) when the local models
are consistent. If the locally trained models are not con-
sistent, we show that the same procedure still produces a
sequence whose average behavior matches that of the clos-
est consistent model. We thus gain some of the flexibility
of the general CRF formulation (Eqn. 1) in matching mo-
ments while retaining the parsimony of piecewise training
local discriminative models.

2.1. Herding Local Models

The herding approach we advocate follows the second
method in that we try to identify a joint probability distribu-
tion over some features ψα that approximately marginalizes
to averages Epα [ψα]. Let us first assume that the pα were
in fact consistent and let us define the following dynamical
system,

yt = arg max
y

∑
α

wt−1α ψα(yα,xα) (6)

wtα = wt−1α + ηα
(
Epα [ψα]− ψα(ytα,xα)

)
(7)

In the experiments we use ψα,zα = I[yα = zα], i.e. a
separate feature for every state zα in every region α.

It can now be shown [6] that if at every iteration we can
guarantee that the following condition holds,

Ct =
∑
α

wt−1α

(
Epα [ψα]− ψα(ytα,xα))

)
≤ 0 (8)

then it follows that

|Epα [ψα]− 1

T

T∑
t=1

ψα(ytα,xα)| = O(
1

T
) (9)

We note that this convergence rate is optimally fast given
that we approximate the probabilities with Monte Carlo
averages, and in particular much faster than the typical
O(
√

1/T ) convergence for stochastically generated aver-
ages.

In summary, this deterministic dynamical system gener-
ates sequences ...(wt,yt), (wt+1,yt+1), ... of parameters
and states in such a way that the states come from some
joint distribution P (y|x) which has moments Epα [ψα]. Un-
like CRF models the entropy of this joint model is not ex-
pected to be maximal, although empirically it is often close.
Perhaps surprisingly, for many problems local maximiza-
tions initialized at the last iteration are often sufficient to
satisfy condition 8 at every iteration so that hard inference
is sidestepped. It should be noted that this is not always the
case, in particular when the constraints are hard or impossi-
ble to satisfy as may arise for image segmentation.

We also emphasize that the dynamical system defined
through equations 6 and 7 do not return a parameterized
model. The sequence ...(wt,yt), (wt+1,yt+1), ... never
converges to a fixed point and one should rather think of
this as a deterministic process to generate “representative
points”. In fact, it can be shown that the dynamical sys-
tem is weakly chaotic meaning that the sequence over yt is
not periodic but that there is also not extreme sensitivity to
initial conditions.

Not having an explicit model is not a problem for the
applications we have in mind. For instance, in image seg-
mentation the dynamical system will generate a sequence of
segmentations of the input image. From this sequence we
can extract the final segmentation by averaging.

2.2. Herding with Inconsistent Marginals

We now describe how to handle inconsistent marginals in
herding. When Epα [ψα] doesn’t reside inside the marginal
polytope M, then by definition there doesn’t exist a joint
distribution P (y|x) with moments Epα [ψα]. If we want to
train a CRF without regularization, the parameters will di-
verge. For herding this means that the condition in Equ. 8
cannot always be satisfied, and the norm of parameters wt

will also linearly diverge. Nevertheless, we can still obtain
a stationary joint distribution of states yt from the herd-
ing sequence. The potential numerical problems caused
by the divergence of wt can be easily prevented by taking
an additional normalization step w ← w/K for some K.
This global scaling will not affect the state sequence yt in
any way. The most important consequence of inconsistent
marginals is that the moments of the joint distribution don’t
converge to Epα [ψα] any more. Instead, we prove in this pa-
per that the moments orthogonally project onto the marginal
polytope.

In the following we will denote the collection of ex-
pectations Epα [ψα], ∀α as ψ̄ and the sample average of

the features generated by herding up to time T as ψ̃
T

=
1
T

∑T
t=1ψ(xt). We now claim that the following property

holds:

Proposition 1. Assume ψ̄ is outside the marginal polytope
M and the stepsize ηα is constant. Let ψ̄M be the L2 pro-
jection of ψ̄ on M. Then the average features of herding
ψ̃
T

converge to ψ̄M at the rate of 1/T .

For a proof see appendix A.
When ηα depends on the feature index α, we can con-

struct an equivalent herding sequence with a constant step-
size and new features {√ηαψα}. Then proposition 1 still
applies except that the L2 distance is weighted by

√
ηα.

So the stepsizes control the relative importance of features.
When we consider ψ as ψα,zα(yα) = I[yα = zα], then the
marginal probabilities of herding samples will converge to
the closest consistent marginals inM.



As an immediate consequence of proposition 1, herding
always improves an initial set of moments ψ̄ (which drive
herding dynamics through equations 6 and 7) in the follow-
ing sense:

Corollary 2. For any true expectations ψ̄true and any ap-
proximate values ψ̄, the limit of the empirical average of
the herding sequence won’t increase the L2 error. Specifi-
cally, ‖ψ̄M−ψ̄true‖2 < ‖ψ̄−ψ̄true‖2 when ψ̄ /∈M, and

ψ̃
T
→ ψ̄ otherwise.

3. Application: Image Segmentation
Inconsistent marginals are common in image segmenta-

tion. Conditional probabilities of groups of variables can
come from various sources such as color, texture, context,
etc. We consider an example of two types of possibly incon-
sistent probabilities in this paper: unary conditional proba-
bilities {pi(yi|xi)} on super-pixels and pairwise conditional
probabilities {pij(yi 6= yj |xi, xj)} on neighboring super-
pixels. The former provides local class distributions, and
the latter suggests the existence of boundaries.

The CRF approach uses the energy defined in Eqn. 3
with a single parameter λ. The best assignment with lowest
energy is inferred as the segmentation output, and the best
value of λ is estimated on a validation set using grid search.

Our herding algorithm follows equations 6 and 7 with
two types of features: I(yi = c) and I(yi 6= yj). The step
size ηα is scale free in the sense that multiplying all ηα by
the same factor doesn’t change the output of label sequence
yt, and so without loss of generality we may set the step-
sizes for unary features to 1, and those for pairwise features
as λ. The value of λ is used to trade off the strength of
these two sources of information. The final segmentation
for herding is obtained by maximization and averaging,

y∗i = arg max
c

∑
t

I[yti = c] ∀i (10)

Notice that the role of the parameter λ is different be-
tween the CRF and herding approaches. In the CRF, λ con-
trols the strength of smoothness. Increasing λ always in-
creases smoothness. However, herding tries the respect all
the probabilities, and λ measures how our much attention
we pay to each of these two sources of information. Increas-
ing λ not only increases the smoothness where pij(xi 6= xj)
is small, but also forces an edge where pij(xi 6= xj) is
large. As a special case, for a system of N super-pixels
with λ � 1 and pij(xi 6= xj) = 0 for all neighbors in the
label graph, the pairwise term dominates the system, and all
super-pixels will take on the same value.

4. Experiments
We apply herding to image segmentation on two

datasets, PASCAL VOC 2007 segmentation competition

and GrabCut to illustrate its effectiveness. It is compared
to the multiclass classifier with local appearance cues only,
and to the traditional CRF approach.

4.1. PASCAL VOC 2007

On the PASCAL VOC 2007 dataset, we follow a simi-
lar experiment setting as that of [5] and perform segmen-
tation on the level of super-pixels. Each image is first
over-segmented by the global probability of boundary (gPb)
method [1]. The threshold is set to 0 to make sure most
boundaries are retained. SIFT features are then extracted
and quantized in order to build a visual dictionary. A lo-
cal multiclass SVM is trained to provide unary marginals
pi(yi|xi) using histograms of the visual words in each
super-pixel and its neighbors at a distance at most N . The
larger N is, the more context information is available for
the local classifier, less noise in the feature histogram but
also the more blurred the boundaries between super-pixels
become. By increasing N, the segmentations of the local
classifier changes from inaccurate and noisy but with clear
sharp boundaries to more accurate and smooth but with
blurred boundaries (see the results of the local method of
N = 0 in figure 4 and N = 3 in figure 2). The gPb algo-
rithm provides the probability of a boundary between two
super-pixels, i.e. the pairwise marginals pij(yi 6= yj |x).
The VOC test set includes 210 images, and the “trainval”
set is split randomly into a training set of 322 images and a
validation set of 100 images. The local classifier is trained
on the training set, and the (hyper-)parameters of the CRF
and herding are estimated on the validation set.

For the local models, we predict the super-pixel labels
based on the output of SVMs. For the CRF models, the
MAP label is inferred using the graphcut algorithm from
[3, 5, 4, 8] with an energy as in equations 3. The param-
eter λ is estimated by grid search on the validation set.
For the herding method, the maximization step in Eqn. 6
is also executed using the graphcut. Because the origi-
nal gPb score is trained on the BSDS dataset and a lot of
boundaries belonging to irrelevant categories of objects in
the VOC dataset are not considered, gPb should be cali-
brated first. The calibrated pairwise probability is computed
as PV OC(yi 6= yj |x) = PBSDS(yi 6= yj |x)α, where α
controls how sparse the boundaries in the VOC dataset are.
The parameters λ and α are estimated on the validation set
by first fixing α = 1, estimating λ by grid search and then
fixing λ and estimating α. More iterations can be done for
better performance. Notice that for CRF, the function of
λ and α appears in the same position in the pairwise term
λα log(P (yi 6= yj |xi, xj))I(yi 6= yj), and a second param-
eter is therefore redundant.

Figure 2 shows some examples of the test images, re-
sults of different algorithms as well as their posterior prob-
abilities. The local classifiers are trained on features from



Figure 3. Average accuracy of segmentations by the local SVM
classifier (cross), CRF (circle) and herding (square) with different
number of neighboring superpixels used for extracting local fea-
tures. N denotes the maximal distance of the neighboring super-
pixel used. The left plot uses the 2007 segmentation benchmark
criteria (average recall). The plot on the right uses the 2010 criteria
on the 2007 dataset (average overlap).

a neighborhood of N = 3. So the unary class distribu-
tion is already smoothed to some extent (compared to fig-
ure 4 for the case of N=0). But herding still leads to bet-
ter smoothness and locates the boundaries more accurately.
Most boundaries occur in the place with strong pairwise
probabilities. CRF provides similar benefits as herding for
regularizing the local classifiers.

We evaluate the performance of these three models by
two measurements. The first one is the average accuracy
adopted by VOC 2007 Competition. It measures the aver-
age recall of pixels for each category. The second measure-
ment is the one adopted by VOC competition after 2007.
It measures the average of the intersection over union ratio
for each category. The results of both evaluation methods
are shown in figure 3. The results show that both herding
and CRF increase the accuracy in most cases, and herding
always achieves the best accuracy except for N = 2 by
the second measurement. The reduction of the advantage of
herding compared to CRF in the second measurement may
be due to the fact that false positive detections appear fre-
quently in the background which doesn’t reduce the recall
of the background category by much, but will reduce the
intersection over union ratio of the detected category.

Remarkably, herding performs much better than the lo-
cal method when N = 0. The accuracy is improved from
14% to 22% on the first measurement and 4% to 9% on the
second measurement, while CRF doesn’t help at all. The lo-
cal classifier performs poorly because the histogram feature
is computed from very few pixels as discussed in [5]. Thus
regularization on the pairwise term should improve the pre-
diction. It turns out that the optimal value of λ for herding
is about 1.1× 103 which means the importance of the pair-
wise feature is

√
λ ≈ 33 times higher than the unary feature,

matching our expectation. On the other hand, the best value
for CRF is only about 1.1. The difference in the choice of
λ leads to the significant difference in the segmentations as
shown with a typical example in figure 4. Herding outputs
a highly smoothed result with clear boundary while CRF
doesn’t noticeably change the decision of the local classi-

Figure 4. A typical example of segmentations when N = 0. The
top 2 images are the original image and the ground truth segmen-
tation. The remaining 4 images are respectively the segmentation
of the local model, CRF, herding and a CRF with linear potential
functions. The local model is so noisy because the histogram of
SIFT features is computed from very few pixels.

fier.
Two properties of herding previously stated in section

3 would help explain the distinct choices of λ. Firstly,
with a large λ, herding tries to average the distribution of
superpixels in a smooth area. Although the local SVMs
give very noisy results, the average distributions still con-
tain strong signals about the true category. In contrast, the
CRF computes the product of distributions which makes the
noise in the final distribution even worse. So CRF has to
choose a small λ. To verify this hypothesis, we train a CRF
with energy as a linear function of features P (yi|xi) and
P (yi 6= yj |xi, xj), that also computes the average of dis-
tributions when λ is large. The new CRF chooses a large
λ (≈ 22) as expected and the accuracy is improved to 16%
and 7% respectively. However figure 4 shows that the result
is oversmoothed because of the high penalty of boundaries.
Secondly, herding not only increases smoothness in flat ar-
eas but also encourages boundaries at strong edges. That’s
why herding still captures the shape of the object correctly
even with a large value of λ.

4.2. GrabCut

We also ran herding on the GrabCut data set, which
consists of 50 images of a foreground object on a natural
background 1. The objective on the GrabCut images is to
perform hard foreground/background segmentation. We di-
vided the image set into 30 training and 20 test images.

The GrabCut data set contains two labeled trimaps for
each image, where a trimap is a labeling of pixels as fore-
ground, background or undetermined (see Figure 5). The
‘lasso’ trimap contains a rough segmentation of the image

1http://www.research.microsoft.com/vision/
cambridge/segmentation/



Figure 2. Examples of segmentation on Pascal VOC 2007 data set. Images on each line starting from left to right are respectively: the
original image, ground truth segmentation, results of local classifier, CRF and herding, results with intensity proportional to the posterior
probability of the local classifier and herding, and the herding estimate of the pairwise probability of the existence of a boundary (the
corresponding posterior probability for CRF cannot be easily obtained). Neighboring superpixels of a distance up to 3 hops are used for
training local SVM. Best viewed in color.
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Herd 62 3 16 3 7 7 38 58 50 15 2 11 58 24 70 54 20 23 14 47 39 30
Local 50 2 6 8 2 0 13 21 14 2 2 4 8 10 24 20 6 8 5 12 10 11

Overlap CRF 65 1 8 0 2 0 15 30 17 3 0 4 5 10 37 24 9 8 5 18 13 13
Herd 60 2 4 4 3 5 23 28 15 4 0 5 20 12 31 22 6 8 3 18 12 14

Table 1. Accuracies per category and the average accuracy of PASCAL VOC 2007 dataset. Each model uses the N value that maximizes
the average test accuracy. Top table shows recall (PASCAL 2007 benchmark) the bottom table shows overlap (PASCAL 2010 benchmark)

obtained using a lasso or pen tool. The ‘expert’ trimap is
a ground truth labeling obtained by tracing the boundary of
the foreground image at the pixel level. Performance on the
GrabCut data set is assessed via the segmentation error rate
(SER), which is the number of misclassified pixels in the set
of undetermined pixels (where the set of undetermined pix-
els does not include the undetermined pixels in the expert
trimap).

As with the PASCAL data set we train a binary clas-
sifier to provide unary marginals and use the gPb method
to provide pairwise marginals. Since we have a trimap
for each image and can easily identify pixels that are fore-
ground and background, we train a different binary (fore-
ground/background) classifier for each image 2. In partic-

2As with [2], the color model is trained using background pixels that
border the undetermined region.

ular, we consider two color models. Color Model (CM) 1
uses RGB values as features; CM 2 uses 64-dimensional
feature vectors constructed by a building a histogram of
RGB values in the 5-by-5 neighborhood around each pixel.
We then oversegment each image using the gPb method
and identify pairwise marginals between superpixels i and
j (P (yi 6= yj |x)) as in the PASCAL experiments section.
The unary marginals P (yi = 0|x) and P (yi = 1|x) for
each superpixel are found by averaging the predictions of
CM 1 (or CM 2) on each pixel comprising superpixel i. An
example of this process is shown in Figure 5.

We compare three different methods on the GrabCut
data: 1) Local model; 2) CRF model; and 3) Herding. In
the local model, each superpixel is labeled foreground if
P (yi = 1|x) > P (yi = 0|x); and background otherwise.
For the CRF model and herding, we construct a pairwise
MRF that considers only superpixels containing undeter-



Figure 5. Example of segmentation on GrabCut data set. Images from left to right are the ’expert’ ground truth trimap, ’lasso’ trimap,
over segmentation into superpixels, unary marginal probabilities from local classifiers and unary marginal probabilities after herding. In
the trimaps, black pixels are background, white pixels are foreground and light gray pixels are undetermined. The dark gray pixels in the
’lasso’ trimap were used as background pixels in training CM 1 and 2. In the last two images, whiter values indicate larger P (yi = 1|x).

mined pixels and superpixels that neighbor undetermined
superpixels. In other words, we ignore superpixels that do
not border the undetermined region. In the CRF model, the
MAP state is inferred by minimizing the energy in Eqn. 3.
The value of λ was determined by performing 5-fold cross-
validation on the training set. For the CRF model using CM
1 λ = 100, while for CM 2 λ = 1. We consider the same
set of features for herding as in the PASCAL data set. The
value of λ was set for herding on using 5-fold validation as
well. For herding with both CM 1 and 2, λ = 10. In these
experiments α = 1 for herding.

For herding, we consider there to be more than a single
foreground or background class. That is, we divide P (yi =
0|x) into K replicas, P (yi1 = 0|x),...,P (yiK = 0|x),
where P (yik = 0|x) = P (yi = 0|x)/K. This suggests that
the background and foreground regions are comprised of K
object sub-classes that occur with equal probability. Creat-
ing duplicate classes in this manner enables herding to ex-
plain strong boundaries that occur between neighboring su-
perpixels that may both be background or foreground. Such
strong boundaries occur because the gPb method is a gen-
eral boundary (edge) finding method trained without knowl-
edge of the foreground/background segmentation task.

Results from the local model, CRF model and herding
are shown in Table 4.2. The segmentation error rate was
computed across the set of undetermined pixels in the test
set of images. From these results we see that the addition of
pairwise marginals that encode boundary information gives
a big gain over the local, independent model. The results for
herding are shown withK = 5. It should be noted that herd-
ing with different values of K gives different performance.
For example, with K = 1 (i.e. a single background or fore-
ground class) herding SER is 7.68% for CM 1 and 6.97%
for CM 1 - slightly worse than the CRF model. While with
K = 2 the SER of herding is 6.47% for CM 1 and 6.36% for
CM 2 - comparable to that of the CRF. This suggests thatK
should be set to the maximum number of object sub-classes
in the foreground or background.

Segmentation Error Rate (SER)
Local Model CRF Herding

CM 1 CM 2 CM 1 CM 2 CM 1 CM 2
10.45% 10.46% 6.35% 6.58% 6.28% 6.29%

Table 2. Segmentation error rate for local model, CRF and herding
on the GrabCut data set.

5. Conclusion
In this paper we illustrate a new technique for combin-

ing local, discriminatively trained classifiers over groups of
(super-) pixels into a joint model over labels. The method is
an alternative to conditional random fields [10] or max mar-
gin networks [14]. However the method follows a markedly
different philosophy in that it never learns a joint model but
rather generates representative points of some (unknown)
joint distribution P (y|x). An important theoretical contri-
bution of this paper relative to previous work [6] is that we
prove that inconsistent marginals will be orthogonally pro-
jected onto the marginal polytope. This makes this tech-
nique quite unique as a way to combine inconsistent local
classifiers.

We illustrate our new algorithm on image segmentation.
While we do not claim to have developed the state of the art
algorithm for that task, the results do show the utility of our
technique in a computer vision setting. We hope that these
ideas will thus find a broader range of applications within
this discipline.
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A. Proof of Proposition 1
Proof. Since herding is scale free with respect to the step-
size, we can assume ηα = 1 without loss of generality. We
first construct another sequence of weights w̃0 = w0, w̃t =



Figure 6. Inconsistent Moments

w̃t−1 + ψ̄M − ψ(yt), where yt is drawn by the origi-
nal herding sequence. Applying the update equation recur-
sively gives w̃T = w̃0 + T (ψ̄M − ψ̄T ). Then to prove the
proposition, it suffices to prove that the new sequence {w̃t}
satisfies the perceptron cycling theorem (PCT) [6], and con-
sequently ‖w̃t‖ is bounded.

Let’s give the following lemma before moving on

Lemma 3. (ψ̄ − ψ̄M)T (ψ − ψ̄M) ≤ 0, ∀ψ ∈M

Proof. Assume there exists a pointψ ∈M s.t. the inequal-
ity doesn’t hold, then the angle ∠ψψ̄Mψ̄ is an acute an-
gle, and hence as shown in figure 6 we can always find a
point on the segment ψψ̄M, ψ∗, such that ‖ψ∗ − ψ̄‖2 <
‖ψ̄M− ψ̄‖2. This contradicts with the fact thatψ∗ is inM
and ψM is the projection of ψ̄.

According to the herding algorithm (equation 6),
wT
TyT+1 ≥ wT

Tψ(y),∀y. Since ψ̄M ∈ M, it can be rep-
resents by a convex combination of {ψ(y)} with a set of
coefficients {πi}, i.e. ψ̄M =

∑
i πiψ(yi), πi > 0,∀i, and∑

i πi = 1, and thus we know

wT
T ψ̄M =

∑
i

πiw
T
Tψ(yi) ≤ wT

Tψ(yT+1) (11)

Observing w̃T = wT − T (ψ̄ − ψ̄M) with Lemma 3 gives

w̃T
T (ψ(yT+1)− ψ̄M)

= wT
T (ψ(yT+1)− ψ̄M)− T (ψ̄ − ψ̄M)T (ψ(yT+1)− ψ̄M)

≥ 0 (12)

which shows that the sequence {w̃t} satisfies PCT, and
proves the proposition.

Remark 4. As long as the PCT condition for the new se-
quence, i.e. Eqn. 12, holds for all T , the global maximiza-
tion isn’t necessary. However, ψ̄M is usually unknown, and
hence the condition is difficult to verify.

Since any true expectation ψ̄true must be inside the
marginal polytope, according to Lemma 3, ∠ψtrueψ̄Mψ̄
is an obtuse angle. This leads to Corollary 2.
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